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Effective analysis of medical data is essential for understanding complex healthcare phenomena. 
Probability distribution models offer a structured approach to uncover patterns in such data, 
particularly for studying disease progression, survival analysis and many more. In this study, we 
explore a novel probability distribution model, derived by applying the DUS transformation to the 
standard Rayleigh distribution. We thoroughly investigate the statistical properties of the proposed 
model and derive key reliability measures to demonstrate its applicability in reliability analysis. 
To ensure precise parameter estimation, various estimation methods are evaluated, and their 
effectiveness is assessed through a detailed simulation study using bias, mean squared error, and mean 
relative error as performance criteria. The developed model’s practical applicability is demonstrated 
with an analysis of COVID-19 data, comparing its performance with several well-known distributions. 
The results highlight the flexibility and accuracy of the model, establishing it as a powerful and reliable 
tool for advanced statistical modelling in healthcare research.

In the realm of medical science, the accurate analysis and interpretation of data are crucial for advancing 
healthcare outcomes, improving treatment strategies, and enhancing clinical decision-making. Medical 
data, however, is often complex, high-dimensional, and riddled with uncertainties arising from biological 
variability, environmental influences, and limitations in data collection. To address these challenges, probability 
distribution models provide a powerful and flexible approach for analysing and interpreting medical data. These 
models not only account for the inherent randomness in medical phenomena but also offer structured ways to 
quantify uncertainty, predict outcomes, and make evidence-based decisions. This research article focuses on 
the application of probability distribution models in the context of medical science data with special reference 
to COVID-19. The COVID-19 pandemic has underscored the importance of effective data analysis in medical 
science, particularly in understanding the spread, impact, and mitigation of infectious diseases. Such data 
encompassing infection rates, recovery times, mortality, and transmission patterns, is inherently stochastic, 
meaning it involves elements of randomness. Probability distributions provide a framework for modelling these 
random phenomena and understanding their behaviour over time. By fitting appropriate distributions to the 
observed data, researchers can predict outcomes like future case counts, hospitalization rates, or the probability 
of transmission under different conditions. Thus, from modelling disease spread and patient survival rates to 
assessing treatment efficiency and risk factors, probability distribution models play a vital role in capturing real-
world variability in clinical and epidemiological data.

In recent years, researchers have increasingly focused on developing families of probability distributions 
for modelling medical data. Notable contributions in this area include the innovative lifetime distribution 
introduced by Almongy et al.1, which merges the Rayleigh distribution with the extended odd Weibull family to 
form the extended odd Weibull Rayleigh distribution, specifically aimed at modelling COVID-19 mortality rates. 
Additionally, Sindhu et al.2 explored a generalization of the Gumbel type-II distribution for analysing COVID-19 
data, while in another study Sindhu et al.3 developed an exponentiated transformation of Gumbel type-II to 
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handle two datasets of COVID-19 death cases. Liu et al.4 proposed a novel statistical model known as the arcsine 
modified Weibull distribution, demonstrating its effectiveness through COVID-19 data modelling. Kilai et al.5 
introduced a new flexible statistical model for analysing COVID-19 mortality rates. Hossam et al.6 presented an 
extension of the Gumbel distribution, incorporating a new alpha power transformation method to enhance its 
application to COVID-19 data. Gemeay et al.7 contributed by proposing a two-parameter statistical distribution, 
combining exponential and gamma distributions, and demonstrated its superiority using COVID-19 datasets. 
Recently, Alomair et al.8 introduced the exponentiated XLindley distribution, showcasing its applicability 
through three real-world datasets, including COVID-19 mortality rates, precipitation measurements, and 
failure times for repairable items. Further advancements in probability distributions include the exponentiated 
Chen distribution, as examined by Dey et al.9, who investigated its properties and estimation methods while 
applying it to real-world datasets to assess its potential for statistical analysis. Additionally, Dey et al.10 studied 
the generalized exponential distribution, particularly in relation to ozone data. Rather and Subramanian11 
introduced the exponentiated Mukherjee-Islam distribution, demonstrating its efficiency through real-world 
applications. Following this, Rather and Özel12 explored the weighted Power Lindley distribution. Moreover, 
Rather and Özel13 continued their work with the study of a new length-biased Power Lindley distribution, 
including an analysis of its properties and applications. Rather et al.14 proposed a new class of probability 
distribution called the exponentiated Ailamujia distribution, finding that it offers a superior fit compared to 
traditional distributions. Singh et al.15 examined the exponentiated Nadarajah–Haghighi distribution, while 
Ahmad et al.16 developed a novel Sin-G class of distributions, including an illustration involving the Lomax 
distribution. Qayoom and Rather17 contributed by exploring the Weighted Transmuted Mukherjee-Islam 
distribution, along with a comprehensive study of the length-biased Transmuted distribution18 as an extension 
of the Mukherjee-Islam distribution.

In this research article, we aim to develop a new extension of the Rayleigh distribution using the DUS 
transformation approach initially proposed by Kumar et al.19. The DUS transformation has been extensively 
studied by numerous researchers to create enhanced probability models for the analysis and interpretation of 
real-world data. Notable contributions in this area include those by Tripathi et al.20, Abujarad et al.21, Kavya 
and Manoharan22, Gul et al.23, Deepti and Chacko24, Gauthami and Chacko25, Karakaya et al.26, Thomas and 
Chacko27 and Gül et al.28. More recently, Qayoom et al.29 extended the DUS transformation to the Lindley 
distribution, demonstrating its utility in evaluating and enhancing system reliability.

New extension of Rayleigh distribution
The Rayleigh distribution is a continuous probability distribution named after the British Scientist Lord Rayleigh30 
and is characterized by its scale parameter, which influences the shape and spread of the data. The distribution 
is widely utilized across various fields, including life testing experiments, communication theory, medical 
testing and clinical studies, reliability analysis, applied statistics and many more fields. Given its importance 
and the aim to enhance its versatility, several researchers have proposed extensions to the Rayleigh distribution. 
Notably, Kundu and Raqab31 introduced the generalized Rayleigh distribution. MirMostafaee et al.32 presented 
a new extension called the Marshall–Olkin extended generalized Rayleigh distribution, which builds on the 
framework established by Marshall and Olkin33. Additionally, Rashwan34 examined the Kumaraswamy Rayleigh 
distribution. Further contributions include Ateeq et al.35, who derived the Rayleigh-Rayleigh distribution (RRD) 
using the transformed transformer technique. Bantan et al.36 explored the Unit-Rayleigh distribution, assessing 
its significance through real-life datasets. Falgore et al.37 developed the inverse Lomax-Rayleigh distribution for 
modelling medical data. More recently, Ahmad et al.38 introduced a new family of distributions inspired by the 
hyperbolic Sine function generator, with the Rayleigh distribution serving as the base for the newly established 
hyperbolic Sine-Rayleigh distribution.

Consider a random variable V  following Rayleigh distribution with parameter τ > 0, then the probability 
density function (PDF) of V  is given by

	
f (v; τ) =

{
v

τ2 e
− v2

2τ2 v ≥ 0
0; otherwise

Here τ > 0 is the scale parameter characterizing the shape and spread of the distribution. The associated 
cumulative distribution function (CDF) is given by FV (v) = 1 − e

− v2
2τ2 .

In this section, we will generalize the PDF of Rayleigh distribution by following DUS transformation 
approach suggested by Kumar et al.19. So, the PDF of the new generalized Rayleigh distribution is

	
g(v; τ) =

(
e

e − 1

)
v

τ2 e

−

(
v2

2τ2 +e
− v2

2τ2

)
� (1)

From now onwards this new generalized Rayleigh distribution expressed by Eq.  (1) will be called as DUS 
Rayleigh distribution. Tripathi and Agiwal39 have also studied and discussed this new generalization of Rayleigh 
distribution. The behavior of the DUS Rayleigh distribution for different values of its parameter is graphically 
presented in Figs. 1 and 2 as below:

From the above graphical representation of the PDF of DUS Rayleigh distribution, it can be observed that the 
distribution is positively skewed (right-skewed), that is, longer tail on the right. For small τ , the curve is sharply 
peaked near small values of variable V, indicating that most values are concentrated in a narrow range around 
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the mode of the distribution. For large τ , the curve becomes more stretched out, with a broader range of values. 
This implies that the values are less concentrated around the mode.

The corresponding cumulative distribution function (CDF) of DUS Rayleigh distribution is given by

	
GV (v) =

( 1
e − 1

) (
e1−e

− v2
2τ2

− 1

)
� (2)

The graphical representation of the CDF of DUS Rayleigh distribution is shown in Figs. 3 and 4.
It can be observed that the CDF Curve stretches in between 0 and 1. This implies that the expression 4 is a 

valid CDF. From the graphical representation of the CDF of DUS Rayleigh distribution, the CDF shifts right as 
τ  increases. This means that for the same value ν of given random variable V, the probability of finding a value 
below ν decreases. For small τ , the curve rises steeply at small values of ν, meaning that most values are clustered 
around a lower range. For large τ , the curve shifts right, meaning that values are more spread out and higher 
values are more likely, that is, the probability of small values is lower. In other words, it can be interpreted that 
larger τ  values make the CDF increase more gradually, spreading the probability over a wider range.

Statistical properties
In this section, some of the general statistical properties of the newly developed probability distribution will 
be explored. These properties include quantile function, moments of the distribution, coefficient of variation, 
measure of skewness, measure of kurtosis and incomplete moments. In this section, we will also compute 

Fig. 2.  PDF plot of DUS Rayleigh distribution for different parameter values.

 

Fig. 1.  PDF plot of DUS Rayleigh distribution for different parameter values.
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moment generating function, characteristics function and cumulant generating function for the explored DUS 
Rayleigh distribution.

Quantile function
A quantile function provides the value below which a given percentage of data falls. Given a cumulative 
distribution function FX(x) = P (X ≤ x) = u such that u ∈ (0, 1) of a continuous random variable X , then 
the quantile function denoted by Q(u) for u ∈ (0, 1) is defined as

	 Q(u) = F −1
X (u)

For the DUS Rayleigh distribution, the quantile function is obtained by determining the value of V = v for 
which GV (v) = u, that is

	

( 1
e − 1

) (
e1−e

− v2
2τ2

− 1

)
= u

	 v =
[
(2τ2) log {1 − log ((e − 1)u + 1)}−1] 1

2

which is the required expression of quantile function for DUS Rayleigh distribution and is very essential for 
assessing behaviour of the distribution with the help of simulation study.

Fig. 4.  CDF plot of DUS Rayleigh distribution for different parameter values.

 

Fig. 3.  CDF plot of DUS Rayleigh distribution for different parameter values.
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Moments
Moments are essential mathematical tools used to describe and analyze the properties of datasets or mathematical 
functions, offering a mathematical framework to capture essential properties like central tendency, spread 
(variability) and shape. Their versatility makes them indispensable across diverse fields, enabling deeper insights 
and more precise predictions in both theoretical and applied research.

Now, the rth moment about origin of the given model is

	

µ′
r = E(V r) =

∞∫

0

vrg(v; τ)dv

Using Eq. (1) in the above expression, we get

	

µ′
r =

∞∫

0

vr
(

e

e − 1

)
v

τ2 e

−

(
v2

2τ2 +e
− v2

2τ2

)

dv

Put v2

2τ2 = z, so dv = (2)− 1
2 τz− 1

2 dz.
When v → 0, thenz → 0 and, when v → ∞, thenz → ∞, therefore

	
µ′

r =
∞∑

k=0

(−1)k

k!

(
e

e − 1

) (
√

2τ)rΓ
(

r+2
2

)

(k + 1)
r+2

2
� (3)

Putting r = 1, 2, 3, and4 in Eq. (3) we obtain first four moments about origin and are expressed as

	
µ′

1 =
∞∑

k=0

(−1)k

k!

(
e

e − 1

) (
√

2τ)Γ
(

3
2

)

(k + 1) 3
2

	
µ′

2 =
∞∑

k=0

(−1)k

k!

(
e

e − 1

) 2(τ)2

(k + 1)2

	
µ′

3 =
∞∑

k=0

(−1)k

k!

(
e

e − 1

) (
√

2τ)3Γ
(

5
2

)

(k + 1) 5
2

	
µ′

4 =
∞∑

k=0

(−1)k

k!

(
e

e − 1

) 8(τ)4

(k + 1)3

So, the variance (µ2) and coefficient of variation (C.V) for the given model respectively are calculated as

µ2 =
∞∑

k=0

(−1)k

k!

(
e

e−1

) 2(τ)2

(k+1)2 −
(

∞∑
k=0

(−1)k

k!

(
e

e−1

) (
√

2τ)Γ( 3
2 )

(k+1)
3
2

)2

 and

	
C.V = µ′

1

(µ2)1/2 × 100

Moreover, the coefficient of skewness (γ1) and the coefficient of kurtosis (γ2) for the explored model are given 
by

	
γ1 = µ3

(µ2)3/2 = µ′
3 − 3µ′

2µ′
1 + 2(µ′

1)3

(µ2)3/2 , and

	
γ2 = µ4

(µ2)2 = µ′
4 − 4µ′

3µ′
1 + 6µ′

2(µ′
1)2 − 3(µ′

1)4

(µ2)2

The behavior of the mean, variance, C.V, coefficient of skewness and kurtosis for the DUS Rayleigh distribution 
for different values of the parameter involved in the distribution is presented in Table 1 below:

Incomplete moments
The rth incomplete moment about origin for the given model is given by

	

m′
r =

v∫

0

vrg(v; τ)dv
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m′
r =

v∫

0

vr
(

e

e − 1

)
v

τ2 e

−

(
v2

2τ2 +e
− v2

2τ2

)

dv

After following the steps used in the computation of moments of the distribution, the resultant expression for 
incomplete moments is given by

	
m′

r =
∞∑

k=0

(−1)k

k!

(
e

e − 1

) (
√

2τ)rγ
(

r+2
2 ; (k + 1) v2

2τ2

)

(k + 1)
r+2

2

Moment generating function

The moment generating function of the given model is computed as MV (t) = E(etv) =
∞∫
0

etvg(v; τ)dv

	
MV (t) =

∞∑
l=0

∞∑
k=0

(−1)l+k(t)l

(l!)(k!)

(
e

e − 1

) (
√

2τ)lΓ
(

l+2
2

)

(k + 1)
l+2

2

Similarly, the characteristics function and cumulant generating function of given model are given by

	
φV (t) =

∞∑
l=0

∞∑
k=0

(−1)l+k(ιt)l

(l!)(k!)

(
e

e − 1

) (
√

2τ)lΓ
(

l+2
2

)

(k + 1)
l+2

2
, and

	
κV (t) = log

(
∞∑

l=0

∞∑
k=0

(−1)l+k(t)l

(l!)(k!)

(
e

e − 1

) (
√

2τ)lΓ
(

l+2
2

)

(k + 1)
l+2

2

)

Reliability analysis measures
In this section we will explain various measures needed for studying reliability analysis to evaluate the 
performance of a component or system. These measures include survival function, hazard rate, mean residual 
life, mean past life, and stress-strength reliability. All these measures will be derived in relation to the DUS 
Rayleigh distribution.

Survival function and hazard function
The survival function for the DUS Rayleigh distribution is given by

Parameter Mean (µ) Variance (σ2) C.V. γ1 γ2

τ = 0.01 0.01439237 0.00004625 0.4725073 0.4098242 2.878333

τ = 0.05 0.07190761 0.00112819 0.4671059 0.4113968 2.947856

τ = 0.10 0.1428335 0.00443713 0.4663598 0.4423789 3.021732

τ = 0.20 0.2876621 0.01814687 0.4682935 0.4623289 3.103902

τ = 0.30 0.4344241 0.04092956 0.4656983 0.4141835 3.012301

τ = 0.40 0.5767866 0.07600831 0.4779862 0.453753 2.990883

τ = 0.50 0.7209114 0.1131175 0.4665337 0.3991438 2.923794

τ = 0.60 0.8589164 0.1646991 0.4724923 0.4249324 3.004540

τ = 0.70 1.0046350 0.2253588 0.4725297 0.4459983 2.978124

τ = 0.75 1.073314 0.2552967 0.4707561 0.444598 3.054514

τ = 0.80 1.148572 0.2841372 0.4640938 0.4261991 3.043443

τ = 0.90 1.290832 0.3598193 0.4646997 0.4171002 2.986071

τ = 1.0 1.435767 0.4492511 0.4668319 0.4234487 2.985700

τ = 1.25 1.801118 0.7035152 0.4656876 0.3932215 2.882782

τ = 1.50 2.168426 1.0554980 0.4737880 0.4604522 3.097167

τ = 1.75 2.517197 1.3993120 0.4699374 0.4523078 2.985927

τ = 2.0 2.855038 1.8414670 0.4753025 0.4931543 3.182636

Table 1.  Mean, variance, C.V, coefficient of skewness and kurtosis for given model for different values of the 
parameter.
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SV (v) =

(
e

e − 1

) (
1 − e−e

− v2
2τ2

)

It can be further simplified as

	
SV (v) =

(
e

e − 1

) (
1 −

∞∑
k=0

∞∑
j=0

(−1)k+j(kv2)j

(k!)(j!)(2τ2)j

)

The graphical behaviour of the survival function for different parameter values is illustrated in Figs. 5 and 6. It 
can be observed from graphical representation of the survival function based on DUS Rayleigh distribution that 
for small τ , the survival function declines sharply, indicating that failures occur early and survival probability 
decreases rapidly. This can be interpreted as the system has low reliability and short lifespan. On the other hand 
for large τ , the survival function shifts right and declines more slowly, implies that failures are spread over a 
longer duration and survival remains high for a longer time. This indicates that the system is more reliable, with 
a longer lifespan.

The hazard function based on DUS Rayleigh distributions expressed as a ratio of PDF of DUS Rayleigh 
distribution and its survival function. Mathematically, it is expressed as

Fig. 6.  Survival function plot of DUS Rayleigh distribution.

 

Fig. 5.  Survival function plot of DUS Rayleigh distribution.

 

Scientific Reports |        (2025) 15:18535 7| https://doi.org/10.1038/s41598-025-03645-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
HV (v) = v

τ2

(
1

1 − e−e
− v2

2τ2

)
e

−

(
v2

2τ2 +e
− v2

2τ2

)

Mean residual life
Mean residual life (MRL) is a measure that describe “the expected remaining lifetime of a system, component or 
individual given that it has survived up to a certain time point”. In simple words MRL states “How much more 
time can the system be expected to function, given that it is still operational at time T ”. Mathematically, for a 
non-negative random variable T  denoting the failure time of a component or system and follows DUS Rayleigh 
distribution, then the MRL at time T  is given by

	

MRL(T ; τ) = E(T − t|T > t) = 1
1 − GT (t)

∞∫

t

vg(v, τ)dv − t

On substituting the expression of PDF of DUS Rayleigh distribution shown in Eq.  (1), the MRL at time T  
becomes

	

MRL(T ; τ) = 1
1 − GT (t)

(
e

e − 1

) ∞∫

t

v2

τ2 e
− v2

2τ2 e−e
− v2

2τ2
dv − t

	

MRL(T ; τ) = 1
1 − GT (t)

(
e

e − 1

) ∞∑
k=0

(−1)k

k!

∞∫

t

v2

τ2 e
− v2

2τ2 (k+1)
dv − t

Let v2

2τ2 (k + 1) = z, then dv =
(

τ2

k+1

) (
2zτ2

k+1

)− 1
2

dz.
When v → t, thenz → t2

2τ2 (k + 1) and when v → ∞, thenz → ∞, therefore

	
MRL(T ; τ) = 1

1 − GT (t)

(
e

e − 1

) ∞∑
k=0

(−1)k

k!

(
2τ2) 1

2

(k + 1)
3
2

Γ
(

3
2 ,

t2

2τ2 (k + 1)
)

− t

where, GT (t) represents the CDF of DUS Rayleigh distribution given in Eq. (2).

Mean past life
The mean past life (MPL) at time measures “the expected amount of time that the system or component has 
already operated, given that it is still functioning at time T ”. In other words, it explains “how long has the 
system or component been operating on average, given that it is still functioning at time T ”. Suppose that the 
non-negative random variable T  denoting the failure time of a component or system follows DUS Rayleigh 
distribution. Then the MPL is given by

	

MP L(T ; τ) = E(t − T |T ≤ t) = t − 1
GT (t)

t∫

0

vg(v, τ)dv

Using Eq. (1), then MPL can be expressed as

	

MP L(T ; τ) = t − 1
GT (t)

(
e

e − 1

) ∞∑
k=0

(−1)k

k!

t∫

0

v2

τ2 e
− v2

2τ2 (k+1)
dv

Let v2

2τ2 (k + 1) = z, then dv =
(

τ2

k+1

) (
2zτ2

k+1

)− 1
2

dz.
When v → t, thenz → t2

2τ2 (k + 1) and when v → 0, thenz → 0, therefore

	
MP L(T ; τ) = t − 1

GT (t)

(
e

e − 1

) ∞∑
k=0

(−1)k

k!

(
2τ2) 1

2

(k + 1)
3
2

γ

(
3
2 ,

t2

2τ2 (k + 1)
)

Where, GT (t) denotes the CDF of DUS Rayleigh distribution given in Eq. (2).

Stress-strength reliability
Stress-strength reliability provides an estimate of the probability that a component or system will not fail when 
exposed to a given stress or load. The purpose is to compare strength with stress, that is, the capacity of the 
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system to withstand the actual load applied to the component or system. This approach is essential in designing 
reliable products as it accounts for the variability in both stress and strength distribution.

Let the random variable V1 represents the strength of the component or system, that is, the maximum load 
or pressure a component or system can endure and let the random variable V2 denotes the stress level, that 
is, the actual load that the component experiences in operation. Then stress-strength reliability R(say) is the 
probability that the strength exceeds the stress and is mathematically expressed as

	 R = P (V1 ≥ V2)

	

R =
∞∫

0

gV2 (v; τ2)SV1 (v; τ1)dv

Under the assumption that V1 and V2 follows DUS Rayleigh distribution with parameters 
τ1 and τ2 respectively. Therefore, the stress-strength reliability can be written as 

R =
∞∫
0

(
e

e−1

)
v

(τ2)2 e

−

(
v2

2(τ2)2 +e
− v2

2(τ2)2

)
(

e
e−1

)
(

1 − e−e
− v2

2(τ1)2

)
dv.

After simplification we get

	
R =

(
e

e − 1

)2
{

∞∑
k=0

(−1)k

(k + 1)! −
∞∑

k=0

∞∑
l=0

(−1)k+l

(k!)(l!)

(
(τ1)2

(k + 1)(τ1)2 + l(τ2)2

)}

Order statistics
Let V1, V2, V3, ..., Vn be a random sample of size n attaining the values v1, v2, v3, ..., vn from DUS Rayleigh 
distribution. Order statistics simply represents the ordered values of the data set. So, the ordered statistics for the 
given random sample is enumerated as

	
(
V(1), V(2), V(3), ..., V(n)

)

where,
V(1) = Min (V1, V2, V3, ..., Vn), and V(n) = Max (V1, V2, V3, ..., Vn).
The PDF of ith ordered statistics for DUS Rayleigh is given by

	
gV(r) (v; τ) = n!

(n − r)!(r − 1)!g(v; τ) (GV (v))r−1 (1 − GV (v))n−r

On using Eqs. (1) and (2), then the above expression of the PDF of ith ordered statistics becomes

	

gV(r) (v; τ) = n!
(n − r)!(r − 1)!

(
e

e − 1

)
v

τ2 e

−

(
v2

2τ2 +e
− v2

2τ2

) (( 1
e − 1

) (
e1−e

− v2
2τ2

− 1

))r−1

×

((
e

e − 1

) (
1 − e−e

− v2
2τ2

))n−r

	
gV(r) (v; τ) = n!

(n − r)!(r − 1)!
(e)n−r+1

(e − 1)n

v

τ2 e

−

(
v2

2τ2 +e
− v2

2τ2

) (
e1−e

− v2
2τ2

− 1

)r−1 (
1 − e−e

− v2
2τ2

)n−r

� (4)

On substituting r = 1, andn in Eq. (4), we get the PDF of minimum and maximum ordered statistics respectively 
for the given model and are expressed as.

	
gV(1) (v; τ) = n

(
e

e − 1

)n v

τ2 e

−

(
v2

2τ2 +e
− v2

2τ2

) (
1 − e−e

− v2
2τ2

)n−1

, and

	
gV(n) (v; τ) = n

(e)
(e − 1)n

v

τ2 e

−

(
v2

2τ2 +e
− v2

2τ2

) (
e1−e

− v2
2τ2

− 1

)n−1
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Entropy measures
Entropy is a fundamental concept in statistics and information theory that provides a quantitative measure 
of uncertainty, randomness, and information content associated with a random variable or phenomenon. 
It represents the average amount of information produced by a stochastic source of data and reflects how 
unpredictable the variable is. Entropy measures find a broad range of application across various domains such 
as, machine learning, information theory, cluster analysis, economics and finance, engineering and many more, 
making it essential for both theoretical exploration and practical implementation in various domains. In this 
section, Renyi and Tsalli’s measure of entropy are explored based on DUS Rayleigh distribution.

The Renyi entropy40 for the given model is

	

R(ξ) = 1
1 − ξ

log





∞∫

0

(g(v; τ))ξ dv





	
R(ξ) = 1

1 − ξ
log

{
∞∑

k=0

(−1)k(ξ)k(2)
ξ−1

2

(k)!(τ)ξ−1

(
e

e − 1

)ξ Γ
(

ξ+1
2

)

(ξ + k)
ξ+1

2

}

The Tsalli’s entropy41 for the given distribution is given by

	

T (κ) = 1
κ − 1


1 −

∞∫

0

(g(v; τ))κ dv




	

T (κ) = 1
κ − 1


1 −

∞∫

0

(
e

e − 1

)κ
∞∫

0

(
v

τ2

)κ

e
− v2κ

2τ2 e−κe
− v2

2τ2
dv




After simplification we get

	
T (κ) = 1

κ − 1

{
1 −

∞∑
j=0

(−1)j(κ)j(2)
κ−1

2

(j)!(τ)κ−1

(
e

e − 1

)κ Γ
(

κ+1
2

)

(κ + j)
κ+1

2

}

Estimation methods
In this section various methods for estimating parameter of the explored probability distribution will be 
discussed. These methods include maximum likelihood estimation, Anderson–Darling estimation, Right-tailed 
Anderson–Darling estimation, Left-tailed Anderson–Darling estimation, Cramer-von Mises estimation, least 
squares estimation, weighted least squares estimation, maximum product of spacing estimation, minimum 
spacing absolute distance estimation and minimum spacing absolute log-distance estimation. All these methods 
provide an estimate of the parameter either by maximizing or minimizing an objective function. The objective 
function that is to be maximized or minimized is a function of parameter and the random samples drawn from 
the given population.

Maximum likelihood estimation
Under maximum likelihood estimation method, the likelihood function of a random sample is the required 
objective function that is to be maximized to estimate unknown parameter. Consider a random sample 
V1, V2, V3, . . . , Vm of size m assuming the values v1, v2, v3, . . . , vm respectively drawn from DUS Rayleigh 
distribution. Then the likelihood function of V1, V2, V3, . . . , Vm defined as joint probability density function of 
V1, V2, V3, . . . , Vm is given by

	
L(v; τ) =

m∏
s=1

g(vs; τ)

	
L(v; τ) =

m∏
s=1

(
e

e − 1

) (vs)
τ2 e

−

(
(vs)2

2τ2 +e
− (vs)2

2τ2

)

Taking logarithm on both sides of the above expression we get

	
log L(v; τ) = m log

(
e

e − 1

)
− 2m log(τ) +

m∑
s=1

log(vs) −
m∑

s=1

(
(vs)2

2τ2 + e
− (vs)2

2τ2

)

Differentiating above equation partially with respect to τ  and equating to zero we get
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0 − 2m

τ
+ 0 +

m∑
s=1

(
(vs)2

τ3

)
+

m∑
s=1

(
(vs)2

τ3

)
e

− (vs)2

2τ2 = 0

	

m∑
s=1

(vs)2 +
m∑

s=1

(
(vs)2e

− (vs)2

2τ2

)
− 2mτ2 = 0

On solving the above equation, we obtain estimate of the given parameter of the distribution under maximum 
likelihood estimation method.

Anderson–Darling estimation
The Anderson–Darling estimation method minimizes the Anderson–Darling statistic to find the value of 
parameter that provides best fit to the distribution. For a random sample V1, V2, V3, . . . , Vm of size m taking 
the values v1, v2, v3, . . . , vm and are arranged in ascending order as V(1), V(2), V(3), . . . , V(m) with theoretical 
CDF, the Anderson–Darling statistic denoted by AD(v; τ)(say) is given by

	
AD(v; τ) = −m −

m∑
ℓ=1

(2ℓ − 1)
m

[log {FV (vℓ)} + log {SV (vℓ)}]

	
AD(v; τ) = −m −

m∑
ℓ=1

(2ℓ − 1)
m


log




( 1
e − 1

) 
e1−e

−
v2

ℓ
2τ2

− 1





 + log




(
e

e − 1

) 
1 − e−e

−
v2

l
2τ2










Right-tailed and left-tailed Anderson–Darling estimations
Like the Anderson–Darling estimation method, the right-tailed Anderson–Darling and left-tailed Anderson–
Darling estimation methods provide an estimate of the parameter that minimizes the modified Anderson–
Darling statistic. For right-tailed Anderson–Darling estimation method, the objective function to be minimized 
is

	
ADRT (v, τ) = m

2 − 2
m∑

ℓ=1

[GV (vℓ)] −
m∑

ℓ=1

(2ℓ − 1)
m

[log {SV (vm+1−ℓ)}]

	
ADRT (v, τ) = m

2 − 2
m∑

ℓ=1


( 1

e − 1

) 
e1−e

−
v2

ℓ
2τ2

− 1





 −

m∑
ℓ=1

(2ℓ − 1)
m

[
log

{(
e

e − 1

) (
1 − e−e

−
(vm+1−l)2

2τ2

)}]

Similarly, for left-tailed Anderson–Darling estimation method, the objective function to be minimized is

	
ADLT (v, τ) = −3m

2 + 2
m∑

ℓ=1

[GV (vℓ)] −
m∑

ℓ=1

(2ℓ − 1)
m

[log {GV (vℓ)}]

	
ADLT (v, τ) = −3m

2 + 2
m∑

ℓ=1


( 1

e − 1

) 
e1−e

−
v2

ℓ
2τ2

− 1





 −

m∑
ℓ=1

(2ℓ − 1)
m


log




( 1
e − 1

) 
e1−e

−
v2

ℓ
2τ2

− 1










Cramer-von Mises estimation
In the Cramer-von Mises estimation method, the parameters of the underlying distribution are estimated by 
minimizing the Cramer-von Mises Statistic used to study goodness-of-fit of the distribution. Given a random 
sample sorted in increasing order with theoretical CDF, the Cramer-von Mises statistics is expressed as

	
CVM (v, τ) = − 1

12m
+

m∑
ℓ=1

[
{GV (vℓ)} − (2ℓ − 1)

2m

]2

	

CVM (v, τ) = − 1
12m

+
m∑

ℓ=1








( 1
e − 1

) 
e1−e

−
v2

ℓ
2τ2

− 1






 − (2ℓ − 1)

2m




2

Least squares estimation
In the case of least squares estimation method for probability distributions, parameters are estimated by 
minimizing the squared differences between the empirical cumulative distribution and the theoretical 
cumulative distribution of the chosen distribution. The objective function in this case which is to minimized is 
mathematically expressed as
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LS(v, τ) =

m∑
ℓ=1

[
{GV (vℓ)} − ℓ

m + 1

]2

	

LS(v, τ) =
m∑

ℓ=1







( 1
e − 1

) 
e1−e

−
v2

ℓ
2τ2

− 1





 − ℓ

m + 1




2

Weighted least squares estimation
Weighted least square estimation method is an extension of least squares estimation method. The objective 
function that is to be minimized in order to obtain estimate of the unknown parameter under weighted least 
squares estimation method is equal to

	
W LS(v, τ) =

m∑
ℓ=1

(m + 1)2(m + 2)
ℓ(m − ℓ + 1)

[
{GV (vℓ)} − ℓ

m + 1

]2

	

W LS(v, τ) =
m∑

ℓ=1

(m + 1)2(m + 2)
ℓ(m − ℓ + 1)







( 1
e − 1

) 
e1−e

−
v2

ℓ
2τ2

− 1





 − ℓ

m + 1




2

Maximum product of spacing estimation
The maximum product of spacing estimation method aims to maximize the product of spacing-the differences 
between successive values of the theoretical cumulative distribution function evaluated at the ordered data 
points. The method of maximum product of spacing provides an estimate of unknown parameter by maximizing 
the following objective function

	
MP S(v, τ) = 1

m + 1

m∑
ℓ=1

[log {Ψl}]

where Ψl = GV(l) (v; τ) − GV(l−1) (v; τ) and GV(l) (v; τ) is the CDF of lth ordered statistics.

Minimum spacing absolute distance and Minimum spacing absolute log-distance estimation
Similar to maximum product of spacing estimation method, the objective function that is to be minimized 
for obtaining estimate of the parameter under minimum spacing absolute distance estimation method and 
minimum spacing absolute log-distance estimation method respectively are given in Eqs. (5) and (6) as below:

	
MSAD(v, τ) =

m+1∑
ℓ=1

∣∣∣Ψl − 1
m + 1

∣∣∣� (5)

where Ψl = GV(l) (v; τ) − GV(l−1) (v; τ) and GV(l) (v; τ) is the CDF of lth ordered statistics.
And,

	
MSALD(v, τ) =

m+1∑
ℓ=1

∣∣∣log(Ψl) − log
( 1

m + 1

)∣∣∣� (6)

Data analysis and real data application
Simulation study
In this section, we will conduct simulation study to understand the behavior and compare performance of all the 
estimating approaches discussed in “Estimation methods” section for estimating parameter of the DUS Rayleigh 
distribution. For the comparative study, we calculate bias, mean squared error (MSE) and mean relative error 
(MRE) for the estimate of the parameter under different estimation technique for various samples generated 
using Monte Carlo simulation in R-software42. We investigated the performance of the distribution’s parameter 
estimator across a variety of sample sizes, including 25, 50, 75, 100, 150, 250, 400, and 600. By examining both 
small and large sample sizes, we aimed to assess how the estimator behaves across different data scales. Larger 
sample sizes are particularly valuable for evaluating the stability and reliability of the estimator, as they provide 
more consistent estimates by reducing the influence of random variability and outliers. They also offer insights 
into the model’s ability to generalize to larger, more complex datasets. Although smaller sample sizes, such 
as 25, 50 may be sufficient for initial assessments, they may not fully capture the complexities of the model’s 
behaviour in more varied datasets. Consequently, our study sought to provide a comprehensive evaluation by 
incorporating a broad range of sample sizes, allowing us to draw more robust and generalizable conclusions 
about the estimator’s accuracy and reliability across different data scales.

The simulation process is repeated 1000 times to generate various samples of size 25, 50, 75, 150,250, 400 and 
600 from DUS Rayleigh distribution using Inverse CDF technique. The initial parameter values-0.5, 0.75, 1.25, 
1.75, 2.5, and 4.0 are chosen to evaluate the flexibility and robustness of different estimation methods under 
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varying conditions. The rationale behind selecting these values allows us to test whether an estimation method 
performs consistently across different scales. Some estimation methods may perform well for small parameters 
but struggle with larger values. A flexible estimator should maintain accuracy and stability across the entire 
range of chosen parameter values. From this simulation study, the values of bias, MSE, and MRE of estimated 
parameter under different estimations approaches are presented in Tables 2, 3, 4, 5, 6, 7 and are computed using 
following mathematical expressions respectively:

Sample size Value ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

25

Bias
[ranks]

0.03416
[1]

0.03691
[4]

0.03867
[6]

0.03688
[3]

0.04097
[7]

0.03818
[5]

0.03457
[2]

0.04459
[10]

0.04405
[9]

0.04363
[8]

MSE
[ranks]

0.00180
[1]

0.00224
[4]

0.00232
[6]

0.00222
[3]

0.00256
[7]

0.00229
[5]

0.00191
[2]

0.00324
[10]

0.00321
[9]

0.00296
[8]

MRE
[ranks]

0.06831
[1]

0.07382
[4]

0.07734
[6]

0.07377
[3]

0.08194
[7]

0.07635
[5]

0.06914
[2]

0.08918
[10]

0.08810
[9]

0.08726
[8]

Sum ranks
[ranks]

3
[1]

12
[4]

18
[6]

9
[3]

21
[7]

15
[5]

6
[2]

30
[10]

27
[9]

24
[8]

50

Bias
[ranks]

0.02475
[1]

0.02696
[2]

0.02816
[5]

0.02817
[6]

0.02812
[4]

0.02825
[7]

0.02764
[3]

0.03536
[10]

0.03412
[9]

0.03208
[8]

MSE
[ranks]

0.00098
[1]

0.00116
[2]

0.00128
[6]

0.00126
[4.5]

0.00126
[4.5]

0.00129
[7]

0.00118
[3]

0.00185
[9]

0.00195
[10]

0.00165
[8]

MRE
[ranks]

0.04950
[1]

0.05392
[2]

0.05633
[5]

0.05634
[6]

0.05624
[4]

0.05650
[7]

0.05528
[3]

0.07071
[10]

0.06824
[9]

0.06416
[8]

Sum ranks
[ranks]

3
[1]

6
[2]

16
[5]

16.5
[6]

13.5
[4]

21
[7]

9
[3]

29
[10]

28
[9]

24
[8]

75

Bias
[ranks]

0.02242
[3]

0.02231
[2]

0.02499
[8]

0.02284
[4]

0.02473
[7]

0.02375
[5]

0.02128
[1]

0.02815
[10]

0.02783
[9]

0.02368
[6]

MSE
[ranks]

0.00078
[2]

0.00081
[4]

0.00099
[8]

0.00080
[3]

0.00098
[7]

0.00089
[5]

0.00072
[1]

0.00123
[9]

0.00125
[10]

0.00090
[6]

MRE
[ranks]

0.04484
[3]

0.04462
[2]

0.04998
[8]

0.04568
[4]

0.04946
[7]

0.04751
[6]

0.04256
[1]

0.05631
[10]

0.05566
[9]

0.04736
[5]

Sum ranks
[ranks]

8
[2.5]

8
[2.5]

24
[8]

11
[4]

21
[7]

16
[5]

3
[1]

29
[10]

28
[9]

17
[6]

150

Bias
[ranks]

0.01492
[1]

0.01928
[8]

0.01748
[4]

0.01613
[3]

0.01923
[7]

0.01873
[6]

0.01545
[2]

0.02344
[10]

0.01986
[9]

0.01777
[5]

MSE
[ranks]

0.00035
[1]

0.00056
[7.5]

0.00051
[4.5]

0.00041
[3]

0.00056
[7.5]

0.00054
[6]

0.00036
[2]

0.00083
[10]

0.00063
[9]

0.00051
[4.5]

MRE
[ranks]

0.02984
[1]

0.03857
[8]

0.03497
[4]

0.03228
[3]

0.03846
[7]

0.03746
[6]

0.03090
[2]

0.04689
[10]

0.03973
[9]

0.03554
[5]

Sum ranks
[ranks]

3
[1]

23.5
[8]

13.5
[4]

9
[3]

21.5
[7]

18
[6]

6
[2]

30
[10]

27
[9]

14.5
[5]

250

Bias
[ranks]

0.01219
[1]

0.01519
[6]

0.01458
[5]

0.01296
[3]

0.01524
[7]

0.01643
[9]

0.01275
[2]

0.02093
[10]

0.01554
[8]

0.01351
[4]

MSE
[ranks]

0.00023
[1]

0.00035
[6.5]

0.00032
[5]

0.00026
[3]

0.00035
[6.5]

0.00040
[9]

0.00025
[2]

0.00062
[10]

0.00038
[8]

0.00028
[4]

MRE
[ranks]

0.02437
[1]

0.03038
[6]

0.02916
[5]

0.02591
[3]

0.03047
[7]

0.03285
[9]

0.02549
[2]

0.04186
[10]

0.03109
[8]

0.02703
[4]

Sum ranks
[ranks]

3
[1]

18.5
[6]

15
[5]

9
[3]

20.5
[7]

27
[9]

6
[2]

30
[10]

24
[8]

12
[4]

400

Bias
[ranks]

0.01019
[1]

0.01324
[6]

0.01339
[7]

0.01114
[3.5]

0.01356
[8]

0.01472
[9]

0.01114
[3.5]

0.01931
[10]

0.01188
[5]

0.01021
[2]

MSE
[ranks]

0.00016
[1]

0.00025
[6]

0.00026
[7]

0.00019
[3.5]

0.00028
[8]

0.00031
[9]

0.00019
[3.5]

0.00050
[10]

0.00022
[5]

0.00017
[2]

MRE
[ranks]

0.02037
[1]

0.02648
[6]

0.02679
[7]

0.02229
[4]

0.02711
[8]

0.02944
[9]

0.02228
[3]

0.03862
[10]

0.02375
[5]

0.02042
[2]

Sum ranks
[ranks]

3
[1]

18
[6]

21
[7]

11
[4]

24
[8]

27
[9]

10
[3]

30
[10]

15
[5]

6
[2]

600

Bias
[ranks]

0.00877
[1]

0.01238
[6]

0.01250
[7]

0.00993
[3]

0.01276
[8]

0.01439
[9]

0.00995
[4]

0.01958
[10]

0.01018
[5]

0.00893
[2]

MSE
[ranks]

0.00011
[1]

0.00021
[6]

0.00023
[7.5]

0.00014
[3]

0.00023
[7.5]

0.00027
[9]

0.00015
[4]

0.00048
[10]

0.00016
[5]

0.00012
[2]

MRE
[ranks]

0.01754
[1]

0.02476
[6]

0.02500
[7]

0.01986
[3]

0.02551
[8]

0.02877
[9]

0.01989
[4]

0.03917
[10]

0.02035
[5]

0.01785
[2]

Sum ranks
[ranks]

3
[1]

18
[6]

21.5
[7]

9
[3]

23.5
[8]

27
[9]

12
[4]

30
[10]

15
[5]

6
[2]

Table 2.  Bias, MSE and MRE under different estimation methods, when τ = 0.5
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Sample size Value ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

25

Bias
[ranks]

0.05293
[2]

0.05485
[3]

0.06101
[7]

0.05633
[5]

0.06264
[8]

0.05539
[4]

0.05141
[1]

0.06663
[9]

0.06980
[10]

0.05985
[6]

MSE
[ranks]

0.00426
[2]

0.00478
[3]

0.00598
[7]

0.00510
[5]

0.00617
[8]

0.00505
[4]

0.00418
[1]

0.00695
[9]

0.00786
[10]

0.00570
[6]

MRE
[ranks]

0.07057
[2]

0.07313
[3]

0.08135
[7]

0.07510
[5]

0.08352
[8]

0.07385
[4]

0.06855
[1]

0.08884
[9]

0.09307
[10]

0.07980
[6]

Sum ranks
[ranks]

6
[2]

9
[3]

21
[7]

15
[5]

24
[8]

12
[4]

3
[1]

27
[9]

30
[10]

18
[6]

50

Bias
[ranks]

0.03584
[1]

0.04009
[4]

0.04434
[6]

0.03837
[2]

0.04482
[7]

0.04138
[5]

0.03947
[3]

0.04666
[9]

0.04743
[10]

0.04507
[8]

MSE
[ranks]

0.00200
[1]

0.00259
[4]

0.00310
[6]

0.00230
[2]

0.00313
[7]

0.00272
[5]

0.00236
[3]

0.00356
[9]

0.00360
[10]

0.00316
[8]

MRE
[ranks]

0.04779
[1]

0.05346
[4]

0.05912
[6]

0.05116
[2]

0.05976
[7]

0.05517
[5]

0.05262
[3]

0.06221
[9]

0.06324
[10]

0.06009
[8]

Sum ranks
[ranks]

3
[1]

12
[4]

18
[6]

6
[2]

21
[7]

15
[5]

9
[3]

27
[9]

30
[10]

24
[8]

75

Bias
[ranks]

0.03133
[1]

0.03298
[5]

0.03438
[6]

0.03270
[4]

0.03462
[8]

0.03226
[3]

0.03216
[2]

0.03776
[9]

0.04031
[10]

0.03439
[7]

MSE
[ranks]

0.00151
[1]

0.00169
[5]

0.00191
[8]

0.00167
[3]

0.00190
[7]

0.00168
[4]

0.00164
[2]

0.00230
[9]

0.00264
[10]

0.00189
[6]

MRE
[ranks]

0.04178
[1]

0.04398
[5]

0.04584
[6]

0.04360
[4]

0.04616
[8]

0.04302
[3]

0.04288
[2]

0.05035
[9]

0.05374
[10]

0.04586
[7]

Sum ranks
[ranks]

3
[1]

15
[5]

20
[6.5]

11
[4]

23
[8]

10
[3]

6
[2]

27
[9]

30
[10]

20
[6.5]

150

Bias
[ranks]

0.02079
[1]

0.02186
[2]

0.02386
[6]

0.02198
[3]

0.02445
[7]

0.02371
[5]

0.02200
[4]

0.02746
[9]

0.02941
[10]

0.02513
[8]

MSE
[ranks]

0.00069
[1]

0.00078
[3]

0.00090
[6]

0.00079
[4]

0.00094
[7]

0.00088
[5]

0.00074
[2]

0.00116
[9]

0.00139
[10]

0.00103
[8]

MRE
[ranks]

0.02772
[1]

0.02915
[2]

0.03181
[6]

0.02931
[3]

0.03259
[7]

0.03161
[5]

0.02934
[4]

0.03661
[9]

0.03922
[10]

0.03351
[8]

Sum ranks
[ranks]

3
[1]

7
[2]

18
[6]

10
[3]

21
[7]

15
[5]

10
[4]

27
[9]

30
[10]

24
[8]

250

Bias
[ranks]

0.01605
[1]

0.01810
[5]

0.01861
[7]

0.01695
[4]

0.01900
[8]

0.01670
[3]

0.01667
[2]

0.02098
[9]

0.02127
[10]

0.01817
[6]

MSE
[ranks]

0.00041
[1]

0.00049
[5]

0.00054
[7]

0.00046
[4]

0.00056
[8]

0.00044
[2.5]

0.00044
[2.5]

0.00070
[9]

0.00072
[10]

0.00051
[6]

MRE
[ranks]

0.02140
[1]

0.02413
[5]

0.02482
[7]

0.02260
[4]

0.02534
[8]

0.02226
[3]

0.02223
[2]

0.02797
[9]

0.02836
[10]

0.02423
[6]

Sum ranks
[ranks]

3
[1]

15
[5]

21
[7]

12
[4]

24
[8]

8.5
[3]

6.5
[2]

27
[9]

30
[10]

18
[6]

400

Bias
[ranks]

0.01262
[1]

0.01271
[2]

0.01476
[5]

0.01360
[3]

0.01510
[6]

0.01530
[7]

0.01409
[4]

0.01641
[10]

0.01611
[8]

0.01619
[9]

MSE
[ranks]

0.00025
[1]

0.00026
[2]

0.00034
[5]

0.00028
[3]

0.00036
[7]

0.00035
[6]

0.00032
[4]

0.00042
[10]

0.00041
[9]

0.00040
[8]

MRE
[ranks]

0.01682
[1]

0.01695
[2]

0.01968
[5]

0.01814
[3]

0.02013
[6]

0.02040
[7]

0.01879
[4]

0.02188
[10]

0.02148
[8]

0.02159
[9]

Sum ranks
[ranks]

3
[1]

6
[2]

15
[5]

9
[3]

19
[6]

20
[7]

12
[4]

30
[10]

25
[8]

26
[9]

600

Bias
[ranks]

0.01008
[1]

0.01203
[6]

0.01141
[5]

0.01124
[3]

0.01243
[8]

0.01126
[4]

0.01076
[2]

0.01385
[10]

0.01357
[9]

0.01229
[7]

MSE
[ranks]

0.00016
[1]

0.00022
[6]

0.00021
[5]

0.00020
[3.5]

0.00024
[7]

0.00020
[3.5]

0.00018
[2]

0.00030
[10]

0.00029
[9]

0.00025
[8]

MRE
[ranks]

0.01345
[1]

0.01604
[6]

0.01521
[5]

0.01499
[3]

0.01657
[8]

0.01502
[4]

0.01434
[2]

0.01847
[10]

0.01809
[9]

0.01639
[7]

Sum ranks
[ranks]

3
[1]

18
[6]

15
[5]

9.5
[3]

23
[8]

11.5
[4]

6
[2]

30
[10]

27
[9]

22
[7]

Table 3.  Bias, MSE and MRE under different estimation methods, when τ = 0.75.
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Sample size Value ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

25

Bias
[ranks]

0.08344
[1]

0.09385
[4]

0.10478
[8]

0.08977
[2]

0.09612
[5]

0.10131
[6]

0.09123
[3]

0.10394
[7]

0.11235
[10]

0.10642
[9]

MSE
[ranks]

0.01134
[1]

0.01387
[4]

0.01732
[7]

0.01259
[2]

0.01454
[5]

0.01572
[6]

0.01307
[3]

0.01795
[8]

0.02006
[10]

0.01878
[9]

MRE
[ranks]

0.06676
[1]

0.07508
[4]

0.08382
[8]

0.07182
[2]

0.07690
[5]

0.08105
[6]

0.07299
[3]

0.08315
[7]

0.08988
[10]

0.08514
[9]

Sum ranks
[ranks]

3
[1]

12
[4]

23
[8]

6
[2]

15
[5]

18
[6]

9
[3]

22
[7]

30
[10]

27
[9]

50

Bias
[ranks]

0.05943
[1]

0.06287
[3]

0.06685
[5]

0.06233
[2]

0.06879
[6]

0.07019
[7]

0.06570
[4]

0.08163
[10]

0.07670
[9]

0.07503
[8]

MSE
[ranks]

0.00544
[1]

0.00626
[3]

0.00721
[5]

0.00620
[2]

0.00776
[6]

0.00788
[7]

0.00656
[4]

0.01041
[10]

0.00938
[9]

0.00919
[8]

MRE
[ranks]

0.04754
[1]

0.05030
[3]

0.05348
[5]

0.04986
[2]

0.05503
[6]

0.05615
[7]

0.05256
[4]

0.06530
[10]

0.06136
[9]

0.06002
[8]

Sum ranks
[ranks]

3
[1]

9
[3]

15
[5]

6
[2]

18
[6]

21
[7]

12
[4]

30
[10]

27
[9]

24
[8]

75

Bias
[ranks]

0.05115
[2]

0.05614
[5]

0.05967
[7]

0.05094
[1]

0.05645
[6]

0.05604
[4]

0.05142
[3]

0.06385
[9]

0.06652
[10]

0.06004
[8]

MSE
[ranks]

0.00403
[1]

0.00500
[4]

0.00555
[7]

0.00420
[2]

0.00509
[6]

0.00505
[5]

0.00425
[3]

0.00614
[9]

0.00706
[10]

0.00567
[8]

MRE
[ranks]

0.04092
[2]

0.04491
[5]

0.04774
[7]

0.04075
[1]

0.04516
[6]

0.04483
[4]

0.04114
[3]

0.05108
[9]

0.05322
[10]

0.04803
[8]

Sum ranks
[ranks]

5
[2]

14
[5]

21
[7]

3
[1]

18
[6]

13
[4]

9
[3]

27
[9]

30
[10]

24
[8]

150

Bias
[ranks]

0.03517
[1]

0.03711
[3]

0.04090
[6]

0.03632
[2]

0.04151
[7]

0.03846
[5]

0.03820
[4]

0.04334
[9]

0.04989
[10]

0.04217
[8]

MSE
[ranks]

0.00198
[1]

0.00223
[3]

0.00264
[6]

0.00205
[2]

0.00269
[7]

0.00229
[4]

0.00237
[5]

0.00289
[9]

0.00404
[10]

0.00276
[8]

MRE
[ranks]

0.02813
[2]

0.02969
[4]

0.03272
[7]

0.02905
[3]

0.02365
[1]

0.03076
[6]

0.03056
[5]

0.03467
[9]

0.03992
[10]

0.03374
[8]

Sum ranks
[ranks]

4
[1]

10
[3]

19
[7]

7
[2]

15
[5.5]

15
[5.5]

14
[4]

27
[9]

30
[10]

24
[8]

250

Bias
[ranks]

0.02725
[1]

0.03013
[6]

0.03199
[7]

0.02748
[2]

0.02957
[5]

0.02912
[4]

0.02822
[3]

0.03508
[9]

0.03588
[10]

0.03358
[8]

MSE
[ranks]

0.00116
[1]

0.00142
[6]

0.00166
[7]

0.00120
[2]

0.00134
[5]

0.00131
[4]

0.00129
[3]

0.00196
[9]

0.00205
[10]

0.00181
[8]

MRE
[ranks]

0.02180
[1]

0.02411
[5]

0.02559
[6]

0.02198
[2]

0.03321
[10]

0.02329
[4]

0.02257
[3]

0.02806
[8]

0.02870
[9]

0.02686
[7]

Sum ranks
[ranks]

3
[1]

17
[5]

20
[6.5]

6
[2]

20
[6.5]

12
[4]

9
[3]

26
[9]

29
[10]

25
[8]

400

Bias
[ranks]

0.02094
[1]

0.02451
[5]

0.02462
[6]

0.02224
[2]

0.02494
[7]

0.02322
[4]

0.02254
[3]

0.02821
[10]

0.02779
[8]

0.02791
[9]

MSE
[ranks]

0.00071
[1]

0.00094
[6]

0.00092
[5]

0.00080
[2]

0.00098
[7]

0.00088
[4]

0.00082
[3]

0.00124
[10]

0.00121
[8.5]

0.00121
[8.5]

MRE
[ranks]

0.01675
[1]

0.01961
[5]

0.01970
[6]

0.01779
[2]

0.01995
[7]

0.01857
[4]

0.01803
[3]

0.02257
[10]

0.02223
[8]

0.02233
[9]

Sum ranks
[ranks]

3
[1]

16
[5]

17
[6]

6
[2]

21
[7]

12
[4]

9
[3]

30
[10]

24.5
[8]

26.5
[9]

600

Bias
[ranks]

0.01760
[2]

0.01881
[4]

0.02148
[8]

0.01734
[1]

0.01938
[6]

0.01918
[5]

0.01771
[3]

0.02129
[7]

0.02244
[10]

0.02175
[9]

MSE
[ranks]

0.00048
[2]

0.00056
[4]

0.00070
[7.5]

0.00046
[1]

0.00059
[5.5]

0.00059
[5.5]

0.00050
[3]

0.00070
[7.5]

0.00080
[10]

0.00071
[9]

MRE
[ranks]

0.01408
[2]

0.01505
[4]

0.01718
[8]

0.01387
[1]

0.01550
[6]

0.01534
[5]

0.01417
[3]

0.01703
[7]

0.01795
[10]

0.01740
[9]

Sum ranks
[ranks]

6
[2]

12
[4]

23.5
[8]

3
[1]

17.5
[6]

15.5
[5]

9
[3]

21.5
[7]

30
[10]

27
[9]

Table 4.  Bias, MSE and MRE under different estimation methods, when τ = 1.25.
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Sample size Value ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

25

Bias
[ranks]

0.12543
[2]

0.13819
[6]

0.13450
[4]

0.13037
[3]

0.14345
[7]

0.13655
[5]

0.12524
[1]

0.16243
[10]

0.15019
[8]

0.15121
[9]

MSE
[ranks]

0.02416
[1]

0.02871
[4]

0.02876
[5]

0.02648
[3]

0.03221
[7]

0.03029
[6]

0.02475
[2]

0.04184
[10]

0.03584
[9]

0.03545
[8]

MRE
[ranks]

0.07167
[2]

0.07896
[6]

0.07686
[4]

0.07450
[3]

0.08197
[7]

0.07803
[5]

0.07156
[1]

0.09281
[10]

0.08582
[8]

0.08641
[9]

Sum ranks
[ranks]

5
[2]

16
[5.5]

13
[4]

9
[3]

21
[7]

16
[5.5]

4
[1]

30
[10]

25
[8]

26
[9]

50

Bias
[ranks]

0.08819
[1]

0.08971
[2]

0.09966
[7]

0.09112
[3]

0.09857
[6]

0.09228
[4]

0.09277
[5]

0.11457
[10]

0.11280
[9]

0.10296
[8]

MSE
[ranks]

0.01231
[1]

0.01265
[2]

0.01532
[6]

0.01296
[3]

0.01663
[7]

0.01318
[4]

0.01335
[5]

0.02012
[9]

0.02060
[10]

0.01665
[8]

MRE
[ranks]

0.05039
[1]

0.05126
[2]

0.05695
[7]

0.05207
[3]

0.05633
[6]

0.05273
[4]

0.05301
[5]

0.06547
[10]

0.06445
[9]

0.05884
[8]

Sum ranks
[ranks]

3
[1]

6
[2]

20
[7]

9
[3]

19
[6]

12
[4]

15
[5]

29
[10]

28
[9]

24
[8]

75

Bias
[ranks]

0.07145
[1]

0.07927
[5]

0.08026
[7]

0.07761
[4]

0.07998
[6]

0.07470
[2]

0.07539
[3]

0.08304
[8]

0.09226
[10]

0.09115
[9]

MSE
[ranks]

0.00784
[1]

0.00995
[6]

0.00974
[5]

0.00928
[4]

0.01067
[7]

0.00884
[3]

0.00874
[2]

0.01101
[8]

0.01354
[10]

0.01322
[9]

MRE
[ranks]

0.04083
[1]

0.04530
[5]

0.04586
[7]

0.04435
[4]

0.04570
[6]

0.04269
[2]

0.04308
[3]

0.04745
[8]

0.05272
[10]

0.05208
[9]

Sum ranks
[ranks]

3
[1]

16
[5]

19
[6.5]

12
[4]

19
[6.5]

7
[2]

8
[3]

24
[8]

30
[10]

27
[9]

150

Bias
[ranks]

0.05258
[1]

0.05348
[4]

0.05834
[7]

0.05283
[2]

0.05750
[6]

0.05506
[5]

0.05327
[3]

0.06823
[10]

0.06393
[9]

0.06190
[8]

MSE
[ranks]

0.00423
[1]

0.00442
[2]

0.00537
[7]

0.00449
[3]

0.00528
[6]

0.00471
[5]

0.00459
[4]

0.00733
[10]

0.00644
[9]

0.00598
[8]

MRE
[ranks]

0.03005
[1]

0.03056
[4]

0.03334
[7]

0.03019
[2]

0.03286
[6]

0.03146
[5]

0.03044
[3]

0.03899
[10]

0.03653
[9]

0.03537
[8]

Sum ranks
[ranks]

3
[1]

10
[3.5]

21
[7]

7
[2]

18
[6]

15
[5]

10
[3.5]

30
[10]

27
[9]

24
[8]

250

Bias
[ranks]

0.03911
[1]

0.04157
[3]

0.04418
[7]

0.04188
[4]

0.04308
[5]

0.04313
[6]

0.04086
[2]

0.04886
[9]

0.05016
[10]

0.04573
[8]

MSE
[ranks]

0.00236
[1]

0.00267
[3]

0.00314
[7]

0.00268
[4]

0.00294
[5.5]

0.00294
[5.5]

0.00266
[2]

0.00372
[9]

0.00428
[10]

0.00331
[8]

MRE
[ranks]

0.02235
[1]

0.02375
[3]

0.02524
[7]

0.02393
[4]

0.02461
[5]

0.02465
[6]

0.02335
[2]

0.02792
[9]

0.02866
[10]

0.02613
[8]

Sum ranks
[ranks]

3
[1]

9
[3]

21
[7]

12
[4]

15.5
[5]

17.5
[6]

6
[2]

27
[9]

30
[10]

24
[8]

400

Bias
[ranks]

0.03012
[1]

0.03157
[2]

0.03630
[7.5]

0.03283
[4]

0.03630
[7.5]

0.03363
[5]

0.03197
[3]

0.03964
[9]

0.04107
[10]

0.03429
[6]

MSE
[ranks]

0.00143
[1]

0.00158
[3]

0.00215
[8]

0.00163
[4]

0.00205
[7]

0.00177
[5]

0.00153
[3]

0.00244
[9]

0.00261
[10]

0.00187
[6]

MRE
[ranks]

0.01721
[1]

0.01804
[2]

0.02074
[7.5]

0.01876
[4]

0.02074
[7.5]

0.01922
[5]

0.01827
[3]

0.02265
[9]

0.02347
[10]

0.01960
[6]

Sum ranks
[ranks]

3
[1]

7
[2]

23
[8]

12
[4]

22
[7]

15
[5]

9
[3]

27
[9]

30
[10]

18
[6]

600

Bias
[ranks]

0.02625
[2]

0.02816
[5]

0.02991
[8]

0.02605
[1]

0.02939
[7]

0.02700
[4]

0.02639
[3]

0.03147
[9]

0.03177
[10]

0.02893
[6]

MSE
[ranks]

0.00106
[1]

0.00123
[5]

0.00135
[7]

0.00108
[2]

0.00129
[6]

0.00113
[4]

0.00110
[3]

0.00154
[9]

0.00155
[10]

0.00136
[8]

MRE
[ranks]

0.01500
[2]

0.01609
[5]

0.01709
[8]

0.01489
[1]

0.01680
[7]

0.01543
[4]

0.01508
[3]

0.01798
[9]

0.01816
[10]

0.01653
[6]

Sum ranks
[ranks]

5
[2]

15
[5]

23
[8]

4
[1]

20
[6.5]

12
[4]

9
[3]

27
[9]

30
[10]

20
[6.5]

Table 5.  Bias, MSE and MRE under different estimation methods, when τ = 1.75.
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Sample size Value ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

25

Bias
[ranks]

0.17276
[1]

0.19399
[5]

0.20248
[6]

0.18638
[3]

0.20867
[8]

0.19188
[4]

0.17999
[2]

0.20865
[7]

0.22330
[10]

0.20874
[9]

MSE
[ranks]

0.04633
[1]

0.05708
[4]

0.06724
[6]

0.05395
[3]

0.06947
[8]

0.05870
[5]

0.05127
[2]

0.07086
[9]

0.07946
[10]

0.06920
[7]

MRE
[ranks]

0.06910
[1]

0.07760
[5]

0.08099
[6]

0.07455
[3]

0.08347
[8]

0.07675
[4]

0.07200
[2]

0.08346
[7]

0.08932
[10]

0.08349
[9]

Sum ranks
[ranks]

3
[1]

14
[5]

18
[6]

9
[3]

24
[8]

13
[4]

6
[2]

23
[7]

30
[10]

25
[9]

50

Bias
[ranks]

0.12195
[2]

0.13244
[5]

0.14424
[6]

0.12136
[1]

0.14855
[8]

0.13232
[4]

0.12490
[3]

0.15680
[9]

0.16451
[10]

0.14620
[7]

MSE
[ranks]

0.02274
[1]

0.02730
[4]

0.03208
[6]

0.02345
[2]

0.03548
[8]

0.02757
[5]

0.02390
[3]

0.03859
[9]

0.04359
[10]

0.03504
[7]

MRE
[ranks]

0.04878
[2]

0.05297
[5]

0.05770
[6]

0.04854
[1]

0.05942
[8]

0.05293
[4]

0.04996
[3]

0.06272
[9]

0.06580
[10]

0.05848
[7]

Sum ranks
[ranks]

5
[2]

14
[5]

18
[6]

4
[1]

24
[8]

13
[4]

9
[3]

27
[9]

30
[10]

21
[7]

75

Bias
[ranks]

0.10978
[6]

0.10784
[5]

0.11161
[7]

0.10116
[1]

0.10758
[4]

0.10329
[2]

0.10632
[3]

0.13049
[9]

0.13347
[10]

0.12322
[8]

MSE
[ranks]

0.01897
[6]

0.01800
[4]

0.01930
[7]

0.01569
[1]

0.01866
[5]

0.01676
[2]

0.01788
[3]

0.02634
[9]

0.02850
[10]

0.02331
[8]

MRE
[ranks]

0.04391
[6]

0.04314
[5]

0.04465
[7]

0.04046
[1]

0.04303
[4]

0.04131
[2]

0.04253
[3]

0.05220
[9]

0.05339
[10]

0.04929
[8]

Sum ranks
[ranks]

18
[6]

14
[5]

21
[7]

3
[1]

13
[4]

6
[2]

9
[3]

27
[9]

30
[10]

24
[8]

150

Bias
[ranks]

0.07200
[1]

0.08106
[6]

0.08449
[7]

0.07341
[2]

0.08070
[5]

0.07889
[4]

0.07570
[3]

0.09603
[10]

0.09429
[9]

0.08582
[8]

MSE
[ranks]

0.00803
[1]

0.00993
[5]

0.01089
[7]

0.00843
[2]

0.01053
[6]

0.00928
[3]

0.00934
[4]

0.01395
[9]

0.01402
[10]

0.01201
[8]

MRE
[ranks]

0.02880
[1]

0.03242
[6]

0.03380
[7]

0.02937
[2]

0.03228
[5]

0.03156
[4]

0.03028
[3]

0.03841
[10]

0.03772
[9]

0.03433
[8]

Sum ranks
[ranks]

3
[1]

17
[6]

21
[7]

6
[2]

16
[5]

11
[4]

10
[3]

29
[10]

28
[9]

24
[8]

250

Bias
[ranks]

0.05239
[1]

0.06149
[6]

0.06117
[4]

0.05690
[3]

0.06578
[8]

0.06122
[5]

0.05330
[2]

0.06756
[9]

0.07240
[10]

0.06480
[7]

MSE
[ranks]

0.00433
[1]

0.00585
[5]

0.00567
[4]

0.00521
[3]

0.00695
[8]

0.00612
[6]

0.00443
[2]

0.00714
[9]

0.00842
[10]

0.00675
[7]

MRE
[ranks]

0.02095
[1]

0.02459
[6]

0.02447
[4]

0.02276
[3]

0.02631
[8]

0.02449
[5]

0.02132
[2]

0.02703
[9]

0.02896
[10]

0.02592
[7]

Sum ranks
[ranks]

3
[1]

17
[6]

12
[4]

9
[3]

24
[8]

16
[5]

6
[2]

27
[9]

30
[10]

21
[7]

400

Bias
[ranks]

0.04403
[2]

0.04686
[4]

0.04716
[5]

0.04218
[1]

0.04947
[7]

0.04826
[6]

0.04623
[3]

0.05786
[10]

0.05350
[9]

0.05224
[8]

MSE
[ranks]

0.00306
[2]

0.00338
[3]

0.00339
[5]

0.00277
[1]

0.00384
[7]

0.00362
[6]

0.00340
[4]

0.00524
[10]

0.00467
[9]

0.00434
[8]

MRE
[ranks]

0.01761
[2]

0.01874
[4]

0.01886
[5]

0.01687
[1]

0.01979
[7]

0.01930
[6]

0.01849
[3]

0.02314
[10]

0.02140
[9]

0.02089
[8]

Sum ranks
[ranks]

6
[2]

11
[4]

15
[5]

3
[1]

21
[7]

18
[6]

10
[3]

30
[10]

27
[9]

24
[8]

600

Bias
[ranks]

0.03452
[2]

0.03654
[3]

0.03956
[6]

0.03451
[1]

0.04197
[8]

0.03853
[5]

0.03680
[4]

0.04521
[9]

0.04615
[10]

0.04196
[7]

MSE
[ranks]

0.00187
[2]

0.00213
[4]

0.00249
[6]

0.00185
[1]

0.00274
[7.5]

0.00228
[5]

0.00208
[3]

0.00325
[9]

0.00337
[10]

0.00274
[7.5]

MRE
[ranks]

0.01381
[2]

0.01462
[3]

0.01583
[6]

0.01380
[1]

0.01679
[8]

0.01541
[5]

0.01472
[4]

0.01808
[9]

0.01846
[10]

0.01678
[7]

Sum ranks
[ranks]

6
[2]

10
[3]

18
[6]

3
[1]

23.5
[8]

15
[5]

11
[4]

27
[9]

30
[10]

21.5
[7]

Table 6.  Bias, MSE and MRE under different estimation methods, when τ = 2.5
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Sample size Value ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

25

Bias
[ranks]

1.02902
[10]

0.34500
[4]

0.32686
[1]

0.75053
[8]

0.34155
[3]

0.32757
[2]

0.44777
[7]

0.36026
[5]

0.39297
[6]

0.87676
[9]

MSE
[ranks]

1.64617
[9]

0.20585
[5]

0.17419
[2]

1.40051
[8]

0.18148
[3]

0.16494
[1]

0.58860
[7]

0.20479
[4]

0.23302
[6]

1.84185
[10]

MRE
[ranks]

0.25725
[10]

0.08625
[4]

0.08172
[1]

0.18763
[8]

0.08539
[3]

0.08189
[2]

0.11194
[7]

0.09007
[5]

0.09824
[6]

0.21919
[9]

Sum ranks
[ranks]

29
[10]

13
[4]

4
[1]

24
[8]

9
[3]

5
[2]

21
[7]

14
[5]

18
[6]

28
[9]

50

Bias
[ranks]

0.87099
[10]

0.25112
[2]

0.27264
[5]

0.58757
[8]

0.24499
[1]

0.25984
[3]

0.27144
[4]

0.27575
[6]

0.38328
[7]

0.76460
[9]

MSE
[ranks]

1.19157
[9]

0.09916
[2]

0.11030
[4]

0.84105
[8]

0.09622
[1]

0.10079
[3]

0.12163
[6]

0.12154
[5]

0.19901
[7]

1.48645
[10]

MRE
[ranks]

0.21775
[10]

0.06278
[2]

0.06816
[5]

0.14689
[8]

0.06125
[1]

0.06496
[3]

0.06786
[4]

0.06894
[6]

0.09582
[7]

0.19115
[9]

Sum ranks
[ranks]

29
[10]

6
[2]

14
[4.5]

24
[8]

3
[1]

9
[3]

14
[4.5]

17
[6]

21
[7]

28
[9]

75

Bias
[ranks]

0.81805
[10]

0.22158
[1]

0.23166
[3]

0.55375
[8]

0.22599
[2]

0.24395
[5]

0.24137
[4]

0.24563
[6]

0.38934
[7]

0.79866
[9]

MSE
[ranks]

1.05099
[9]

0.08078
[3]

0.07960
[2]

0.69288
[8]

0.07549
[1]

0.08803
[4]

0.09998
[6]

0.09082
[5]

0.18896
[7]

1.40101
[10]

MRE
[ranks]

0.20451
[10]

0.05540
[1]

0.05792
[3]

0.13844
[8]

0.05650
[2]

0.06099
[5]

0.06034
[4]

0.06141
[6]

0.09734
[7]

0.19967
[9]

Sum ranks
[ranks]

29
[10]

5
[1.5]

8
[3]

24
[8]

5
[1.5]

14
[4.5]

14
[4.5]

17
[6]

21
[7]

28
[9]

150

Bias
[ranks]

0.78184
[10]

0.16814
[1]

0.19707
[3]

0.52600
[8]

0.21034
[5]

0.21433
[6]

0.16924
[2]

0.20203
[4]

0.38831
[7]

0.79456
[9]

MSE
[ranks]

0.79335
[9]

0.04408
[1]

0.05352
[3]

0.55874
[8]

0.06130
[5]

0.06251
[6]

0.04503
[2]

0.06059
[4]

0.17203
[7]

1.21483
[10]

MRE
[ranks]

0.19546
[9]

0.04204
[1]

0.04927
[3]

0.13150
[8]

0.05258
[5]

0.05358
[6]

0.04231
[2]

0.05051
[4]

0.09708
[7]

0.19864
[10]

Sum ranks
[ranks]

28
[9]

3
[1]

9
[3]

24
[8]

15
[5]

18
[6]

6
[2]

12
[4]

21
[7]

29
[10]

250

Bias
[ranks]

0.76747
[9]

0.15749
[2]

0.20141
[6]

0.42780
[8]

0.19724
[4]

0.19889
[5]

0.15027
[1]

0.19703
[3]

0.39409
[7]

0.81945
[10]

MSE
[ranks]

0.72031
[9]

0.03562
[2]

0.05211
[6]

0.37341
[8]

0.05029
[3]

0.05101
[4]

0.03488
[1]

0.05141
[5]

0.16837
[7]

1.17555
[10]

MRE
[ranks]

0.19187
[9]

0.03937
[2]

0.05035
[6]

0.10695
[8]

0.04931
[4]

0.04972
[5]

0.03757
[1]

0.04926
[3]

0.09852
[7]

0.20486
[10]

Sum ranks
[ranks]

27
[9]

6
[2]

18
[6]

24
[8]

11
[3.5]

14
[5]

3
[1]

11
[3.5]

21
[7]

30
[10]

400

Bias
[ranks]

0.77947
[10]

0.15336
[2]

0.19569
[4]

0.42958
[8]

0.20145
[5]

0.20222
[6]

0.13795
[1]

0.18055
[3]

0.38918
[7]

0.71606
[9]

MSE
[ranks]

0.69235
[9]

0.03204
[2]

0.04598
[4]

0.37133
[8]

0.04870
[5]

0.04896
[6]

0.02953
[1]

0.04127
[3]

0.15990
[7]

0.98755
[10]

MRE
[ranks]

0.19487
[10]

0.03834
[2]

0.05035
[4]

0.10740
[8]

0.05036
[5]

0.05055
[6]

0.03449
[1]

0.04514
[3]

0.09729
[7]

0.17901
[9]

Sum ranks
[ranks]

29
[10]

6
[2]

12
[4]

24
[8]

15
[5]

18
[6]

3
[1]

9
[3]

21
[7]

28
[9]

600

Bias
[ranks]

0.75989
[10]

0.14187
[2]

0.19454
[5]

0.40699
[8]

0.19436
[4]

0.19852
[6]

0.12127
[1]

0.18194
[3]

0.38821
[7]

0.67150
[9]

MSE
[ranks]

0.62454
[9]

0.02594
[2]

0.04892
[6]

0.34579
[8]

0.04374
[4]

0.04429
[5]

0.02184
[1]

0.03958
[3]

0.15664
[7]

0.89907
[10]

MRE
[ranks]

0.18997
[10]

0.03547
[2]

0.04864
[5]

0.10175
[8]

0.04859
[4]

0.04963
[6]

0.03032
[1]

0.04549
[3]

0.09705
[7]

0.16787
[9]

Sum ranks
[ranks]

29
[10]

6
[2]

16
[5]

24
[8]

12
[4]

17
[6]

3
[1]

9
[3]

21
[7]

28
[9]

Table 7.  Bias, MSE and MRE under different estimation methods, when τ = 4.0
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Bias = 1

k

k∑
ℓ=1

|τ̂ − τ |,

	
MSE = 1

k

k∑
ℓ=1

(τ̂ − τ)2, and

 

	
MRE = 1

k

k∑
ℓ=1

|τ̂ − τ |
τ

.

Where, k, is number of iterations in the simulation process, and τ̂  is an estimate of the parameter under particular 
estimation method. The standard error of the parameter estimate can be calculated as

	

S.E.(θ̂i) =

√√√√ 1
N

N∑
i=1

(θ̂i − θ̂)2

In terms of MSE and Bias, standard error of the parameter estimate can be also expressed as 
SE(τ̂) =

√
MSE − (Bias)2.

The estimation methods used in this simulation study to estimate bias, MSE, and MRE of estimated parameter 
are represented as:

∆1 = Maximum likelihood estimation method,
∆2 = Anderson–Darling estimation method,
∆3 = Cramer-von Mises estimation method,
∆4 = Maximum product of spacing estimation method,
∆5 = Least squares estimation method,
∆6 = Weighted least square estimation method,
∆7 = Right-tailed Anderson–Darling estimation method,
∆8 = Left-tailed Anderson–Darling estimation method,
∆9 = Minimum spacing absolute distance estimation method, and
∆10 = Minimum spacing absolute log-distance estimation method.
To compare the performance of different estimation approaches, we have assigned ranks to the values of bias, 

MSE, and MRE on the basis of their value in decreasing order for different estimation methods corresponding 
to same sample size.

Now, in Table 8, we separately present the ranks (partial ranks) assigned to summed ranks of bias, MSE, and 
MRE in aggregate under different estimation methods according to the decreasing order corresponding to same 
sample size. The overall rank for the estimation method is obtained and is mentioned in last row of Table 8.

It can be observed from Tables 2, 3, 4, 5, 6, 7, that the bias of the estimated parameter under each estimation 
method decreases as the sample size increases, that is, the estimated parameter gets closer to its true value. 
Furthermore, the value of MSE and MRE also show downward trend as we increase sample size. This declining 
trend ensures that the estimated parameter value becomes consistent and stable with increased sample size.

The partial ranks and the overall ranks of the various estimation methods are presented in Table 8. From the 
overall ranks in Table 8, we observed that the rank of estimation method ∆1 is minimum among all methods 
followed by ∆7, ∆4, ∆2,∆6, ∆3, ∆5, ∆10, ∆8, and ∆9. So, we can conclude that the maximum likelihood 
parameter estimation method ∆1 is superior for estimating parameter of DUS Rayleigh distribution with 
minimum bias, MSE and MRE as compared to other methods mentioned. Moreover, in Fig. 7, Fig. 8 and Fig. 9, 
we have graphically presented the bias, MSE, and MRE respectively of the estimated parameter under various 
estimation techniques computed in Table 1 for different sample values. From these figures, it can be observed that 
bias, MSE and MRE of the estimated parameter reduces as we increase sample size. This graphical representation 
also indicates that maximum likelihood estimation method is better for estimating parameter of DUS Rayleigh 
distribution as compared to other estimation methods because of minimum bias, MSE and MRE.

Real data application
In this section we will demonstrate the performance and significance of the newly explored probability 
distribution namely DUS Rayleigh distribution (DRD) for analysing real life scenarios. The real-life dataset used 
in this study is based on COVID-19 about Italy recorded for 111 days from 1 April to 20 July 2020 and the values 
in the data represents the ratio between daily new deaths and daily new cases. The given dataset presented in 
Table 9was used by Hassan et al.43 and was also studied by Hossam et al.6

To study whether the developed distribution provides better fit or not for analysing given dataset, various 
information criterions will be adapted and the performance of the distribution will be compared with other well-
known distributions present in the literature. These distributions include Rayleigh distribution (RD), Weibull 
distribution (WD), Alpha Power Lindely distribution (APLD), and novel Alpha Power Gumbel distribution 
(NAPGD).
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The information criterions used to measure the performance and determine better fit model for modelling real 
life dataset include Log-likelihood (-2logL), Akaike information criterion (AIC), Corrected Akaike information 
criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramér-
von Misses Statistic (CVMS), Anderson Darling Statistic (ADS), Kolmogorov Smirnov (K-S) test, and K-S Test 
P-value. These measures are defined as

AIC = −2 ln(L) + 2Θ, CAIC = AIC + 2Θ2+2Θ
n−Θ−1 , BIC = −2 ln(L) + Θ ln(n), and 

HQIC = −2 ln(L) + 2Θ ln {ln(n)}.
where Θ represents number of parameters involved in the model and n denotes the number of observations 

in the given data set.

Sample size Parameter ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

25

τ = 0.50

1 4 6 3 7 5 2 10 9 8

50 1 2 5 6 4 7 3 10 9 8

75 2.5 2.5 8 4 7 5 1 10 9 6

150 1 8 4 3 7 6 2 10 9 5

250 1 6 5 3 7 9 2 10 8 4

400 1 6 7 4 8 9 3 10 5 2

600 1 6 7 3 8 9 4 10 5 2

25

τ = 0.75

2 3 7 5 8 4 1 9 10 6

50 1 4 6 2 7 5 3 9 10 8

75 1 5 6.5 4 8 3 2 9 10 6.5

150 1 2 6 3 7 5 4 9 10 8

250 1 5 7 4 8 3 2 9 10 6

400 1 2 5 3 6 7 4 10 8 9

600 1 6 5 3 8 4 2 10 9 7

25

τ = 1.25

1 4 8 2 5 6 3 7 10 9

50 1 3 5 2 6 7 4 10 9 8

75 2 5 7 1 6 4 3 9 10 8

150 1 3 7 2 5.5 5.5 4 9 10 8

250 1 5 6.5 2 6.5 4 3 9 10 8

400 1 5 6 2 7 4 3 10 8 9

600 2 4 8 1 6 5 3 7 10 9

25

τ = 1.75

2 5.5 4 3 7 5.5 1 10 8 9

50 1 2 7 3 6 4 5 10 9 8

75 1 5 6.5 4 6.5 2 3 8 10 9

150 1 3.5 7 2 6 5 3.5 10 9 8

250 1 3 7 4 5 6 2 9 10 8

400 1 2 8 4 7 5 3 9 10 6

600 2 5 8 1 6.5 4 3 9 10 6.5

25

τ = 2.5

1 5 6 3 8 4 2 7 10 9

50 2 5 6 1 8 4 3 9 10 7

75 6 5 7 1 4 2 3 9 10 8

150 1 6 7 2 5 4 3 10 9 8

250 1 6 4 3 8 5 2 9 10 7

400 2 4 5 1 7 6 3 10 9 8

600 2 3 6 1 8 5 4 9 10 7

25

τ = 4.0

10 4 1 8 3 2 7 5 6 9

50 10 2 4.5 8 1 3 4.5 6 7 9

75 10 1.5 3 8 1.5 4.5 4.5 6 7 9

150 9 1 3 8 5 6 2 4 7 10

250 9 2 6 8 3.5 5 1 3.5 7 10

400 10 2 4 8 5 6 1 3 7 9

600 10 2 5 8 4 6 1 3 7 9

Sum all ranks 117.5 165 247 151 256.5 210.5 119.5 354.5 370 318

Over all ranks [1] [4] [6] [3] [7] [5] [2] [9] [10] [8]

Table 8.  Partial and overall ranks of different estimation method.
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The summary statistics for the given data set are presented in Table 10. In Table 11, we have summarized the 
maximum likelihood estimator (MLE) and corresponding standard error of the parameter(s) of the distributions 
mentioned above for underlying real-life dataset. The performance criterion values for each of the distribution 
are highlighted in Table 12.

On the basis of information criterion measures, the distribution with least value of these measures offers best 
fit for modelling given real life dataset. From Table 12, it can be observed that DUS Rayleigh distribution (DRD) 
has minimum information criterion values compared to Rayleigh distribution (RD), Weibull distribution (WD), 
Alpha Power Lindely distribution (APLD), and novel Alpha Power Gumbel distribution (NAPGD). So, DUS 

Fig. 8.  Behavior of MSE over different sample sizes under different estimation methods when τ = 0.50.

 

Fig. 7.  Behavior of Bias over different sample sizes different estimation methods when τ = 0.50.
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Rayleigh distribution provides better fit than these distributions. Also, the minimum values of goodness-of-fit 
measures Cramér-von Misses Statistic (CVMS), Anderson Darling Statistic (ADS) and Kolmogorov Smirnov 
(K-S) test together with its p-value suggest that DUS Rayleigh distribution shows a very good fit than base 
distribution as well as other well-known distributions. Furthermore, the better performance of the DUS 
Rayleigh distribution is also explained by various graphical plots as shown in Figs. 10, 11, 12, 13, 14, 15, and 16. 
The behaviour of estimated CDF, estimated survival function, P-P plot, Q-Q plot, and TTT-plot explains that 
the newly developed model is superior and suitable for modelling given dataset. Figure 16 represents Failure 
function plot of DRD based on given data set.

Min Q1 Q2 Q3 Max Mean Variance C.V Skewness Kurtosis

0.0138 0.1201 0.1628 0.2064 0.4972 0.1668 0.0062 0.4723 0.7728 4.9008

Table 10.  Summary Statistics computation based on given COVID-19 data set.

 

0.207 0.152 0.1628 0.1666 0.1417 0.1221 0.1767 0.1987 0.1408

0.1456 0.1443 0.1319 0.1053 0.1789 0.2032 0.2167 0.1387 0.1646

0.1375 0.1421 0.2012 0.1957 0.1297 0.1754 0.139 0.1761 0.1119

0.1915 0.1827 0.1548 0.1522 0.1369 0.2495 0.1253 0.1597 0.2195

0.2555 0.1956 0.1831 0.1791 0.2057 0.2406 0.1227 0.2196 0.2641

0.3067 0.1749 0.2148 0.2195 0.1993 0.2421 0.243 0.1994 0.1779

0.0942 0.3067 0.1965 0.2003 0.1180 0.1686 0.2668 0.2113 0.3371

0.173 0.2212 0.4972 0.1641 0.2667 0.269 0.2321 0.2792 0.3515

0.1398 0.3436 0.2254 0.1302 0.0864 0.1619 0.1311 0.1994 0.3176

0.1856 0.1071 0.1041 0.1593 0.0537 0.1149 0.1176 0.0457 0.1264

0.0476 0.162 0.1154 0.1493 0.0673 0.0894 0.0365 0.0385 0.219

0.0777 0.0561 0.0435 0.0372 0.0385 0.0769 0.1491 0.0802 0.087

0.0476 0.0562 0.0138 – – – – – –

Table 9.  The ratio between daily new deaths and daily new cases of COVID-19 about Italy recorded for 
111 days from 1 April to 20 July 2020.

 

Fig. 9.  Behavior of MRE over different sample sizes under different estimation methods when τ = 0.50.
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Conclusion
This paper presents the DUS Rayleigh distribution as an extension of the standard Rayleigh distribution 
developed through DUS transformation approach. In this study, the essential statistical properties associated 
with the developed distribution are examined. To derive accurate and reliable parameter estimate for the 
introduced model, the multiple parameter estimation strategies are discussed. Through extensive simulation 
studies, we assess the efficiency and stability of these methods, ultimately identifying the maximum likelihood 
estimation method (∆1) as the most reliable approach characterized by its low bias, minimal MSE, and reduced 
MRE. The utility of the DUS Rayleigh distribution is further demonstrated through its application to empirical 
data, specifically in the context of the COVID-19 pandemic. Comparative analysis against several well-
established distributions including Rayleigh distribution (RD), Weibull distribution (WD), Alpha Power Lindely 
distribution (APLD), and novel Alpha Power Gumbel distribution (NAPGD), indicate that the DUS Rayleigh 
distribution provides a superior fit, effectively capturing the underlying data complexities. Such flexibility of the 
DUS Rayleigh distribution makes it a significant tool across various disciplines. Its effectiveness extends beyond 
medical data analysis to applications in risk management, environmental research, engineering projects, and 
financial modeling.

Future research could explore the theoretical development of the DUS Rayleigh distribution, investigating 
potential extensions, generalizations, and alternative formulations. This could include in-depth analysis of 

Fig. 10.  Histogram and fitted density curves of given data set.

 

Distribution −2logL AIC AICC BIC HQIC ADS CVMS K-S test P-value

DRD − 258.341 − 256.341 − 256.305 − 253.632 − 255.242 0.5694 0.0891 0.0638 0.75780

RD − 255.087 − 253.087 − 253.050 − 250.378 − 251.988 0.7612 0.1236 0.1058 0.16630

WD − 257.113 − 253.113 − 253.002 − 247.694 − 250.915 0.7103 0.1146 0.0684 0.6778

APLD 251.286 − 247.286 − 247.175 − 241.866 − 245.087 0.9683 0.1542 0.1131 0.1166

NAPGD − 250.889 − 246.889 − 246.778 − 241.471 − 244.691 0.9206 0.1435 0.1112 0.12860

Table 12.  Distribution performance and information criterion values based on given COVID-19 data set.

 

Distribution Parameter MLE Standard error

DRD τ 0.115690 0.0048008

RD τ 0.130319 0.0061830

WD α 5.319447 0.2390771

β 2.222271 0.1595610

APLD α 139.25354 68.9379327

β 13.98368 0.8580367

NAPGD α 183.5403 84.296065

β 13.39241 0.8277767

Table 11.  Estimation of distribution parameters based on given COVID-19 data set.
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Bayesian approaches for parameter estimation, as well as the integration of survival analysis techniques under 
various censoring conditions and reliability modelling in scenarios involving risk assessment and decision-
making. Such investigations would not only enhance the theoretical understanding of the distribution but 
also expand its real-world applications. Comparative analyses with other complex distributions could further 
highlight its versatility and adaptability. Furthermore, fostering interdisciplinary collaborations, particularly 
with fields like actuarial science, epidemiology, bioinformatics, machine learning, economics, engineering, and 
environmental sciences could lead to significant advancements in the practical implementation and broader 
adoption of the DUS Rayleigh distribution, offering new avenues for solving complex, domain-specific challenges.

Fig. 12.  Q-Q Plot of DRD based on given data set.

 

Fig. 11.  Plot of theoretical CDF and estimated CDF of given data set.
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Fig. 14.  P-P Plot of DRD based on given data set.

 

Fig. 13.  Plot of theoretical survival function and estimated survival function of given data set.
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Data availability
The data that supports the findings of this study are available within the article.
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