Table 1 ERNIE-MCBMA algorithm.

From: A novel approach for multiclass sentiment analysis on Chinese social media with ERNIE-MCBMA

Inputs: \(\:X=({x}_{1},{x}_{2},{x}_{3},\ldots,{x}_{n})\), where \(\:X\) is the input text sequence

Outputs: sentiment classification labels

1. encoder_out, text-cls = ERNIE(context, attention-Mask = mask)

2. _, pooled = ERNIE(context, attention-Mask = mask)

3. out = Reshape(encoder_out, [batch_size, 1, seq_len, hidden_size])

4. out = Permute(out, [0, 3, 1, 2])

5. cnn_out = Mish(Conv2d(out, kernel_size = 3, padding = 1))

6. cnn_out = Permute(cnn_out, [0, 3, 1, 2]).squeeze(2)

7. out, _ = BiLSTM(cnn_out)

8. Att_out = Mutil-Attention(out, out, out, mask = None)

9. combined_out = Concatenate(encoder_out, cnn_out, Att_out, axis = 2)

10. combined_out = Permute(combined_out, [0, 2, 1])

11. combined_out = MaxPool1d(combined_out, kernel_size = seq_len).squeeze(1)

12. combined_out = Mish(Concatenate(pooled, combined_out, axis = 1))

13. final_out = FullyConnected(combined_out)

14. return final_out