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We develop a method for optimizing the structure of general binary-tree multiplexers realized with 
asymmetric photon routers aiming at improving the performance of spatially multiplexed single-
photon sources. Our procedure systematically considers all possible binary-tree multiplexers that 
can be constructed using a certain number of photon routers. Using this method one can select 
the multiplexer structure that leads to the highest single-photon probability for a given set of loss 
parameters characterizing the system. We determine the optimal general binary-tree multiplexers 
for experimentally realizable values of the transmission coefficients of the photon routers and that of 
the detector efficiency. We show that single-photon sources based on such optimal multiplexers yield 
higher single-photon probabilities than what can be achieved with single-photon sources based on 
any other spatial multiplexer considered in the literature. Our approach improves the performance of 
multiplexed single-photon sources even for small system sizes which is the typical situation in current 
experiments.

The substantial role of single-photon sources (SPSs) in the effective realization of a number of experiments in 
the fields of quantum information processing and photonic quantum technology keeps their development in the 
focus of research1–3. Multiplexed SPSs can be promising candidates for yielding indistinguishable single photons 
in near-perfect spatial modes with known polarization on demand. Such sources are based on heralded SPSs4–10 
in which the detection of one member of a correlated photon pair generated in nonlinear optical processes 
heralds the presence of its twin photon. In heralded SPSs, the multiphoton noise originating from the inherent 
probabilistic nature of the nonlinear processes can be reduced by using single-photon detectors with photon 
number resolving capabilities for heralding, or by decreasing the mean photon number of the generated photon 
pairs. Multiplexing several sources of heralded photons can compensate for the decrease of the probability of 
successful heralding caused by the reduction of the mean photon number. Multiplexing can be realized by 
suitable switching devices in which heralded photons generated in particular multiplexed units are rerouted 
to a single output mode. Various schemes have been proposed for SPSs based on spatial11–22 and temporal 
multiplexing18,23–34, and some of them have been successfully implemented in experiments13,14,16,17,20,21,27,29,30,32,35.

In real multiplexed SPSs, the presence of various losses leads to the degradation of the performance15,19. 
The output single-photon probability of these systems can be maximized by determining the optimal number 
of multiplexed units and the mean number of photon pairs generated in the units. The optimization can be 
performed by applying the full statistical theories developed for the description of such systems18,22,36,37. 
According to the analyses, state-of-the-art multiplexed SPSs realized with low-loss optical elements can yield 
high single-photon probabilities with low multiphoton contribution22,36–38.

In spatially multiplexed SPSs, several individual pulsed heralded photon sources are applied in parallel. 
These sources can be realized by using physically separate nonlinear processes or in separate spatial modes 
of a single process. After a successful heralding event in one of the heralded sources, a spatial multiplexer 
composed of a set of binary photon routers is used to reroute the corresponding heralded signal photons to a 
single output. Special types of spatial multiplexers considered thus far in the literature are symmetric (complete 
binary-tree)13,14,17,20,21, asymmetric (chain-like)15,19,37, and incomplete binary-tree multiplexers22,38. Successful 
experimental realizations of multiplexed SPSs based on symmetric multiplexers have been reported up to four 
multiplexed units by using spontaneous parametric down-conversion in bulk crystals13,21 and waveguides17, and 
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by using spontaneous four-wave mixing up to two multiplexed units in photonic crystal fibers14,16,20. Theoretical 
analyses showed that a particular multiplexer structure can outperform the other for a certain range of the loss 
parameters when applied in SPSs22,38. Hence, finding novel multiplexing schemes that can further improve the 
performance of SPSs is an important goal of the researches on multiplexed SPSs.

In the present paper, we consider SPSs based on general binary-tree multiplexers. Accordingly, we treat all 
possible binary-tree multiplexers that can be constructed using a given number of binary photon routers. We 
develop a systematic method for finding the optimal binary-tree structure that leads to a SPS with the highest 
performance for a given set of loss parameters. We analyze the performance of SPSs based on general binary-
tree multiplexers with optimal structure in detail. We show that single-photon sources based on optimal general 
binary-tree multiplexers yield higher single-photon probabilities than that can be achieved with single-photon 
sources based on any special spatial multiplexer considered in the literature thus far.

Single-photon sources based on general binary-tree multiplexers
A SPS based on a general spatial multiplexer contains a set of multiplexed units (MUs) and a multiport routing 
device called multiplexer. The MUs are heralded SPSs independent of each other. Each MU contains a nonlinear 
photon pair source and a detector for detecting the idler photons of the photon pairs. Detection events in the 
MUs herald the presence of the corresponding signal photons which in turn are directed to a single output by 
the multiplexer. In this paper, we consider general spatial multiplexers built of binary photon routers (PRs) 
which are routing elements with two inputs and a single output. In spatially multiplexed single-photon source 
experiments, several types of optical switching devices can be used as photon routers. The most known types are 
bulk electro-optic polarization rotating switches13,21,22, integrated opto-ceramic switches14,16, and electro-optic 
switches17,35. PRs are generally asymmetric: the photon losses characterizing the two input ports of the PR differ. 
In ref.22, the terms transmission and reflection efficiencies were used for the efficiencies characterizing the two 
input ports of the PR with the corresponding notations Vt and Vr , respectively. In the present paper, we keep 
these notations for the inputs of the PRs and use the term transmission coefficients to refer to both of them.

The output of a PR can be connected to any of the inputs of another PR. Several building logics for realizing 
spatial multiplexers consisting of binary photon routers have hitherto been analyzed in the literature resulting 
in different types of multiplexers, such as symmetric multiplexers also referred to as complete binary-tree 
multiplexers, asymmetric (chain-like) structures, and various incomplete binary-tree multiplexers constructed 
by following either a geometric logic or a transmission-based logic. Now we do not pose any restrictions on 
the structure of the multiplexer, we consider all possible binary trees that can be constructed by using a certain 
number of PRs. Consequently, we introduce the term general binary-tree multiplexer (GBM) to refer to these 
multiplexers. We note that periodicity of the single-photon output is a requirement posed by most applications 
that can be ensured by pulsed pumping of the source generating the photon pairs. Also, beside multiplexing, 
suppressing multiphoton noise in multiplexed SPSs can be guaranteed by applying single-photon detectors with 
photon-number-resolving capabilities in the MUs39–45, therefore we assume such detectors in our calculations. 
We note that the repetition frequency of spatially multiplexed SPSs is limited by the deadtime of the detectors. 
A method based on a multiplexed detector array has already been developed for reducing deadtime46,47. We 
also mention that the MUs can contain an optional delay line placed into the path of the signal photon that is 
responsible for introducing a sufficiently long delay into the traveling time of the photon before it enters the 
multiplexer. This delay enables the operation of the logic controlling the routers.

Our aim is to find the GBM having N inputs and, consequently, composed of N − 1 identical asymmetric 
PRs that gives the highest output single-photon probability P1 when applied in a multiplexed SPS. Therefore, 
we need to test all possible different binary-tree structures. We assume that the positioning of the PRs in a 
binary-tree is fixed, that is, the inputs of all routers characterized by given transmission efficiencies are in the 
same geometric position in the tree. We prescribe that the numbering of the inputs of the multiplexer in any 
stage of the construction follows the geometric rule applied at the inputs of the first router, e.g., from top to 
bottom in the figure of the multiplexer. Then we can represent a binary-tree multiplexer comprising N − 1 
PRs by a sequence of integer numbers of length N − 1 according to the following logic. The first number is 
always 1 showing that the first router is connected to the single output of the multiplexer. The second number 
identifies the connection point of the second router to the first one, therefore it can take the values 1 or 2. The 
nth number is the connection point of the nth PR to any of the input ports of the multiplexer created in the 
previous steps. As this multiplexer was built of n − 1 PRs, hence it has n inputs and, accordingly, the nth number 
in the sequence of integer numbers can take any integer value between 1 and n. Obviously, the number of such 
sequences for binary-tree multiplexers having N inputs and formed by N − 1 PRs is (N − 1)!. As an example, in 
Fig. 1 we show all the possible multiplexers comprising three PRs, and in the caption of the Figure we specify the 
integer sequences identifying the various multiplexers. These sequences representing the six multiplexers in the 
Figure are [1,1,1], [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3]. However, as we assume identical routers, the sequences 
[1,1,3] and [1,2,1] represent the same two-level complete binary-tree multiplexers. To avoid this problem, we 
apply the following rule: we accept only sequences containing 0 or 1 increment or arbitrary decrement between 
subsequent elements. This way, the sequence [1,1,3] is excluded from the above list of sequences. It can be shown 
that, following this rule, those sequences representing binary-tree multiplexers having structures identical with 
an already observed one can be excluded from the list of sequences for any number of PRs. The number of 
sequences of length N − 1 generated in this way provides the number KN  of different binary-tree multiplexers 
having N inputs. It can be found that KN  can be calculated as

	
KN =

N−1∏
k=2

N + k − 1
k

for N ≥ 3.� (1)
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We note that the number KN+1 is known as the Nth Catalan number48.
As it was explained above, a binary PR is a two-port routing device that can be characterized by the transmission 

coefficients Vt and Vr . Similarly, a multiplexer which is a multiport routing device can be characterized by the 
total transmission coefficients Vn describing the transmission probabilities between each input and the output of 
the multiplexer. These total transmission coefficients are in fact products of the transmission coefficients of the 
PRs, hence they can be written in the symbolic form of

	 Vn = VbV j
r V k

t (0 ≤ j, k ≤ N).� (2)

Here, the multiplicative factor Vb termed as general transmission coefficient characterizes all other losses 
experienced by the photons while propagating to the input of the multiplexer after their heralding. A multiplexer 
having N inputs can be characterized by N total transmission coefficients. The number N is equal to the number 
of multiplexed units that are connected to the given multiplexer. In the next section, we will compare our results 
to the performance of SPSs based on asymmetric (ASYM) multiplexers. Such multiplexers have a chain-like 
structure characterized by the total transmission coefficients

	
Vn = VbV1V n−1

2 if n < N,
Vn = VbV n−1

2 if n = N,
� (3)

where V1 and V2 are the smaller and larger, respectively, of the transmission coefficients Vr  and Vt.
For analyzing SPSs based on GBMs, we will apply the general statistical theory developed previously for 

treating SPSs based on either spatial or temporal multiplexing equipped with photon-number-resolving detectors 
realizing any detection strategy22,36. We will consider only ranges of the loss parameters for which single-photon 
detection is certainly the optimal detection strategy. In this case, the probability Pi of obtaining i photons at the 
output of multiplexed SPSs can be written as

	
Pi =

(
1 − P

(D)
1

)N

δi,0 +
N∑

n=1

[(
1 − P

(D)
1

)n−1
×

∞∑
l=i

P (D)(1|l)P (λ)(l)Vn(i|l)

]
.� (4)

Here, the variable l denotes the number of photon pairs generated by the nonlinear source in the nth multiplexed 
unit MUn, and N is the number of multiplexed units in the SPS. P (λ)(l) is the probability of generating l pairs in 
a MU assuming that the mean photon number of the generated pairs, that is, the input mean photon number is λ. 
We assume that a single-mode nonlinear process with strong spectral filtering is used in the scheme. In this case, 
the multiplexed SPSs can yield highly indistinguishable single photons that are required in many experiments 
and applications14,21,49, and the probability distribution of the input mean photon number is thermal:

Fig. 1.  All binary-tree multiplexers constructed by using three binary PRs. The corresponding integer 
sequences identifying the particular multiplexers are: (a) [1,1,1], (b) [1,1,2], (c) [1,1,3], (d) [1,2,1], (e) [1,2,2], 
(f) [1,2,3].
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P (λ)(l) = λl

(1 + λ)1+l
.� (5)

P (D)(1|l) denotes the conditional probability of registering a single photon provided that l photons arrive at the 
detector with detector efficiency VD . It can be expressed as

	 P (D)(1|l) = lVD(1 − VD)l−1.� (6)

The total probability P (D)
1  of the event that a single photon is detected can be derived as

	
P

(D)
1 =

∞∑
l=1

P (D)(1|l)P (λ)(l) = VDλ

(VDλ + 1)2 .� (7)

In our calculations, the probabilities P (D)
1 , P (D)(1|l), P (λ)(l), and the input mean photon number λ are 

assumed to be independent of the sequential number n of the MU.
Finally, Vn(i|l) is the conditional probability of the event that i photons reach the output of the multiplexer 

provided that l signal photons arrive from the nth multiplexed unit MUn into the system. This probability is 
expressed as

	
Vn(i|l) =

(
l
i

)
V i

n(1 − Vn)l−i,� (8)

where the total transmission coefficient Vn characterizes the losses of the nth arm of the particular multiplexer.
From the second term of Eq.  (4), one can see that this theory assumes a priority logic controlling the 

multiplexed SPS that prefers the MU with the smallest sequential number n if multiple heralding events happen 
in different MUs. It seems plausible that by assigning smaller sequential numbers n to arms with higher total 
transmission coefficients Vn, the achievable single-photon probability P1 can be higher. Consequently, it is 
reasonable to choose a numbering for the MUs for which the associated total transmission coefficients Vn are 
arranged into a decreasing order, that is, V1 ≥ V2 ≥ · · · ≥ VN . Obviously, the numbering of the multiplexer 
arms having identical total transmission coefficients is arbitrary.

Knowing the probabilities Pi from Eq.  (4), the normalized second-order autocorrelation function can be 
obtained as

	

g(2)(t = 0) =

∑∞

i=2
Pii(i − 1)

(∑∞

i=1
Pii

)2 .� (9)

This function quantifies the contribution of multiphoton components in the output state compared to that of 
the single-photon component. In the next section, we also present results on this quantity. Note that spatially 
multiplexed single-photon sources realized in experiments are generally tested for their single-photon 
probability and for the multiphoton components of the output signal characterized by the normalized second 
order autocorrelation function2. As it was outlined in experimental papers on the topic, the single-photon 
probability can be measured by photon-number-resolving detectors capable of detecting single photons, while 
the normalized second order autocorrelation function can be measured by a standard Hanbury–Brown–Twiss 
setup13,14,27,50,51.

The described statistical theory can be used for the optimization of multiplexed SPSs aiming at determining 
the optimal number of multiplexed units Nopt and the optimal input mean photon number λopt corresponding 
to the maximal value of the output single-photon probability P1,max. The optimum exists because the function 
P1(N, λ) describing the single-photon probability against the number of multiplexed units and the input mean 
photon number has a global maximum for most of the systems. The common characteristics of such systems is 
that the transmission efficiencies of the various arms change, generally decrease, by increasing the number of PRs 
in the system. Typical examples are the symmetric and the incomplete multiplexers. In contrast, for asymmetric 
(chain-like) multiplexers the same function P1(N, λ) monotonically increases with the number of multiplexed 
units and it eventually saturates15,19,37. In such systems Nopt can be chosen so that the corresponding value of 
P1(Nopt, λopt) is reasonably close to the saturated value.

The task for SPSs based on GBMs is to determine the optimal structure for a given number of multiplexed 
units N. In this paper we determine the optimal structures for a predefined number of multiplexed units N. 
Hence, we do not address the problem of finding an optimal number of multiplexed units Nopt for SPSs based 
on GBM.

Finding the optimal structure for a given number N can be realized as follows. First, we generate the sequences 
representing all GBM structures comprising N − 1 routers by applying a specific systematic rule. Based on 
these sequences, it is possible to calculate the corresponding sets {Vn} of total transmission coefficients Vn 
characterizing the particular multiplexers. At this point, we mention that some of the sets can contain the same 
symbolic total transmission coefficients for geometries characterized by different sequences. As an example, 
Fig. 2 shows two different geometries for N = 5 for which the sets {Vn} are identical. In this case, by assuming 
that the transmission coefficients of the upper and lower inputs of the PRs are denoted by Vt and Vr , respectively, 
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the corresponding sets are a) {V 2
t , V 2

t Vr, VtV
2

r , VtVr, V 2
r } and b) {V 2

t , VtVr, V 2
t Vr, VtV

2
r , V 2

r }. Recall that 
the list of Vns are sorted to a decreasing order before the optimization, therefore SPSs based on multiplexers with 
identical sets {Vn} exhibit the same performance. For this reason, we consider only the GBM structure appearing 
as the first one in our logic in the case of identical {Vn}s. As a consequence, the number of multiplexers with 
physically different structures is lower than the number KN  defined in Eq. (1) in the case of multiplexers having 
N inputs.

After determining the set of total transmission coefficients, we can apply Eq.  (4) to maximize the single-
photon probability P1,S(λ) of the SPS based on the given GBM, where we use the subscript S in P1 for denoting 
the structure. As in our case the number N of MUs is fixed, the input mean photon number λ is the only variable 
that can be optimized for given values of the transmission coefficients Vr  and Vt and the detector efficiency VD . 
As the function P1,S(λ) has a single maximum, any method for finding extremums can be used to determine 
the optimal value of λ. Finally, after determining the single-photon probability P1,S(λopt) that can be achieved 
for particular λopt values for all possible structures S, we find the highest one denoted by P1,max. The structure 
S corresponding to this maximal achievable single-photon probability P1,max is said to be the optimal structure 
Sopt of the multiplexer for the number of multiplexed units N. The GBM with optimal structure will be termed 
optimal general binary-tree multiplexer and abbreviated as OGBM. Using this method, one can determine the 
OGBM for any set of loss parameters characterizing the SPS.

The proposed method can be applied for any number of multiplexed units N to determine the optimal 
multiplexing structure. Hence, it can be used to design arbitrary SPS experiments based on OGBMs. From 
the point of view of applicability, a relevant question is how the method scales with increasing numbers of 
multiplexed units. Basically, the computational requirements of the method scale with the number of different 
binary tree structures determined by the numbers KN  defined in Eq. (1). These numbers can be considerably 
high for higher values of the number of multiplexed units N, for example, for N = 11 and N = 16 they are 
KN=11 = 16796 and KN=16 ≈ 9.69 × 106, respectively. However, as we have pointed out above, the actual 
computational requirements of the method scale with the number of different sets of the total transmission 
coefficients {Vn}. We have determined the numbers of different sets of {Vn} for the previous examples. We 
have found that the numbers of physically different structures for N = 11 and N = 16 are only 7624 and 
≈ 1.93 × 106. It means that only 45% and 20% of the amount of calculations predicted by the corresponding 
number KN  is sufficient to optimize the structure of a multiplexer formed by 10 and 15 photon routers, 
respectively. The reduction for higher number of photon routers is probably even higher. Albeit the application 
of the proposed method can be cumbersome for higher values of the number of multiplexed units N, it can still 
be used to determine the optimal multiplexer structure for any number N, its applicability solely depends on 
the computational capacity of the available computers. In a recent paper3 it was found that for SPSs based on 
previously studied spatial multiplexers, the optimal values of the numbers of multiplexed units are relatively 
low, Nopt = 20, . . . , 30, for loss parameters that can possibly be realized in current experiments. Note that 
for higher losses the value of the optimal number of multiplexed units Nopt decreases. Hence, we believe that 
for specific sets of the loss parameters even the full optimization can be realized with well-designed codes and 
computers with sufficiently high computational power. We note that the computational task may be reduced by 
the application of certain machine learning methods. This possibility deserves consideration in the future.

Results
In this section, we present our results on the optimization of SPSs based on GBMs composed of general 
asymmetric routers. Our goal for SPSs based on GBMs is to find the optimal structure for a given number of 
multiplexed units N that has the best performance. Therefore we confine our calculations to high transmission 
and detector efficiencies that can be realized experimentally with state-of-the-art devices. Hence, in this section 
the detector efficiency is set to VD = 0.95, the highest value reported in ref.41. However, we apply different 
values VD  in certain cases we consider as relevant. The general transmission coefficient is set to Vb = 0.98 
in all our calculations, hence generally we do not indicate this value in the following. Routers built of bulk-
optical elements exhibited the highest transmission efficiencies Vr = 0.99 and Vt = 0.985 reported in refs.32,52 

Fig. 2.  Two binary-tree multiplexers constructed by using four binary PRs having the same sets {Vn} of total 
transmission coefficients Vn. The corresponding integer sequences identifying the particular multiplexers are: 
(a) [1,2,1,2], (b) [1,2,2,1]. Assuming that the transmission coefficients of the upper and lower inputs of the PRs 
are denoted by Vt and Vr , respectively, the corresponding sets are (a) {V 2

t , V 2
t Vr, VtV

2
r , VtVr, V 2

r } and (b) 
{V 2

t , VtVr, V 2
t Vr, VtV

2
r , V 2

r }.
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These values are applied in our analysis whenever individual parameter sets or sweeps for other parameters are 
analyzed. However, we use Vr = Vt = 0.99 as the upper boundaries of the ranges of these efficiencies whenever 
we present parameter sweeps for them to show the symmetry of these parameters, while the lower boundaries 
of these ranges are chosen to be Vr = Vt = 0.9 ensuring that single-photon detection yields the highest single-
photon probability for the whole considered parameter range (see, e.g., ref.37). As already mentioned in the 
Introduction, spatially multiplexed SPSs have been realized up to four multiplexed units. Earlier theoretical 
analyses have shown that high single-photon probabilities can be achieved with spatially multiplexed SPSs even 
with suboptimal system sizes. Hence, analyzing such systems is physically relevant. In the present paper, we 
consider spatially multiplexed SPSs with N = 11 multiplexed units as an example for the application of the 
proposed method.

Figure  3a, b present the maximal single-photon probability P ogbm
1,max and the corresponding normalized 

second-order autocorrelation function g(2)
ogbm, respectively, for SPSs based on OGBMs, while Fig. 3c, d show 

the difference ∆ogbm−asym
P  between the maximal single-photon probabilities and the difference ∆asym−ogbm

g(2)  
between the normalized second-order autocorrelation functions, respectively, for SPSs based on OGBM 
and ASYM multiplexers as functions of the transmission coefficients Vt and Vr  for the detector efficiency 
VD = 0.95, and the number of multiplexed units N = 11. It can be seen that, as it is expected, the maximal 
single-photon probability P1,max is higher while the second-order autocorrelation function g(2) is better, 
that is, lower for higher values of the transmission coefficients of the PRs. The highest maximal single-photon 

Fig. 3.  (a) The maximal single-photon probability P ogbm
1,max and (b) the normalized second-order 

autocorrelation function g(2)
ogbm for SPSs based on OGBMs as functions of the transmission coefficients Vt and 

Vr . (c) The difference ∆ogbm−asym
P  between the maximal single-photon probabilities, and (d) the difference 

∆asym−ogbm
g(2)  between the normalized second-order autocorrelation functions for SPSs based on OGBM and 

ASYM multiplexers, respectively, as functions of the transmission coefficients Vt and Vr . Here the detector 
efficiency VD = 0.95 and the number of multiplexed units N = 11.
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probabilities in this region are above P1,max > 0.86 and the lowest corresponding values of the second-order 
autocorrelation function are g(2) < 0.1. Figure 3c shows that using SPSs based on OGBMs give higher single-
photon probabilities than SPSs based on ASYM multiplexers for the whole considered parameter range. From 
Fig. 3d one can deduce that the normalized second order autocorrelation function values g(2) are smaller for 
SPSs based on OGBMs than for SPSs based on ASYM multiplexers except for very asymmetric PRs, that is, 
for Vr ≫ Vt or Vr ≪ Vt. The g(2) values can be lower for SPSs based on ASYM multiplexers than for those 
based on OGBMs because the optimization was carried out for the single-photon probability P1. We have also 
compared our results with output-extended incomplete binary-tree multiplexers and symmetric multiplexers for 
N = 4 and N = 8, and we have found that the advantage of SPSs based on OGBMs is on the same range as in 
the case of ASYM multiplexers.

Next, we show our results on the optimal multiplexer structures yielding the maximal single-photon 
probabilities. Figure  4 presents occurrence of the various optimal multiplexer structures Sopt: an ordinal 
number OSopt  is assigned to various structures with an ordering described later. This is plotted for SPSs based 
on OGBMs for the detector efficiency VD = 0.95 and Vr ≥ Vt( Fig. 4a), VD = 0.95 and Vr ≤ Vt( Fig. 4b), 
VD = 0.85 and Vr ≥ Vt( Fig. 4c), and VD = 0.8 and Vr ≥ Vt( Fig. 4d), for the number of multiplexed units 
N = 11. The meaning of the occurrence is the following. Each color in a subfigure of Fig. 4 corresponds to a 
specific multiplexer structure. Thus, a region in the Vt − Vr  plane displayed with a given color indicates that the 
corresponding multiplexer structure is optimal for all the loss parameter pairs in the region. The numbers at the 
color bars in Fig. 4 are sequential numbers OSopt  of the occurrences corresponding to the decreasing order of 
the sizes of the areas occupied by the various colors in the Vr − Vt plane. Accordingly, the sequential number 1 
assigned to the color yellow corresponds to the largest area and colors indicated by higher numbers cover smaller 
areas in the figure. Hence, the multiplexer structure denoted by yellow is the most frequent in the Vr − Vt 

Fig. 4.  Occurrence OSopt  of the various optimal multiplexer structures Sopt for SPSs based on OGBMs for 
(a) the detector efficiency VD = 0.95 and Vr ≥ Vt, (b) VD = 0.95 and Vr ≤ Vt, (c) VD = 0.85 and Vr ≥ Vt, 
and (d) VD = 0.8 and Vr ≥ Vt, for the number of multiplexed units N = 11. A particular color denotes a 
given structure. Increasing sequential numbers of OSopt  in the color bar represent decreasing occurrence of a 
specific structure.
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plane. Colors with increasing sequential numbers OSopt  represent decreasing occurrence of the corresponding 
structures. Note that any color can denote different structures for the different subfigures as the value of the 
detector efficiency VD  is different for each subfigure that can lead to different optimal structures.

The sizes and shapes of the regions in Fig. 4a, b are identical but mirrored to the Vt = Vr  line (they are 
reflected congruent shapes) as it is expected from symmetry consideration. However, the identified structures 
belonging to a particular color in the two regions can be different due to the fact that the method described in 
section “Single-photon sources based on general binary-tree multiplexers” selects a single GBM structure out 
of those having identical sets {Vn} of total transmission coefficients. This can be deduced from Figs. 5 and 6 
where the six most frequent optimal structures of OGBMs occurring in Fig. 4a (region Vr ≤ Vt) and 4b (region 
Vr ≥ Vt) are presented, respectively, for the detector efficiency VD = 0.95 and the number of multiplexed units 
N = 11. In these figures the transmission coefficients Vt and Vr  correspond to the upper and lower inputs, 
respectively, of the individual PRs. The figures also contain the sequential numbers of the occurrence OSopt  
of the structures shown in Fig. 4a, b, the integer sequences representing the structure, and the lists of the total 
transmission coefficients Vi in the order of the multiplexed units MUn. Note that the sets of total transmission 
coefficients {Vn} in Fig.  5 are the same as the corresponding sets in Fig.  6 if the roles of the transmission 
coefficients Vr  and Vt are swapped. This property reflects the expected symmetry mentioned before. Figures 5 
and 6 show that the asymmetric multiplexer having a chain-like structure proves to be the best for a certain 
region of the transmission coefficients Vt and Vr . Obviously, in this region the difference ∆ogbm−asym

P  presented 
in Fig. 3c is zero.

From Fig. 4c, d one can deduce that by decreasing the value of the detector efficiency VD  the number of optimal 
multiplexer structures occurring in the analyzed domain of the parameters Vr  and Vt increases, and the regions 
representing particular structures are considerably different. Obviously, the identified optimal structures can be 
different for different values of the detector efficiency VD  even for given values of the transmission coefficients 
Vr  and Vt. As an example, in Fig. 7 we show the optimal structures of OGBMs for the detector efficiencies 
VD = 0.8( Fig. 7a) and VD = 0.85( Fig. 7b), for the transmission coefficients Vr = 0.99 and Vt = 0.985, and 
for the number of multiplexed units N = 11. The integer sequences representing the structures and the lists 
of the total transmission coefficients Vn in the order of the multiplexed units MUn are presented below the 
structures. These structures are apparently different, and they do not occur in Figs. 5 or 6 either. We have also 
determined the number of identical and different structures for different values of the detection efficiency VD  

Fig. 5.  The six most frequent optimal structures of OGBMs in the region Vr ≥ Vt for the detector efficiency 
VD = 0.95 and the number of multiplexed units N = 11. Vt and Vr  correspond to the upper and lower 
inputs, respectively, of the individual PRs. The sequential numbers of the occurrence OSopt  followed by the 
integer sequences representing the structures, and the lists of the total transmission coefficients Vn in the order 
of the multiplexed units MUn are presented below the structures.
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in the considered region of the transmission coefficients Vr  and Vt. We have found that the number of unique 
structures present for VD = 0.8( VD = 0.85) but absent for VD = 0.95 is 18 (11), while there are 8 (5) unique 
structures present for VD = 0.95 and absent for VD = 0.8( VD = 0.85).

Fig. 7.  Optimal structures of OGBMs for the detector efficiencies (a) VD = 0.8 and (b) VD = 0.85, the 
transmission coefficients Vr = 0.99 and Vt = 0.985, and the number of multiplexed units N = 11. The 
integer sequences representing the structures and the lists of the total transmission coefficients Vn in the order 
of the multiplexed units MUn are presented below the structures.

 

Fig. 6.  The six most frequent optimal structures of OGBMs in the region Vr ≤ Vt for the detector efficiency 
VD = 0.95 and the number of multiplexed units N = 11. Vt and Vr  correspond to the upper and lower 
inputs, respectively, of the individual PRs. The sequential numbers of the occurrence OSopt  followed by the 
integer sequences representing the structures, and the lists of the total transmission coefficients Vn in the order 
of the multiplexed units MUn are presented below the structures.
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Next, in Fig.  8 we show the maximal single-photon probabilities P ogbm
1,max( Fig.  8a) and the normalized 

second-order autocorrelation function g(2)
ogbm( Fig. 8b) for SPSs based on OGBMs as functions of the number of 

multiplexed units N for the transmission coefficients Vt = 0.985 and Vr = 0.99, and for various values of the 
detector efficiency VD . As it is expected, increasing the number of multiplexed units N leads to increasing values 
of the maximal single-photon probability P ogbm

1,max and decreasing values of the second order autocorrelation 

function g(2)
ogbm. Also, increasing the detector efficiency VD  relevantly enhances the performance of the SPS. 

The maximal single-photon probability P1,max that can be achieved for the detector efficiency VD = 0.95 and 
the number of multiplexed units N = 11 is P1,max = 0.866, while by modifying the detector efficiency to 
VD = 0.98 this probability can reach P1,max = 0.889. These single-photon probabilities that can be achieved 
with experimentally realizable system sizes are quite promising compared to the probabilities that can be achieved 
with completely optimized SPSs based on previously considered multiplexers for the same loss parameters. 
For example, assuming the transmission coefficients Vt = 0.985 and Vr = 0.99, and the detector efficiency 
VD = 0.95, and using optimized system sizes in SPSs based on ASYM multiplexers, the maximal single-
photon probability is P asym

1,max = 0.905. However, the corresponding optimal number of the multiplexed units 
is considerably higher, Nasym

opt = 28. The value of the second-order autocorrelation function g(2) that can be 
achieved for an SPS based on OGBM for the detector efficiency VD = 0.95 and the number of multiplexed units 
N = 11 is g(2) = 0.091, while by modifying the detector efficiency to VD = 0.98 this value is g(2) = 0.0395. 
Note that these values can be also promising as they occur at the high single-photon probabilities mentioned 
above and using a multiplexer of small size.

Finally, we discuss the experimental realizability of SPSs based on OGBMs. Our method determines the 
optimal multiplexer structure built of PRs characterized by given losses for which the single-photon probability 
of the SPSs is the highest. The type of the PRs is not specified in our method; any of the realizations discussed 
in Section 2 can be used. The realization of SPSs based on OGBMs poses the same experimental challenges as 
those of SPSs based on any special type of spatial multiplexers13,14,16,17,20,21, no extra ones arise. A description of 
the various experimental realizations of spatially multiplexed SPSs can also be found in recent review papers2,3. 
A relevant problem regarding multiplexed SPSs is the realization of a system with optimal size, that is, increasing 
the number of MUs and the necessary PRs to the optimal values. This problem arises both in bulk and integrated 
optical realizations. Our results show that high single-photon probabilities can be achieved even for SPSs based 
on OGBMs with suboptimal system sizes. Nevertheless, integrated optical SPSs can be more advantageous in 
practical applications, due to their compactness and robustness.

Conclusion
To improve the performance of spatially multiplexed single-photon sources, we have developed a method for 
optimizing the structure of general binary-tree multiplexers realized with asymmetric photon routers. Our 
procedure systematically considers all possible binary-tree multiplexers that can be constructed using a certain 
number of photon routers. Our optimization procedure selects the multiplexer structure that leads to the highest 
single-photon probability for a given set of loss parameters characterizing the system. We have determined the 
optimal general binary-tree multiplexers for experimentally realizable values of the transmission coefficients of 
the photon routers and that of the detector efficiency and for the number of multiplexed units N = 11. As it is 
expected, single-photon sources based on optimal general binary-tree multiplexer yield higher single-photon 

Fig. 8.  (a) The maximal single-photon probabilities P ogbm
1,max and (b) the normalized second-order 

autocorrelation function g(2)
ogbm for SPSs based on OGBMs as functions of the number of multiplexed units N 

for the transmission coefficients Vt = 0.985 and Vr = 0.99, and for various values of the detector efficiency 
VD .
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probabilities compared to what can be achieved with single-photon sources based on any other multiplexer 
considered in the literature. Our approach improves the performance of multiplexed single-photon sources even 
for small system sizes which is the typical situation in current experiments.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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