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To investigate the diagnostic capability of multiple machine learning algorithms combined with 
intratumoral and peritumoral ultrasound radiomics models for non-massive breast cancer in dense 
breast backgrounds. Manual segmentation of ultrasound images was performed to define the 
intratumoral region of interest (ROI), and five peritumoral ROIs were generated by extending the 
contours by 1 to 5 mm. A total of 851 radiomics features were extracted from these regions and filtered 
using statistical methods. Thirteen machine learning algorithms were employed to create radiomics 
models for the intratumoral and peritumoral areas. The best model was combined with clinical 
ultrasound predictive factors to form a joint model, which was evaluated using ROC curves, calibration 
curves, and decision curve analysis (DCA).Based on this model, a nomogram was developed, 
demonstrating high predictive performance, with C-index values of 0.982 and 0.978.The model 
incorporating the intratumoral and peritumoral 2 mm regions outperformed other models, indicating 
its effectiveness in distinguishing between benign and malignant breast lesions. This study concludes 
that ultrasound imaging, particularly in the intratumoral and peritumoral 2 mm regions, has significant 
potential for diagnosing non-massive breast cancer, and the nomogram can assist clinical decision-
making.

Keywords  Ultrasound, Non-mass breast lesions, Non-massive breast cancer, Radiomics, Machine learning

Non-mass breast lesions (NML) account for 9.21% of breast abnormalities1. In conventional ultrasound 
examinations, these lesions lack clear boundaries and do not show significant space-occupying effects in two 
or more scanning planes. They typically appear as localized hypoechoic areas on ultrasound images, without 
distinct shape or border2. In the Breast Imaging Reporting and Data System (BI-RADS), diagnostic criteria for 
breast NML are lacking, which increases the risk of missed or incorrect diagnoses3. Based on their conventional 
ultrasound features, Wang et al.4 classified breast NML into four types: hypoechoic areas within the breast, 
hypoechoic areas with microcalcifications, architectural distortion, and solid echoes within the ducts. However, 
dense breast tissue is more common among Asian women. In BI-RADS, breast tissue is categorized into5: fatty, 
scattered fibroglandular, heterogeneously dense (where masses may appear indistinct), and extremely dense 
(where the high density of breast tissue significantly reduces the sensitivity of mammography). The latter two 
types are considered dense breasts. According to the ultrasound classification proposed by Wu Lin et al.6, dense 
breasts are characterized by a duct diameter sum that is less than half of the breast’s thickness, with breast 
parenchyma predominantly composed of fibrous or fatty tissue, exhibiting high and uniform echo intensity with 
heterogeneous internal echoes. On ultrasound images, dense breasts predominantly show as areas of high or 
intense echo, with the parenchyma mostly consisting of proliferating fibrous tissue. The mammary glands may 
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undergo atrophy, and ducts may become small or disappear7. The dense glandular tissue may obscure lesions, 
making the detection and differentiation between benign and malignant breast NML in the context of dense 
breast tissue particularly challenging.

In recent years, with the deepening of research, radiomics has made significant progress in the diagnosis 
of breast tumors, lymph node metastasis assessment, and prognosis prediction8,9. By precisely annotating 
medical images, delineating lesions, and applying advanced computational methods, this technology can extract 
quantitative data from a large volume of medical images10,11. However, most published tumor radiomics studies 
primarily focus on extracting radiomic features from the primary tumor site, neglecting the peritumoral radiomic 
features. In 1989, the “seed and soil” hypothesis was proposed12, suggesting that the tumor microenvironment, 
which includes tumor cells and surrounding immune cells, plays a critical role in tumor progression and 
metastasis through complex interactions that allow tumor cells to evade immune responses13. The study by 
Tan et al.14 demonstrated that a model combining texture analysis with conventional Magnetic Resonance 
Imaging(MRI) features had superior diagnostic performance in differentiating benign and malignant breast 
NML compared to using texture analysis or conventional MRI features alone. This suggests that texture analysis 
can quantify tumor heterogeneity and provide added value in distinguishing between benign and malignant 
breast NML14.

Advances in radiomics are rapidly transforming breast cancer diagnosis and treatment, particularly by 
enabling deeper insights into tumor microenvironment heterogeneity. Although mammography remains a 
primary screening tool, its dependence on morphological characteristics limits its specificity in dense breast 
tissue, often resulting in a high number of unnecessary biopsies15. Emerging evidence suggests that peritumoral 
texture analysis may help address this limitation: mammographic studies have shown that wavelet-based features 
of stromal heterogeneity can predict malignancy risk16, while three-compartment compositional imaging (3CB) 
reduces false positives by 22% through the analysis of fat-to-fibroglandular texture ratios17. These findings are 
consistent with preclinical research on tumor-adipocyte interactions17, which demonstrate that gap junction-
mediated stromal remodeling generates detectable microenvironmental signatures. However, research on the 
application of ultrasound-based radiomics for diagnosing non-mass breast cancer remains scarce. Most non-
mass lesions (NMLs) in the breast are abnormal, and conventional ultrasound often yields high sensitivity but 
low specificity, leading to a relatively high rate of missed or incorrect diagnoses for non-mass breast cancer6. 
Building upon these developments, we hypothesize that ultrasound radiomics—particularly peri_5mm wavelet 
features—can detect early stromal reprogramming in non-mass lesions, thereby addressing a crucial diagnostic 
gap in populations with dense breast tissue.

Methods
Pathological selection and general information
A total of 851 cases of breast NWL in a dense breast background, detected by conventional ultrasound, were 
included in this study between May 30, 2018, and January 20, 2024, at Dongguan People’s Hospital. Detailed 
information on the enrollment procedure is displayed in Fig.  1. Inclusion criteria: (I) Diagnosed as breast 
NML by ultrasound; (II) Diagnosed with dense breast tissue by ultrasound or mammography; (III) Patients 
who voluntarily underwent core needle biopsy, vacuum-assisted biopsy, or surgery, with complete clinical data 
and confirmed pathological diagnosis. Exclusion criteria: (I) Lesions identified as mass-type breast lesions on 
ultrasound; (II) Patients with non-dense breast tissue as determined by ultrasound or mammography; (III) 
History of neoadjuvant chemotherapy, radiotherapy, or endocrine therapy for breast diseases prior to surgery; 
(IV) Unclear lesion nature or pathological diagnosis; (V) Poor image quality. This study was approved by the 
hospital’s ethics committee of the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s 
Hospital) (G-2023027) and adhered to the principles of the Declaration of Helsinki, thus informed consent from 
patients was waived.

Instruments and methods
A GE Logic E9 color Doppler ultrasound system with a high-frequency linear probe (L-16–5) was used, with 
a mechanical index of 0.16. Ultrasound examinations were performed by radiologists with over 10  years of 
experience. Patients were positioned supine with their arms raised at a 90° angle above their heads to fully 
expose the breasts and both axillae; if necessary, patients were asked to turn to their side. For all cases identified 
as non-mass lesions (NMLs) within a dense breast background via conventional ultrasound, 2D images were 
employed to assess lesion size, internal echo homogeneity, the presence of microcalcifications, posterior acoustic 
attenuation, and distortion of surrounding structures. Color Doppler imaging was utilized to evaluate the 
vascular characteristics of the lesions. The ultrasound image representing the lesion’s longest axis was selected 
and exported in DICOM format, preserving full bit-depth in 16-bit grayscale, with a raw pixel value range of 
0–4095, as configured in the Logic E9 system. To ensure reproducibility, all DICOM files retained their original 
acquisition parameters, including a dynamic range of 60 dB, time gain compensation (TGC) settings, and spatial 
compounding configurations. Prior to feature extraction, pixel values were linearly normalized to a [0, 1] range 
using min–max scaling, based on the device-specific maximum quantization units. Prior to feature extraction, 
pixel values were linearly normalized to a [0, 1] range using min–max scaling, based on the device-specific 
maximum quantization units18,19.

Image data acquisition and processing
Using a single-blind method, ultrasound images were imported into Itk-Snap20 (v4.20, http://www.itksnap.org/) 
by two radiologists with over 10 years of experience. The tumor boundaries were manually delineated along the 
edges, and the region of interest (ROI) was defined, which included spiculation, lobulation, and surrounding 
satellite or radial features. Using the ROI margin as the baseline, morphological adaptive segmentation was 
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applied to expand the peritumoral regions outward by 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm. This yielded 
images of peri_1mm, peri_2mm, peri_3mm, peri_4mm, peri_5mm, and intratumoral regions (see Fig. 2). The 
interclass correlation coefficient (ICC) was used to assess the consistency of feature extraction between and 
within observers. ICC ratings were classified as follows: less than 0.40 was considered “Poor”, 0.40–0.59 as “Fair”, 
0.60–0.74 as “Good”, and 0.74–1.00 as “Excellent”.

Construction of the radiomics model
The delineated ROI images were imported into pyradiomics21 (v3.0.1, ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​A​I​M​-​H​a​r​v​a​r​d​/​p​y​r​a​d​i​
o​m​i​c​s​​​​​)​, an open-source software, where image feature extraction was performed on the ultrasound images using 
a Wavelet filter while retaining the original images. This included morphological features, first-order features, 
and texture features, such as Gray Level Size Zone Matrix (GLSZM), Gray Level Co-occurrence Matrix (GLCM), 
Neighbouring Gray Tone Difference Matrix (NGTDM), Gray Level Dependence Matrix (GLDM), and Gray 
Level Run Length Matrix (GLRLM).

Extracted radiomic features were standardized using Z-score normalization. To mitigate potential 
multicollinearity among radiomic features, a t-test was conducted on features within the training set, retaining 
only those with a P-value < 0.05. Pearson correlation coefficients were computed to evaluate inter-feature 
relationships, and features with correlation coefficients ≥ 0.9 were considered redundant and excluded. To 
assess the necessity for multiple testing correction, a sensitivity analysis was additionally performed using the 
Bonferroni correction (α = 0.05/851). Based on the minimum squared error (MSE) criterion, least absolute 
shrinkage and selection operator (LASSO) regression combined with ten-fold cross-validation was applied to 
select the optimal subset of radiomic features, further eliminating collinear variables by assigning zero-valued 
coefficients. Each selected feature was multiplied by its corresponding regression coefficient, and the resulting 
values were summed to generate a radiomics score for each patient.

Construction and evaluation of the predictive models
Based on the selected optimal radiomic features, thirteen algorithms, including Random Forest (RF), Decision 
Tree (DT), Extra Trees (ET), Support Vector Machine (SVM), Logistic Regression (LR), Stochastic Gradient 
Descent (SGD), K-Nearest Neighbors (KNN), XGBoost, AdaBoost, Gradient Boosting Decision Tree (GBDT), 
CatBoost, LightGBM, and Bayes, were used to construct intratumoral and peritumoral radiomics models. Ten-
fold cross-validation was applied to identify the optimal parameters for each model, and Receiver Operating 

Fig. 1.  Flowchart of patient enrollment.
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Characteristic (ROC) curves were plotted to compare the Area Under the Curve (AUC) for all fourteen radiomics 
models.

To ensure that the performance of the multivariate model was not predominantly influenced by a single feature, 
univariate logistic regression was performed for each radiomic feature to evaluate its individual discriminative 
ability, using area under the curve (AUC) and P-value as metrics. Features with a univariate AUC greater than 
0.70 were regarded as strong independent predictors. Additionally, DeLong’s test was used to compare the AUC 

Fig. 2.  Sketch of NML image. Ultrasound original image (A) with intratumoral mask (B), and peritumoral 
masks at 1 mm (C), 2 mm (D), 3 mm (E), 4 mm (F), and 5 mm (G).
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of the optimal multivariate model with: (a) each top-performing univariate feature (AUC > 0.70) and (b) a 
reduced multivariate model excluding the top univariate feature. A statistically significant difference (P < 0.05) 
would indicate that the complete multivariate model offers superior predictive performance compared to any 
individual feature.

Univariate and multivariate logistic regression analyses were conducted using clinical and ultrasound features 
from the training group to identify independent predictors associated with NML, leading to the construction 
of clinical and ultrasound models. The radiomics model with the best predictive performance, combined with 
independent clinical and ultrasound predictors, was selected to construct a combined model. ROC curves 
were plotted, and the AUC, accuracy, sensitivity, and specificity of each model were calculated to evaluate their 
predictive efficacy for NML. Calibration curves and Decision Curve Analysis (DCA) were employed to assess 
the goodness-of-fit and clinical value of the models. Based on clinical and ultrasound independent predictors, as 
well as the optimal radiomics model, regression coefficients (β-values) and odds ratios (ORs) for each variable 
were calculated. A multivariate logistic regression analysis was then conducted to construct the nomogram.

Statistical methods
Statistical analyses were performed using R (version 4.2.0, https://www.R-project.org) and Python (version 3.10, 
https://www.python.org). Model construction and hyperparameter tuning were conducted in Python using the 
“scikit-learn” (version 1.4.1) and “XGBoost” (version 2.0.3) libraries. Hyperparameter optimization and cross-
validation were implemented via “GridSearchCV” to minimize overfitting and improve model accuracy. Ten-
fold cross-validation was conducted exclusively within the training cohort for feature selection, hyperparameter 
tuning, and model optimization. Final performance metrics were evaluated exclusively on the independent test 
cohort, which was not involved in any phase of model development.

XGBoost is an ensemble tree technique based on the loss produced by weak decision tree learners. XGBoost 
was trained as a baseline model, followed by training the final model with optimized hyperparameters. The 
hyperparameters of the XGBoost model were tuned using the GridSearchCV function in Scikit-learn, with 
ten-fold cross-validation performed. The selected hyperparameters for optimization included learning_rate, 
gamma, max_depth, subsample, min_child_weight, and n_estimators. The GridSearchCV method in Scikit-
learn with ten-fold cross-validation was also used to tune the hyperparameters of RF, DT, ET, SVM, LR, SGD, 
KNN, XGBoost, AdaBoost, GBDT, CatBoost, LightGBM, and Bayes.

Categorical data are presented as percentages (%) and comparisons were performed using the chi-square (χ2) 
test. Continuous data were evaluated for normality using the Kolmogorov–Smirnov test. Normally distributed 
data are presented as mean ± standard deviation (x ± s) and compared using the Student’s t-test. Pearson 
correlation analysis was used to select relevant radiomic features. Receiver operating characteristic (ROC) curves 
were used to assess the predictive performance of each model, and the DeLong’test was applied to compare their 
relative performances. A nomogram prediction model was constructed, with the optimal threshold determined 
through ROC curve analysis. The threshold was defined by maximizing the Youden index. Based on the optimal 
cutoff values, the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and 
negative predictive value were calculated for each model. Calibration curves were employed to evaluate model 
consistency, and decision curve analysis (DCA) quantified the net benefits at various threshold probabilities to 
assess the clinical significance of the models. The significance level was set at α = 0.05 (two-tailed).

Results
Patient demographics
A total of 851 cases of breast NWL meeting the inclusion and exclusion criteria were identified from May 30, 
2018, to January 20, 2024, with postoperative pathological results showing 453 malignant cases and 398 benign 
cases. Among these, the training group comprised 327 malignant and 269 benign patients, while the validation 
group included 126 malignant and 129 benign patients. The chi-square statistic was 1.920, P = 0.166, indicating 
no significant statistical difference. There were no significant differences in clinical and ultrasound characteristics 
between the two groups (P > 0.05; Supplementary Table S1). Detailed clinical and ultrasound characteristics of 
the patients are presented in Table 1. Results of the multivariate analysis are detailed in Supplementary Tables S2 
and S3. There were significant correlations between patient age, weight, lesion location, lesion longest diameter, 
posterior echo attenuation, surrounding structural disruption, and blood flow characteristics with non-
mass type breast cancer (P < 0.05). No significant differences were observed for other clinical and ultrasound 
characteristics (P > 0.05).

The above clinical and ultrasound independent predictive factors were incorporated into logistic regression to 
establish the clinical model and ultrasound model, which were evaluated using ROC curves (see Supplementary 
Fig. S1 online). The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 
these models are detailed in Supplementary Table S4.

Extraction, selection, and construction of radiomics features
A total of 851 radiomics features were extracted from the ultrasound images of patients with breast NWL using 
radiomics technology. Feature selection was performed using student’s t-test, Pearson correlation test, and LASSO 
(see Supplementary Fig. S2 online). Correlation heatmaps of the peritumoral (1–5 mm) and intratumoral regions 
(see Supplementary Fig. S3 online) revealed distinct collinearity patterns. The results showed that after feature 
selection, the radiomic features exhibited low correlation (|r|< 0.6), confirming the minimization of residual 
collinearity. Additionally, Bonferroni correction reduced the number of significant features in each region by 
an average of 8.1%. Importantly, LASSO regression applied to both corrected and uncorrected feature pools 
yielded the same final predictive factors (Supplementary Table S5). This suggests that multivariate regularization 
inherently resolves the potential false-positive issues in univariate selection, thus negating the need for additional 
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corrections. The optimal radiomics features were obtained from the peri-lesional (1 mm, 2 mm, 3 mm, 4 mm, 
5 mm) and intra-lesional models with corresponding Lambda values of 0.009, 0.004, 0.002, 0.002, 0.001, and 
0.003, respectively. The results are detailed in Supplementary Table S6.

Thirteen algorithms, including RF, DT, ET, SVM, LR, SGD, KNN, XGBoost, Adaboost, GBDT, CatBoost, 
LightGBM, and Bayes, were used to construct the ultrasound radiomics models. The results are detailed in 
Table 2 and Supplementary Tables S7–S11. The predictive task aimed to differentiate between benign and 
malignant non-mass breast lesions (NML). As shown in the ROC curves (see Supplementary Fig. S4 online), 
the intratumoral model (RS_in_XGBoost) achieved an AUC of 0.842 (95% CI 0.788–0.896), while peri-lesional 
models exhibited varying performance: the 1  mm peri-lesional model (RS_peri_1mm_XGBoost) yielded an 
AUC of 0.819 (95% CI 0.762–0.876), followed by the 2 mm peri-lesional model (RS_peri_2mm_RF) with an 
AUC of 0.799 (95% CI 0.739–0.858). Notably, higher performance was observed in the 3 mm (RS_peri_3mm_
XGBoost: AUC = 0.825, 95% CI 0.769–0.882), 4 mm (RS_peri_4mm_SVM: AUC = 0.904, 95% CI 0.860–0.948), 
and 5 mm (RS_peri_5mm_LR: AUC = 0.876, 95% CI 0.828–0.926) peri-lesional regions, with the 4 mm SVM-
based model demonstrating the highest discriminative capability.

Variables

Train group Validation group

Benign NML
(n = 269)

Malignant NML
(n = 327) t/ W/ χ2 P

Benign NML
(n = 129)

Malignant NML
(n = 126) t/ W/ χ2 P

Age, Median (Q1, Q3) 40 (34, 49) 48 (42.5, 54) 26840b  < 0.001 41 (34, 49) 47 (39, 53) 5874.5b  < 0.001

High, Median (Q1, Q3) 160 (158, 165) 160 (158, 165) 45174b 0.567 160 (158, 165) 160 (158, 164) 8635.5b 0.386

Weigh, Median (Q1,Q3) 62 (57, 70) 60 (56, 67.67) 49,475.5b 0.009 63 (57, 70) 61.01 (56, 68) 9440.5b 0.026

BMI, Median (Q1, Q3) 1.66 (1.59, 1.74) 1.64 (1.57, 1.72) 49,133.5b 0.014 1.682 ± 0.126 1.644 ± 0.124 2.419b 0.016

Menarche age, Median (Q1, Q3) 12 (12, 13) 12 (12, 13) 41930b 0.248 12 (12, 13) 12 (12, 12.75) 8448.5b 0.492

Menopause, n (%) 26.542c  < 0.001 9.547c 0.002

 No 234 (86.989) 225 (68.807) 114 (88.372) 91 (72.222)

 Yes 35 (13.011) 102 (31.193) 15 (11.628) 35 (27.778)

Position, n (%) 12.06c 0.007 10.077c 0.018

 Outer upper quadrant 142 (52.788) 210 (64.220) 70 (54.264) 84 (66.667)

 Inner upper quadrant 63 (23.420) 61 (18.654) 25 (19.380) 28 (22.222)

 Outer lower quadrant 41 (15.242) 45 (13.761) 21 (16.279) 10 (7.937)

 Inner lower quadrant 23 (8.550) 11 (3.364) 13 (10.078) 4 (3.175)

 Long diameter, Median (Q1, Q3) 2 (1.1, 4.36) 2.54 (1.7, 3.8) 38,264.5b 0.006 2.2 (1.4, 3.84) 2.8 (1.83, 3.8) 6991.5b 0.054

 Wide diameter, Median (Q1, Q3) 0.9 (0.59, 1.6) 1.1 (0.8, 1.6) 36525b  < 0.001 1 (0.6, 1.7) 1.2 (0.9, 1.6) 6654.5b 0.012

Focus orientation, n (%) 0.020c 0.887 Fisher 1

 Parallel 261 (97.026) 319 (97.554) 126 (97.674) 123 (97.619)

 No parallel 8 (2.974) 8 (2.446) 3 (2.326) 3 (2.381)

Rear echo, n (%) Fisher  < 0.001 Fisher  < 0.001

 No change 237 (88.104) 256 (78.287) 120 (93.023) 98 (77.778)

 Attenuation 27 (10.037) 71 (21.713) 7 (5.426) 28 (22.222)

 Enhancement 5 (1.859) 0 (0) 2 (1.550) 0 (0)

Calcification , n (%) 90.702c  < 0.001 45.974c  < 0.001

 No calcification 211 (78.439) 150 (45.872) 86 (66.667) 48 (38.095)

 Coarse calcification 28 (10.409) 22 (6.728) 24 (18.604) 9 (7.143)

 Fine calcification 30 (11.152) 155 (47.401) 19 (14.729) 69 (54.762)

Surrounding structure, n (%) 21.947c  < 0.001 20.787c  < 0.001

 No twist 147 (54.647) 115 (35.168) 71 (55.039) 33 (26.190)

 Twist 122 (45.353) 212 (64.832) 58 (44.961) 93 (73.810)

Blood flow characteristics, n (%) 48.509c  < 0.001 21.372c  < 0.001

 Grade 0 119 (44.238) 75 (22.936) 56 (43.411) 28 (22.222)

 Grade I 76 (28.253) 73 (22.324) 33 (25.581) 24 (19.048)

 Grade II 40 (14.870) 93 (28.440) 24 (18.605) 39 (30.952)

 Grade III 34 (12.639) 86 (26.300) 16 (12.403) 35 (27.778)

Peripheral blood flow, n (%) 2.636c 0.104 Fisher 0.066

 None 257 (95.539) 321 (98.165) 122 (94.574) 125 (99.206)

 Yes 12 (4.461) 6 (1.835) 7 (5.426) 1 (0.794)

Table 1.  Comparison of clinical and ultrasound data of benign and malignant patients with NML between 
training group and validation group. a: t-value, b: W-value , c: χ2-value, NML: non-mass breast lesions.
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Univariate analysis and multivariate model robustness
Univariate logistic regression identified 26, 36, 60, 73, 96, and 45 radiomic features with significant discriminative 
power in the peritumoral (1–5 mm) and intratumoral regions (P < 0.05; Supplementary Tables S12–S17). The 
DeLong’test indicated that the optimal multivariate model for each region significantly outperformed all the 
best-performing univariate features (P < 0.05), confirming that no single feature dominated the model.

Feature analysis of radiomics model
Seven “intersection features” were identified from the overlap of 26, 36, 60, 73, 96, and 45 imaging features 
extracted from the ultrasound images of the aforementioned different ROI regions: “wavelet-HLL_gldm_
LargeDependenceHighGrayLevelEmphasis”, “original_glcm_JointAverage”, “original_firstorder_Minimum”, 
“wavelet-LLH_firstorder_Kurtosis”, “wavelet-HLH_glrlm_RunVariance”, “wavelet-LHH_glrlm_RunVariance”, 
and “wavelet-LLL_gldm_LargeDependenceHighGrayLevelEmphasis”. Among these features, the effects 
observed in the intratumoral and peritumoral 4  mm imaging models were oppositional, particularly for 
“wavelet-HLH_glrlm_RunVariance” and “wavelet-LHH_glrlm_RunVariance”. In the intratumoral model, 
smaller values of these two features were associated with a higher probability of predicting non-massive breast 
cancer, whereas in the peritumoral 2 mm model, larger values were linked to a higher probability of the same 
prediction. While “wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis” and “wavelet-LLL_gldm_
LargeDependenceHighGrayLevelEmphasis” have a minimal impact on the intratumoral model predictions, in the 
peritumoral 2 mm model, a smaller value of “wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis” 
and a larger value of “wavelet-LLL_gldm_LargeDependenceHighGrayLevelEmphasis” significantly influence the 
predictions. While “wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis” and “wavelet-LLL_gldm_
LargeDependenceHighGrayLevelEmphasis” had minimal impact on the intratumoral model predictions, in the 
peritumoral 2 mm model, a smaller value of “wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis” 
and a larger value of “wavelet-LLL_gldm_LargeDependenceHighGrayLevelEmphasis” significantly influenced 
the predictions.

Figure 3 visualizes the feature selection results of the optimal radiomics models for the six ROI groups, where 
the six red nodes represent the selected features for each group’s model. Notably, the seven light pink nodes 
were consistently selected by the best radiomics models across all six ROI groups, indicating their robustness 
and potential significance in model predictive performance. In contrast, features such as “wavelet-LLH_glszm_
SizeZoneNonUniformity” were only selected by the peri-lesional 5 mm radiomics model, suggesting that their 
importance may be specific to that model. A partial dependence plot was created for the aforementioned seven 
“intersection features” based on the intra-lesional and peri-lesional 4 mm radiomics models.

Nonlinear spatial dynamics of radiomics signatures
The coefficient magnitude (β) displayed a triphasic pattern across peritumoral regions: a sharp decline from 
intratumoral (β = 0.053) to peri_1mm (β = 0.029, Δ = 45.3%), followed by further decay in peri_2mm (β = 0.011, 
Δ = 62.1%), and stabilization beyond peri_3mm (β ≈ 0.02). However, the gradient decay index (GDI) exhibited 
an inverse trend: the maximal signal shift occurred between peri_1mm and peri_2mm (GDI = 0.818), while 
peri_3mm and beyond showed no measurable decay (GDI = 0) (Supplementary Table S18). This paradox 
suggests distinct biological regimes: early-stage tumor-stroma interactions dominate the peri_1-2 mm region 
(high GDI), while more distant regions (peri_3-5 mm) reach a steady-state microenvironment, homogenized by 
systemic immune regulation or mechanical constraints.

Radiomics modelsa AUC (95%CI) ACC (95%CI) SEN (95%CI) SPE (95%CI) PPV (95%CI) NPV (95%CI)

RS(in_RF) 0.793 (0.733–0.853) 0.736 (0.671–0.801 0.682 (0.613–0.751) 0.789 (0.728–0.850) 0.759 (0.696–0.823) 0.717 (0.650–0.784)

RS(in_DT) 0.619 (0.508–0.731) 0.645 (0.535–0.755) 0.976 (0.936–1.015) 0.257 (0.157–0.358) 0.606 (0.494–0.718) 0.900 (0.830–0.970)

RS(in_ET) 0.778 (0.717–0.840) 0.730 (0.664–0.796) 0.727 (0.661–0.793) 0.733 (0.668–0.799) 0.727 (0.661–0.793) 0.733 (0.668–0.799)

RS(in_SVM) 0.791 (0.730–0.851) 0.753 (0.689–0.817) 0.670 (0.601–0.740) 0.833 (0.778–0.889) 0.797 (0.738–0.857) 0.722 (0.655–0.788)

RS(in_LR) 0.631 (0.559–0.702) 0.626 (0.554–0.697) 0.748 (0.683–0.812) 0.461 (0.387–0.534) 0.653 (0.582–0.723) 0.574 (0.501–0.647)

RS(in_SGD) 0.716 (0.649–0.783) 0.682 (0.613–0.750) 0.659 (0.589–0.729) 0.703 (0.636–0.771) 0.682 (0.614–0.751) 0.681 (0.612–0.750)

RS(in_KNN) 0.733 (0.668–0.799) 0.682 (0.613–0.750) 0.652 (0.582–0.723) 0.713 (0.646–0.780) 0.706 (0.638–0.773) 0.660 (0.590–0.760)

RS(in_XGBoost) 0.805 (0.746–0.863) 0.764 (0.701–0.827) 0.716 (0.649–0.783) 0.811 (0.753–0.869) 0.786 (0.727–0.848) 0.745 (0.680–0.810)

RS(in_Adaboost) 0.628 (0.557–0.700) 0.615 (0.543–0.686) 0.871 (0.821–0.921) 0.337 (0.267–0.407) 0.587 (0.514–0.660) 0.707 (0.640–0.775)

RS(in_GBDT) 0.778 (0.717–0.840) 0.758 (0.695–0.822) 0.682 (0.613–0.751) 0.833 (0.778–0.889) 0.800 (0.741–0.859) 0.728 (0.662–0.794)

RS(in_CatBoost) 0.749 (0.685–0.814) 0.682 (0.613–0.750) 0.522 (0.448–0.596) 0.851 (0.798–0.904) 0.787 (0.726–0.848) 0.627 (0.556–0.699)

RS(in_LightGBM) 0.716 (0.649–0.783) 0.659 (0.589–0.729) 0.556 (0.482–0.629) 0.817 (0.760–0.87) 0.822 (0.765–0.879) 0.547 (0.474–0.621)

RS(in_Bayes) 0.708 (0.640–0.775) 0.721 (0.654–0.787) 0.912 (0.869–0.954) 0.468 (0.394–0.541) 0.694 (0.626–0.762) 0.800 (0.741–0.859)

Table 2.  Performance of intratumoral radiomics models in the validation group. aThe intratumoral radiomics 
model was built using 13 algorithms: Random Forest (RF), Decision Tree (DT), Extra Trees (ET), Support 
Vector Machine (SVM), Logistic Regression (LR), Stochastic Gradient Descent (SGD), K-Nearest Neighbors 
(KNN), XGBoost, AdaBoost, Gradient Boosting Decision Tree (GBDT), CatBoost, LightGBM, and Bayes. 
AUC: area under curve, ACC: accuracy, SEN: sensitivity ,SPE: specificity, PPV: positive predictive Value, NPV: 
negative predictive value, CI: confidence interval.
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Effectiveness evaluation of combined model
All model comparisons are detailed in Supplementary Table S19, showing that the combined model outperformed 
other individual models (P < 0.01), with accuracy, sensitivity, specificity, positive predictive value, and negative 
predictive value detailed in Table 3.

The ROC curves for the six combined models show that the joint model constructed with intra-lesional 
radiomics, clinical, and ultrasound independent predictors had the best predictive performance, with an AUC 
of 0.858 (95% CI 0.778–0.939). The next best was the combined model using peri-lesional 2 mm radiomics, with 
an AUC of 0.850 (0.767–0.932). The calibration curve indicates that this model has good fit in predicting TNBC 
(P > 0.05). The DCA curve shows that the combined model using the peri-lesional 2 mm radiomics and clinical, 
ultrasound independent predictors had higher clinical net benefit within the risk threshold range of 0.069 to 
0.966, with an Area Under the Decision Curve Analysis (AUDC) of 0.294 (95%: −0.530–0.549). The second-best 
was the combined model with intra-lesional radiomics, which had an AUDC of 0.282 (95%: −0.306–0.297) (see 
Fig. 4).

The nomogram constructed using the intra-lesional radiomics model and clinical, ultrasound independent 
predictors had a diagnostic performance C-index of 0.982. When the nomogram score threshold is 167.808, the 
optimal classification prediction model can be obtained. A score greater than 167.808 predicts non-massive breast 
cancer, while a score less than 167.808 predicts non-mass benign breast lesions. The nomogram constructed 
using the peri-lesional 2 mm radiomics model and clinical, ultrasound independent predictors had a diagnostic 
performance C-index of 0.978. When the nomogram score threshold is 110.745, the optimal classification 
prediction model can be obtained. A score greater than 110.745 predicts non-massive breast cancer, while a 
score less than 110.745 predicts non-mass benign breast lesions (see Fig. 5).

Combined modelsa AUC (95% CI) ACC (95% CI) SEN (95% CI) SPE (95% CI) PPV (95% CI) NPV (95% CI) AUDC (95%CI)

All (peri_1mm_XGBoost) 0.799 (0.707–0.891) 0.740 (0.640–0.840) 0.889 (0.816–0.962) 0.610 (0.499–0.721) 0.667 (0.559–0.774) 0.862 (0.782–
0.942)

0.104 (−0.274–
0.251)

All (peri_2mm_RF) 0.850 (0.767–0.932) 0.805 (0.714–0.896) 0.882 (0.808–0.957) 0.744 (0.644–0.844) 0.732 (0.630–0.833) 0.889 (0.816–
0.962)

0.294 (−0.530–
0.549)

All (peri_3mm_XGBoost) 0.833 (0.748–0.919) 0.753 (0.655–0.852) 0.723 (0.621–0.826) 0.800 (0.708–0.892) 0.850 (0.768–0.932) 0.649 (0.540–
0.757)

0.160 (−0.354–
0.361)

All (peri_4mm_SVM) 0.782 (0.688–0.877) 0.740 (0.640–0.840) 0.771 (0.675–0.868) 0.714 (0.611–0.817) 0.692 (0.587–0.798) 0.789 (0.696–
0.883)

0.160 (−0.292–
0.262)

All (peri_5mm_LR) 0.830 (0.744–0.916) 0.805 (0.714–0.896) 0.769 (0.673–0.865) 0.842 (0.758–0.926) 0.833 (0.748–0.919) 0.780 (0.686–
0.875)

0.205 (−0.323–
0.294)

All (in_XGBoost) 0.858 (0.778–0.939) 0.792 (0.699–0.885) 0.756 (0.657–0.854) 0.844 (0.760–0.927) 0.872 (0.794–0.949) 0.711 (0.607–
0.814)

0.282 (−0.306–
0.297)

Table 3.  Performance of combined models in the validation group. aThe optimal radiomics models from 
each ROI group were combined with independent clinical and ultrasound predictive factors. AUC: area 
under curve, ACC: accuracy, SEN: sensitivity ,SPE: specificity ,PPV: positive predictive Value, NPV: negative 
predictive value, AUDC: area under the decision curve analysis, CI: confidence interval, RF: random forest, 
SVM: Support Vector Machine, LR: Logistic Regression.

 

Fig. 3.  Feature analysis of Radiomics model. (A) Light-colored nodes indicate the best radiomics features for 
the respective ROIs, while purple nodes represent features shared across multiple models. The edges color-
coded by model indicate which features were selected by which models. (B) and (C) illustrate the partial 
dependence of the model on three features (wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis, 
original_firstorder_Minimum, wavelet-LHH_glrlm_RunVariance). Each axis represents the range of a feature 
value, and the color of the points reflects the model’s predictions. The color gradient allows for a visual 
assessment of the combined effect of these three features on the predictions.
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Models display and application
To facilitate the application of our findings for clinicians, researchers, patients, and their families, we have 
developed this diagnostic prediction system, which can be accessed at the following website: ​h​t​t​p​s​:​/​/​j​a​r​r​i​l​y​9​5​2​7​
n​m​l​.​s​t​r​e​a​m​l​i​t​.​a​p​p​/​​​​​.​​

Discussion
Compared to breast mass lesions, the detection and differentiation of benign and malignant NWL are more 
challenging. According to recent literature statistics22,23, benign NWL accounts for 53.8%, while malignant 
NWL constitutes 46.2%. There is an overlap in the ultrasound features of NWL, with structural distortion and 
ductal changes being common characteristics24–26. Especially in the context of dense breast tissue, the denser the 
fibroglandular tissue, the more the lesions overlap with it, making the differentiation of benign and malignant 
NWL even more difficult.

In this study, age is identified as a risk factor for malignant NWL. Previous research has indicated that advancing 
age is often associated with changes in metabolism and immune function, the accumulation of oncogenes, 
and insufficient DNA methylation, all of which are closely related to the occurrence of breast cancer27. The 
length of the lesion, the presence of microcalcifications, structural distortion, and blood flow characteristics are 
independent predictive factors for malignant lesions. Additionally, blood flow characteristics are an independent 

Fig. 4.  Performance of combined models in the validation group. The optimal radiomic models for the 
validation group, including the intratumoral and peritumoral areas at 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm, 
were combined with independent clinical and ultrasound predictors to obtain the ROC curve (A), P–R curve 
(B), DCA curve (C), and calibration curve (D). ROC: receiver operating characteristic, AUC: area under curve, 
CI: confidence interval, P-R: precision- recall, DCA: decision curve analysis.
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Fig. 5.  Nomograms were established based on clinical and ultrasound independent predictors combined 
with the intratumoral (A) and peritumoral 2 mm (B) radiomic models in the validation group. The predictors 
included clinical and ultrasound independent factors as well as the radiomics score. A vertical line was drawn 
from each predictor to the “score” to obtain the score for each predictor. The scores for each predictor were 
then summed. The “total score” corresponds to the probability of the malignancy of NML.
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risk factor; malignant lesions typically exhibit blood flow signals rated at 2 to 3, whereas benign lesions more 
frequently present signals rated at 0 to 1. Studies have shown that during the invasive growth of breast tumors, 
tumor cells grow rapidly, and the marginal area experiences hypoxia, which promotes the growth of microvessels 
within the lesion and the formation of a microvascular network28. This study found that structural distortion in 
the breast is also considered an important factor associated with malignancy. However, this differs from previous 
research29, possibly due to differences in the pathological types of the study subjects. While structural distortion 
and ductal changes are common features of both benign and malignant NWL, structural distortion is more 
prevalent in the ultrasound images of malignant lesions compared to benign ones30.

High-frequency breast ultrasound has been widely used in the screening and diagnosis of breast cancer, 
significantly increasing the detection rate of breast cancer in dense breast tissue31. However, the ultrasound 
model in this study demonstrated low diagnostic performance, confirming the poor ultrasound diagnostic 
capability for NML in dense breast tissue. The detection rate is low due to the ultrasound features of NWL 
differing from those of typical mass-type breast cancer. Previous studies have described NML as regions of 
diffuse echotexture changes that differ from the surrounding breast tissue25. In dense breast tissue, the denser 
the fibroglandular tissue, the more the lesions overlap with it, which increases the difficulty of detecting non-
mass breast cancer. Ultrasound examination of superficial small organs such as the breast primarily relies on 
the operator’s technique and experience. As a result, the differentiation of benign and malignant breast NWL is 
influenced by subjective factors such as the reporting physician’s experience. There is a need for an objective tool 
to improve the detection rate of non-mass breast cancer in dense breast tissue.

In recent years, imaging omics methods have been used to explore the relationship between the peritumoral 
imaging features of tumors and their surrounding microenvironments. Several imaging biomarkers reflecting 
information about the tumor microenvironment have been identified, demonstrating significant value in tumor 
differential diagnosis, metastasis prediction, treatment evaluation, and prognosis prediction. Sun et al.32 found 
that in ultrasound images of breast cancer, a lymph node metastasis prediction model combining intratumoral 
and peritumoral imaging features significantly outperformed models based solely on intratumoral or peritumoral 
features. Moreover, the model constructed using CNN achieved the best performance, clearly surpassing other 
models. Guo et al.33 attempted to use dual-modal images from conventional breast ultrasound and strain 
elastography to conduct radiomics research on benign and malignant breast lesions. They extracted imaging 
features from the intratumoral, peritumoral 5  mm, and “intratumoral + peritumoral” regions to construct 
predictive models for breast lesions. The results indicated that the model combining grayscale ultrasound, 
strain elastography dual-modal images, and “intratumoral + peritumoral” imaging features had the highest 
diagnostic performance. Furthermore, scholars such as Huang et al.34 combined photoacoustic imaging with 
intratumoral and peritumoral radiomics techniques to determine that a 5 mm peritumoral region is the optimal 
area, revealing its critical role in enhancing the predictive accuracy of malignant breast nodules when combined 
with intratumoral features. In a multimodal study, Liu et al.35 demonstrated that the peritumoral radiomics 
model (GPTV_radiomics) and deep learning model (GPTV_DL) based on multiparametric MRI showed 
significantly superior performance in predicting lymphovascular invasion in the peritumoral region compared 
to intratumoral analysis (AUC: 0.771 vs. 0.720). An MRI study by Yu et al.36 further validated this finding, with 
their peritumoral features predicting lymphovascular invasion reaching an AUC of 0.83, an 8% improvement 
over intratumoral features. These studies collectively reveal that the peritumoral microenvironment at 4-5 mm 
may influence tumor invasiveness through mechanisms such as angiogenesis and immune infiltration. Its 
texture features demonstrate diagnostic advantages across multimodal imaging platforms, including ultrasound, 
photoacoustic, and MRI. Particularly in lesions with indistinct borders, peritumoral heterogeneity may more 
sensitively reflect tumor biological activity, providing a solid theoretical foundation for constructing peritumoral 
models.

This study constructed 13 radiomics models based on intratumoral and peritumoral ultrasound images at 
depths of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm, utilizing high-throughput radiomics technology. Among these, 
the peritumoral 4  mm radiomics model constructed using the SVM algorithm exhibited the best predictive 
performance, with an AUC of 0.904 (95% CI: 0.860–0.948), while the intratumoral radiomics model constructed 
using the XGBoost algorithm had an AUC of 0.842 (95% CI: 0.788–0.896). The DeLong’test for the two models 
showed a P-value of 0.773, indicating no statistically significant difference. However, the results from the ROC 
curves reveal that the hidden biological information carried by the peritumoral 4 mm region is more valuable 
than that of the intratumoral and other peritumoral regions (AUC_peri_4mm = 0.904 > AUC_inter = 0.842).

The effectiveness of “wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis” in the peritumoral 
2 mm model is greater than that of “original_glcm_JointAverage” and “original_firstorder_Minimum,” a trend not 
observed in the intratumoral model. Several factors contribute to these results: the observed spatial heterogeneity 
of radiomics features likely arises from intrinsic differences in tumor biology and imaging characteristics. In 
intratumoral regions, densely packed malignant cells and necrotic zones may result in homogeneous texture 
patterns, which explains why lower wavelet-HLH_glrlm_RunVariance values (reflecting reduced pixel variation) 
are associated with malignancy. In contrast, peritumoral regions (1-2 mm) often show infiltrative tumor growth 
and stromal reactions, increasing tissue complexity. Higher RunVariance values in these regions may capture 
disrupted architectural patterns caused by tumor invasion, aligning with their association with aggressive 
phenotypes. Furthermore, features such as wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis, 
which quantify the clustering of high-intensity pixels, may reflect microvascular proliferation in the peritumoral 
stroma—a hallmark of tumor angiogenesis. This is supported by previous studies linking peritumoral vascularity 
to malignancy risk37,38. The reduced role of these features intratumorally may be attributed to necrotic dominance, 
which suppresses gray-level dependency39. Collectively, these findings support the “seed and soil” hypothesis, 
wherein the peritumoral microenvironment (2-4 mm) plays a crucial role in determining tumor behavior, and 
ultrasound radiomics offers a non-invasive method to decode this spatial interplay.
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The observed β and GDI patterns challenge the classical monotonic decay hypothesis. We propose that 
tumor-secreted immunosuppressors lead to homogenization of the proximal zones, while the peri_1-2  mm 
region functions as a diagnostic 'twilight zone,' where increasing stromal heterogeneity induces abrupt signal 
shifts, as captured by wavelet features such as wavelet-HLH_glrlm_RunVariance. Beyond the peri_3mm region, 
systemic homeostasis (e.g., collagen crosslinking, immune surveillance) mitigates variability, rendering extended 
sampling unnecessary.

Among the combined models constructed using intratumoral and various peritumoral ultrasound imaging 
features along with clinical and ultrasound independent predictive factors, the combined model with the 
peritumoral 2 mm region achieved the highest AUC, improving from 0.799 to 0.849. In contrast, the AUC for 
the combined model with the peritumoral 4 mm region decreased from 0.904 to 0.782, while the AUC for the 
combined model including intratumoral features improved from 0.842 to 0.858. This may be attributed to the 
blurred boundary between NML and normal tissue, which hinders the clinical and ultrasound independent 
predictive factors from capturing the features of the peritumoral region for the combined model. Additionally, 
the variations in the peritumoral 4  mm region’s imaging features are significantly different from those of 
the intratumoral features, and both the clinical and ultrasound models primarily represent intratumoral 
characteristics, resulting in poor complementarity and leading to inferior predictive performance for the 
combined model with the peritumoral 4  mm region compared to the original imaging model. In contrast, 
the peritumoral 2 mm region is more closely aligned with the peritumoral microenvironment, enhancing its 
complementarity with the clinical and ultrasound models. The constructed DCA curves indicate that the best 
predictive performance is achieved with the combined model that includes the peritumoral 2 mm region (AUDC: 
0.294, 95%: -0.530 to -0.549), followed by the combined model with intratumoral features (AUDC: 0.282, 95%: 
-0.306 to -0.297). The DCA curve reveals that when the threshold probability is very low, the model’s net benefit 
is negative. This is because the lower end of the DCA curve often overlaps with the net benefit curve of the "Treat-
all" strategy, indicating that at very low thresholds, the model cannot provide greater net clinical benefit than 
the empirical treat-all strategy. Furthermore, the model’s false positive predictions may lead to a large number 
of benign cases being misdiagnosed as malignant and undergoing unnecessary biopsies or surgeries, where 
the clinical harm outweighs the benefit. The results of this study demonstrate that the nomograms combining 
intratumoral and peritumoral 2 mm imaging scores with clinical and ultrasound independent predictive factors 
exhibit similar predictive performance in distinguishing benign and malignant NWL, with C-index values 
of 0.982 and 0.978, respectively. This suggests a high diagnostic value that can provide valuable reference for 
clinical decision-making.

This study has certain limitations: it is a single-center retrospective study, and non-mass breast cancer is 
relatively rare in clinical practice, resulting in a small sample size. The study utilized internal validation with 
cross-validation to assess the model’s performance, but the lack of an external independent validation group 
may introduce a series of biases. The reliability and stability of these results need to be confirmed by increasing 
the sample size and conducting multicenter studies. Due to the fact that NWL does not meet the BI-RADS 
criteria for mass characteristics on ultrasound images, there are challenges in the annotation and contouring of 
two-dimensional ultrasound images. To address this issue, we chose to delineate the most prominent parts of 
the lesions. However, this approach makes the image segmentation susceptible to subjective differences among 
different observers. Future studies could consider employing automated segmentation methods to reduce inter-
observer variability.

Data availability
Data is provided within the manuscript or supplementary information files.
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