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To scientifically evaluate the dynamic operational efficiency, spatial differences, as well as the 
formation mechanisms of the urban Innovation Ecosystem within the Yellow River Basin is highly 
important for the high-quality development of China. In the present research, both the economic 
circulation theory with the Innovation Ecosystem and the Data Envelopment Analysis – Malmquist 
Productivity Index (DEA-Malmquist) model were adopted to analysis the database from 59 cities 
along the Yellow River Basin. In parallel, the kernel density estimation, the Gini coefficient, and Panel 
Vector Autoregression (PVAR) model were applied for further comparison. The results revealed that the 
dynamic operational efficiency of the Innovation Ecosystem within the Yellow River Basin exhibited 
an obvious fluctuating downwards trend. The efficiency of spatial distribution in the upstream and 
midstream basins shows a left-skewed and polarized pattern, whereas the downstream basins 
exhibited a right-skewed distribution with less pronounced polarization. The results also revealed that 
the overall Gini coefficients for dynamic operational efficiency (TFP) and technical efficiency (EFF) in 
the Yellow River Basin tended to convergence, whereas those for technological change (TECH) are 
of an increasing trend. Moreover, the hypervariable density emerged as the primary factor driving 
disparities in TFP, TECH, and EFF within the basin. Furthermore, the relationships among TFP, TECH, 
and EFF were featured with the regional heterogeneity. In the midstream areas, there existed a 
self-improvement mechanism for the TFP, TECH, as well as the EFF. However, there was a stronger 
self-improvement mechanism for TECH but a self-weakening mechanism for TFP and EFF in the 
downstream regions.
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The development of Innovation is the most important core for the knowledge economy, which is regarded 
as the primary driving force for progress. The Innovation development generally provides some new growth 
opportunities and essential support for societal advancement and high-quality development of the local 
economic1. With the deepening implementation of innovation-driven strategies, the Innovation Ecosystem, as a 
crucial platform that promotes knowledge creation, technology transfer, and industrial upgrading, has emerged 
as a new driving force for regional innovation development. The efficient Innovation Ecosystem is thus generally 
believed to be the cornerstone for achieving economic growth and societal progress. By facilitating the rapid 
exchange of knowledge and promoting open information sharing, the Ecosystem encourages the integration of 
innovation ideas. It also boosts entrepreneurial energy and enthusiasm through via the financial support, policy 
incentives, and technological services. An efficient Innovation Ecosystem serves as a critical driver for accelerating 
technological progress and fostering regional economic prosperity. It not only speeds up the development and 
application of new technologies but also pushes the boundaries of innovation. Furthermore, it elevates regional 
innovation capacity and competitiveness through attracting top talent and capital, which contributes to the 
achievement of the high-quality economic development and promotes the regional coordination2.

The academic community has yet to reach a consensus on the definition of Innovation Ecosystem Dynamic 
operational efficiency. However, most scholars agree that it refers to the ability and effectiveness of an Innovation 
Ecosystem to transform innovation inputs into outputs over a specific period through the synergistic interactions 
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among its various entities and elements3–5. This concept reflects a comprehensive evaluation of the Ecosystem’s 
performance in resource allocation, collaborative innovation, and knowledge flow. For example, Liao Kaicheng5 
takes the social Ecosystem as a logical starting point, integrating, evolving, and advancing the operational 
characteristics of natural and social Ecosystems. On this basis, he analogizes the concept of Innovation Ecosystem 
dynamic operational efficiency. Chen Yizao6 using the innovation value chain as a framework, constructs a 
regional Innovation Ecosystem encompassing four Innovation clusters: “policy Innovation environment, 
original Innovation R&D, technological Innovation application, and technological Innovation services,” and 
measures its Innovation Ecosystem operational efficiency. Building on these conceptualizations, this study, 
grounded in economic circulation theory, constructs an Innovation Ecosystem framework that includes inputs 
(Innovation resources, Market environment, and Consumer demand) and outputs (Innovation patent outcomes 
and industrial value-added benefits). The DEA-Malmquist method is employed to assess the efficiency of value 
transformation within the Innovation elements.

The Yellow River Basin, recognized as the cradle of Chinese civilization, stands as a pivotal region of cultural 
heritage and economic significance in terms of the agriculture, energy, and other heavy industries. Spanning a 
vast area, this region is also famous for its abundant natural resources and diverse industrial structure, marked by 
distinct intraregional and interregional connectivity7. With the increasing attention given by the government to 
the development of the central and western regions and the application of the “14 th Five-Year Plan”, the Yellow 
River Basin has ushered in new opportunities, particularly in promoting regional coordinated development 
and industrial transformation and upgrading associated with enormous potential. Nevertheless, the Basin 
faces challenges due to the uneven distribution of Innovation resources and underdeveloped mechanisms 
for technological Innovation8. These issues have historically impeded the region’s capacity for Innovation 
development9.

Traditional industries in the Yellow River Basin face significant pressure to transform and upgrade, with 
technological Innovation emerging as a critical driver for enhancing competitiveness and achieving high-
quality development10. A thorough investigation into the Innovation Ecosystem operational efficiency of the 
Innovation Ecosystem in this region is of paramount importance. On one hand, it facilitates the optimization of 
resource allocation, improves resource utilization efficiency, and promotes industrial upgrading and economic 
transformation, thereby enhancing competitiveness11. On the other hand, it helps narrow regional disparities, 
fosters coordinated regional development, strengthens knowledge and technology exchange, and collectively 
addresses challenges12. Furthermore, the research outcomes can provide valuable support for government 
decision-making and optimize Innovation policies.

Given this context, this study focuses on the Yellow River Basin, employing the DEA-Malmquist index 
method to dynamically evaluate the Innovation Ecosystem operational efficiency of the Innovation Ecosystem 
across 59 prefecture-level cities from 2009 to 2023. The basin is divided into three regions: the upstream, 
midstream and the downstream (Table 1). The upper reach (e.g., Xining, Lanzhou) is characterized by abundant 
water resources and unique ecological environments, serving as a critical water conservation area with potential 
for clean energy development. The middle reach (e.g., Yinchuan, Hohhot, Xi’an) features diverse topography, 
including agriculturally rich areas like the Hetao Plain and ecologically fragile zones like the Loess Plateau, 
while also being a significant energy production base. The lower reach (e.g., Zhengzhou, Jinan) is relatively flat, 
densely populated, and economically advanced, with strong agricultural and industrial foundations, but faces 
challenges such as water scarcity and ecological pressures. Using kernel density estimation, this study assesses 
the spatiotemporal evolution characteristics of the Innovation Ecosystem operational efficiency in the Yellow 
River Basin. The Gini coefficient is applied to explore regional disparities in efficiency and their influencing 
factors. Finally, a PVAR model is utilized to analyze the intrinsic operational mechanisms of the Innovation 
Ecosystem in the Yellow River Basin.

Literature review
An Ecosystem is a unified entity formed through the interaction and interdependence of biological communities 
and their abiotic environment within a specific time and space. It performs critical functions, including material 
cycling, energy flow, information transfer, and ecological services13. Due to the analogous characteristics of 
Ecosystems and social systems, scholars have adapted the Ecosystem concept to the social sciences. In the 1990 
s, the U.S. government, in its report Science in the National Interest, compared the science and technology 
enterprise to an Ecosystem rather than a production line. Concurrently, Moore introduced the “business 
Ecosystem” concept, framing enterprises as “species” within an Ecosystem and emphasizing co-evolution 
among participants14. As research advanced, the theory of Innovation Ecosystem expanded from business to 
broader Innovation contexts. This concept subsequently attracted significant academic attention. For example, 
scholars have defined and extended the Innovation Ecosystem from diverse perspectives. Huang Lucheng15,16 
proposed the “regional technological Innovation Ecosystem,” describing it as a dynamic and complex system 

Yellow River basin Cities

Upstream Ordos, Hohhot, Baotou, Yulin, Lanzhou, Baiyin, Dingxi, Xining, Yinchuan, Shizuishan, Wuzhong, Zhongwei

Midstream Taiyuan, Datong, Yangquan, Changzhi, Shuozhou, Xinzhou, Jinzhong, Lvliang, Linfen, Yuncheng, Xi’an, Tongchuan, Baoji, 
Xianyang, Weinan, Shangluo, Tianshui, Pingliang, Qingyang

Downstream Jincheng, Qingdao, Jinan, Zibo, Zaozhuang, Yantai, Weifang, Jining, Linyi, Tai’an, Liaocheng, Heze, Dezhou, Binzhou, Dongying, 
Weihai, Rizhao, Zhengzhou, Kaifeng, Luoyang, Pingdingshan, Xinxiang, Jiaozuo, Hebi, Xuchang, Luohe, Shangqiu, Zhoukou

Table 1.  Study area
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formed by the interaction and interdependence of technological Innovation entities and their environments 
within a specific spatial scope. Wu Jinxi17 further elaborated on the concept, defining an Innovation Ecosystem 
as a relatively stable and closed organizational structure shaped by the mutual dependence and collaboration 
of multiple Innovation entities and elements. Additionally, Etzkowitz and Leydesdorff18 introduced the “Triple 
Helix” Innovation theory, emphasizing the role of interactions among universities, industries, and governments 
in shaping Innovation systems. Following the evolution of these core concepts, research has expanded to specific 
regions, with detailed explorations into the construction of indicator systems and the application of research 
methodologies.

A key research focus is the scope of investigation. He et al.19 explored the impact of coordinated agglomeration 
between financial and manufacturing industries on manufacturing Innovation efficiency across 11 provinces 
along the Yangtze River Economic Belt. Sun et al.20 utilized gravity-standard deviation ellipse and Dagum Gini 
coefficient methods to revel the spatiotemporal differentiation characteristics of green Innovation development 
in the Inner Mongolia Yellow River Ecological Economic Belt. Another research carried by Fan Yufeng Ma et 
al.21 concentrated on the Beijing-Tianjin-Hebei urban agglomeration. They adopted the super-efficiency SBM 
model and ML index to analyse Innovation efficiency within this urban cluster. Similarly, Liu et al.22 investigated 
the high-tech industries in the Pearl River Delta, employing the DEA-Malmquist index and ESDA model to 
measure Innovation efficiency and empirically analyse the in-behind driving factors. Li Ying et al.23 analyzed the 
spatial evolution of industrial technology Innovation efficiency in the Guangdong-Hong Kong-Macao Greater 
Bay Area from a dynamic perspective, employing the Malmquist index. Similarly, Yuan Rong et al.24 investigated 
the spatial differentiation and influencing factors of technological Innovation efficiency in the Yangtze River 
Delta region, utilizing a super-efficiency SBM model combined with the Malmquist index.

In terms of quantitative methods, initial research primarily focused on qualitative descriptions of various 
elements within Innovation Ecosystem. As studies progressed, scholars began to develop quantitative evaluation 
systems. Some studies on constructing evaluation index systems for Innovation Ecosystem dynamic operational 
efficiency are based on production function theory. For instance, Wang Yin and Sun Yi et al.25 developed an 
evaluation framework for Innovation Ecosystem based on the dual characteristics classification and Innovation 
mechanisms. Ou Guangjun et al.26 assessed the capabilities of Innovation Ecosystem through the design of 
indicators and evaluation systems, emphasizing the importance of openness and population structure 
dimensions. Yan Li27 introduced Innovation environment variables into Innovation inputs, constructing a 
relatively comprehensive model for evaluating Innovation efficiency, and was the first to propose the combined 
use of principal component analysis and DEA methods to measure regional Innovation efficiency in China. 
Su Yaohua and Li Quan28 divided the Innovation process into two stages—research and development, and 
achievement transformation—to build an indicator system, and employed stochastic frontier analysis to estimate 
the Innovation efficiency of high-tech industries. He et al.29 constructed an industrial evaluation index system 
based on three stages: assimilation, growth, and utilization. This system was applied to measure the Innovation 
Ecosystem dynamic operational efficiency of 15 high-tech industries in China, identifying potential pathways 
for improvement. Liao et al.5 created an evaluation index system with 87 indicators on the basis of Innovation 
input-output theory. Their study investigated regional disparities in dynamic operational efficiency and the 
formation mechanisms across China. In a related approach, Fan et al.30 established an index system focusing on 
technological research and development, environmental support, and results transformation. This system was 
utilized to evaluate and analyse the determinants of green technological Innovation efficiency in 82 cities along 
the Yellow River Basin.

In terms of measurement of Innovation Ecosystem dynamic operational efficiency, data envelopment 
analysis (DEA) and stochastic frontier analysis (SFA) are domestically and internationally applied. Liu et al.31 
employed a multiperiod network DEA model to evaluate enterprise-level efficiency in technological Innovation, 
R&D, and outcome transformation within enterprises. Lu et al.32 applied a panel threshold model to analyze 
how foreign direct investment (FDI) and economic development levels influence agricultural technological 
Innovation in China. Fan et al.33 employed a super-efficiency SBM model to assess the efficiency of green 
technological Innovation in Chinese industry. They highlighted how the misallocation of R&D resources affects 
this efficiency. Wang et al.34 utilized SBM-DEA to study China’s green Innovation efficiency, regional differences, 
and spatial convergence characteristics. Zhang et al.35 implemented a three-stage DEA-Malmquist approach to 
evaluate the dynamic and static Innovation efficiency of listed CNC machine tool companies. Li et al.36 measured 
green Innovation efficiency in the manufacturing sector across 11 provinces and cities along the Yangtze River 
Economic Belt using a super-efficiency SBM model that accounts for undesirable outputs. Zhao et al.37 assessed 
the green Innovation efficiency across 30 provinces in China from 2000 to 2020, utilizing the SBM-DDF-GML 
model. Kang Xia et al.38 applied the coefficient of variation method and the global Malmquist-GML index to 
evaluate the efficiency of science and technology development in China’s coastal land-sea coordination plans 
between 2006 and 2015. Their analysis also highlighted regional variations among these plans.

There are several limitations in terms of regional Innovation Ecosystem dynamic operational efficiency. First, 
most studies related to regional Innovation Ecosystem dynamic operational efficiency focus on the provincial 
level, with insufficient exploration at the municipal level. Second, input indicators predominantly emphasize 
funding and manpower, overlooking the Innovation value generated during the Innovation chain development 
process. This narrow input-output perspective leads to an incomplete evaluation system. Third, the existing 
literature has mostly concentrated on the efficiency of Innovation systems in a single region or industry, with 
limited analyses of spatial structures and evolutionary patterns of regional Innovation efficiency. Finally, most 
studies emphasize the overall operational efficiency of the Innovation Ecosystem while inadequately addressing 
regional disparities. In particular, the roles of both intrinsic factors and dynamic relationships have not been 
comprehensively integrated into a unified framework for analysis. In light of these limitations, further research 
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to develop a more comprehensive and detailed evaluation system for regional Innovation Ecosystem is thus 
requested.

The potential contributions of the present research are as follows: First, it integrates the concept of the 
Innovation Ecosystem is integrated with economic circular theory upon the municipal scale. This integration 
establishes a research framework called the “Innovation Ecosystem operation chain”, which emphasizes the close 
connection and synergistic effects of various stages in the Innovation process is established; Second, it develops 
a comprehensive evaluation index system termed as “the Innovation chain”, which consists of the Innovation 
research and development, the outcome promotion, and the application segment. By considering dynamic 
interactions within the system, it provides a novel perspective and method for assessing Innovation Ecosystem 
dynamic operational efficiency. Third, it employs the PVAR model to investigate the dynamic relationships and 
interactions between the Innovation Ecosystem dynamic operational efficiency of the Innovation Ecosystem 
and its decomposed variables in the Yellow River Basin. The importance of understanding and utilizing 
these inherent mechanisms in practice is emphasized, aiming to promote the sustainable development of the 
Innovation Ecosystem in the Yellow River Basin and the comprehensive revitalization of the regional economy 
through data-driven decision support. Overall, this study not only expands the theoretical understanding of the 
intrinsic driving mechanisms of the Innovation Ecosystem, but also provides a powerful analytical tool closely 
linked to practical applications. It provides valuable guidance for Innovation practices in the Yellow River Basin 
and beyond, enhancing the understanding and utilization of Innovation Ecosystem dynamics for sustainable 
development and regional economic growth.

Research design
Theoretical mechanism of evaluation index system
Based on economic circular theory, we constructed an Innovation Ecosystem that encompasses input-output 
dynamics (Table 2). The input system comprises three dimensions: “Innovation sources”, “Market environment” 
and “Consumer demand” (Table 3). The output system includes “Innovation patent achievements” and “industrial 
value-added benefits”, measured by the number of patents granted and industrial added value, respectively. As 
can be seen from Table  2, “Innovation sources” refers to the origin or foundation of Innovation, serving as 
the initial driving force for Innovation activities. It is primarily realized through the active participation of 
production entities (e.g., enterprises, research institutions) and investments in R&D expenditures. As the core 
force of Innovation, production entities, combined with sufficient financial support, constitute the starting point 

Stage Primary indicator Secondary indicator Unite Attribute Weight

Innovation resources
0.65546

Participation of production entities
0.51196

Number of regular higher education institutions Institutions + 0.09560

Full-time teachers in regular higher education institutions persons + 0.10895

Students in regular higher education institutions persons + 0.10710

Research and technical personnel 10,000 persons + 0.10852

Education personnel 10,000 persons + 0.02943

Number of enterprises above designated size Entities + 0.06236

Research and development fiscal expenditure
0.14350

Education expenditure 10,000 CNY + 0.03920

Science expenditure 10,000 CNY + 0.10430

Market environment0.22091

Market level
0.08270

Per capita GDP CNY + 0.03159

Average number of employees on duty 10,000 persons + 0.03983

Proportion of tertiary industry added value % + 0.01128

Marketization and internationalization level
0.13821

Marketization index % + 0.01132

Foreign investment utilization amount 10,000 USD + 0.12689

Consumer demand
0.12363

Public attention
0.06514

“Innovation” index -- + 0.03404

“Technology” index -- + 0.03110

Consumption capacity
0.05849

Resident consumption level CNY + 0.02818

Government consumption level CNY + 0.03031

Table 3.  Innovation ecosystem investment indicator system.

 

System name Dimension name

Input system

Innovation sources

Market environment

Consumer demand

Output system
Innovation patent achievements

Industrial value-added benefits

Table 2.  Indicator system for evaluation innovation ecosystem.
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of Innovation; “Market environment” represents the ecological and contextual conditions in which Innovation 
occurs, determining whether Innovation can proceed smoothly and sustainably. Key factors such as market 
conditions, marketization level, and internationalization degree provide essential ecological support for 
Innovation activities; and “Consumer demand” emphasizes external driving forces in Innovation, particularly 
the role of public attention and consumer capacity in promoting Innovation. These factors provide stronger 
momentum for Innovation activities and reflect the extent to which Innovation outcomes are successfully 
integrated into markets and society.

The theory of Innovation Ecosystem is inspired by ecological studies, which employ biological metaphors 
to illustrate the structure, dynamics, and interactions among participants. In particular, their connection to 
the external environment in Innovation activities. Correspondingly, the Innovation activities of the Innovation 
Ecosystem are divided into three stages (i.e., the Innovation sources, Market environment and Consumer 
demand), and the operational framework of which is illustrated in Fig. 1 for reference.

Research methods
Measurement of the innovation ecosystem dynamic operational efficiency of the innovation ecosystem
This study employs the DEA-Malmquist index to assess the Innovation Ecosystem dynamic operational efficiency 
of the Innovation Ecosystem in the Yellow River Basin. The Malmquist index method, grounded in Data 
Envelopment Analysis (DEA), is a non-parametric approach for evaluating dynamic performance. It captures 
the efficiency evolution of decision-making units over time39. Its fundamental principle is as follows: Assume 
there are n decision-making units over t production periods, with ( Xt+1

r , Y t+1
r ) representing the inputs and 

outputs for the rth decision-making unit in period t + 1. Let Dt
r( Xt+1

r , Y t+1
r ) denote the Innovation Ecosystem 

dynamic operational efficiency change of decision-making unit r in period t + 1 based on the production frontier 
at time t. The Malmquist total factor productivity index for the rth decision-making unit from time t to t + 1 is 
calculated as follows:

	
Mr =
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M t
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] 1
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A value of Mr>1 indicates an increase in Innovation Ecosystem dynamic operational efficiency from period t 
to t + 1, while a value less than 1 suggests a decrease. TFP can be further decomposed into two parts: EFF and 
TECH, with the formula:

	
Mr = EFF ∗ TECH =
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Herein, EFF > 1 implies an improvement in technical efficiency, whereas a value less than 1 indicates a decline. 
Similarly, TECH > 1 signifies technological advancement, while a value less than 1 indicates technological 
regression.

Spatial distribution of the innovation ecosystem dynamic operational efficiency
Kernel density estimation is a non-parametric statistical technique to estimate the probability density function 
of a set of data. By generating a continuous probability density curve, it visualizes the distribution of a random 
variable. This method effectively reveals the temporal evolution patterns of TFP, TECH, and EFF in the upper, 
middle, and downstream of the Yellow River Basin. The mathematical formulations are as follows:

Fig. 1.  Operational structure of the Innovation Ecosystem’s innovation activities.
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Where (f(y)) represents the density function of the random variable y, N and j denote the number of sample 
points and basin units, K(·) is the kernel function, and h is the bandwidth40. The kernel function value, (K(y; h)), 
decreases as the distance between the point to be estimated, y, and the sample points increases. This means that 
the probability density estimate of a point is larger when there are more sample points near it, and vice versa.

Measurement of Spatial differences
This study utilizes the Dagum Gini coefficient decomposition method41 to analyze the spatial heterogeneity 
of TFP, TECH, and EFF in the upper, middle, and downstream of the Yellow River Basin. This approach 
decomposes the overall difference into three components: intraregional differences, interregional differences, 
and trans-variation density. The mathematical expression for this decomposition is as follows:

	 G = Gw + Gnb + Gt� (5)
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Here, k represents the number of basins, nj( nh) denotes the number of cities within the jth(hth) basin, and 
mji( mhr) represents the Innovation Ecosystem dynamic operational efficiency of the Innovation Ecosystem 
in the ith(rth) city within the jth(hth) basin. µ  indicates the average Innovation Ecosystem dynamic operational 
efficiency of the Yellow River Basin. Gw  represents the contribution of within-basin differences, Gnb represents 
the contribution of between-basin differences, and Gt represents the contribution of super-dense density. 
pj= nj/n, sj= njµ j/n µ , where Gjj  represents the intra-group Gini coefficient for the jth city group, Gjh 
represents the interregional Gini coefficient between the jth and hth city groups, and Djh represents the relative 
impact of Innovation Ecosystem dynamic operational efficiency between the jth and hth city groups.

Measurement of the operational mechanism of innovation ecosystem dynamic operational efficiency
The Panel Vector Autoregression (PVAR) model is a multivariate time series analysis method based on the 
Vector Autoregression (VAR) model, which was firstly introduced by Holtz Eakin et al. (1988)42. This model 
integrates time series data from multiple variables into a unified panel dataset, facilitating the exploration of 
causal relationships and the prediction of future trends. Unlike conventional VAR models, the PVAR model treats 
all variables as endogenous, eliminating the need for predefined causal assumptions. It examines the influence 
of each variable and its lagged terms on other variables within the system. The PVAR model overcomes two 
significant limitations of traditional VAR models: the necessity for extensive time series data and the inability 
to account for individual heterogeneity. By utilizing panel data, it incorporates both individual and time effects, 
thereby enhancing its analytical rigor. in the present research, a PVAR model43 was constructed to investigate the 
dynamic relationships between TFP, TECH, and EFF, with the specific formula listed in below:

	
yi,t = β 0 +

∑ p

m=1
α myi,t−m + fi + di + µ i,t� (14)

The PVAR model captures the dynamic relationships between TFP, TECH, and EFF. In the model, the vector yi,t

represents the combination of TFP, TECH, and EFF, β 0 represents the intercept, α p represents the coefficient 
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matrix, yi,t−m represents the lag of all endogenous variables up to order m, fi and di represent the fixed effects 
and time effects respectively, and µ i,t represents the random disturbance term.

Index selection and data source
Following the research carried by Kang and Li44, this study utilizes the range transformation method to normalize 
individual indicator. The entropy method is subsequently applied to determine the weights of these indicators. 
The normalization values of corresponding tertiary indicators fare weighted and aggregated to compute the 
results for primary and secondary indicators, as summarized in Table 3.

This study evaluates the dynamic operational efficiency of the Innovation Ecosystem across 59 prefecture-
level cities within the Yellow River Basin. The data utilized in this research, such as: “Innovation” index and 
“Technology” index are sourced from the official website of Baidu Index Query(https://index.baidu.com); 
Marketization index, Foreign investment utilization amount are sourced from the EPS database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​e​
p​s​n​e​t​.​c​o​m​.​c​n​​​​​​)​.​ Number of regular higher education institutions, Full-time teachers in regular higher education 
institutions, Students in regular higher education institutions, Research and technical personnel, Education 
personnel, Number of enterprises above designated size, Average number of employees on duty, Marketization 
index, Foreign investment utilization amount, Resident consumption level, Government consumption level 
are sourced from the City Statistical Yearbooks; Per capita GDP, Education expenditure, Science expenditure, 
Proportion of tertiary industry added value are sourced from the Urban Statistical Bulletins. Where data for 
specific city indicators are missing, they are filled using either exponential smoothing or interpolation methods.

Empirical analysis
Measurement and analysis of the Innovation Ecosystem dynamic operational efficiency of 
the Innovation Ecosystem in cities along the Yellow River Basin.
Overview description
The Malmquist index method was adopted in this section to calculate TFP, TECH, and EFF of the Innovation 
Ecosystem in cities along the Yellow River Basin from 2009 to 2023. Owing to space constraints, only the 
efficiency values for the years 2009, 2014, 2019, and 2023 are presented here. The specific results are provided in 
Table 4; Fig. 2.

From 2009 to 2023, the TFP in the Yellow River Basin decreased from 0.945 to 0.898, representing a notable 
decline. During the same period, the TECH and EFF remained relative stability. This divergence indicates 
stagnant technological advancement and efficiency improvements have constrained productivity growth, 
reflecting reduced Innovation-driven production efficiency and suboptimal resource allocation. Meanwhile, the 
policymakers may need to prioritize both the resource management and technological Innovation strategies to 
drive sustainable regional development.

It is in 2009 that the effective rate of TFP, defined as the proportion of areas with efficiency values greater than 
1, stood at 37%. This metric revealed a distinct spatial efficiency gradient, with the upper basin demonstrating 
superior performance compared to the middle and lower reaches, reflecting significant regional disparities in 
Innovation capacity. By 2014, the effective rate had declined to 24%, indicating a substantial decline in the 
dynamic operational efficiency. This downward trend highlights the urgent need to optimize the Innovation 
environment and boost the vitality of Innovation efforts. The period from 2019 to 2023 witnessed the 
development pattern in the Yellow River Basin evolved. Initially, the middle reaches had efficiency advantages, 
whereas the upper and lower reaches struggled. Over time, the development became more balanced across the 
upper, middle, and lower reaches. However, this shift also highlighted ongoing challenges in resource allocation 
and technological Innovation. These findings suggest that achieving coordinated basin-wide development will 
require targeted policy interventions and structural reforms to strengthen Innovation Ecosystem and optimize 
resource distribution.

The effective rates of TECH in 2009 and 2014 remained consistently low at 14% and 15%, respectively. By 
2019, TECH in the upstream region had increased, reflecting significant progress in technological Innovation 
that positively impacted the region’s economic development and competitiveness. By 2023, TECH experienced 
basin-wide enhancement, indicating that Innovation entities actively developed new models and technologies to 
strengthen regional Innovation capabilities. This progress underscores the growth adaptability and technology 
absorption capacity of Innovation entities, as well as the positive impact of policy guidance in driving regional 
Innovation Ecosystem dynamic operational efficiency.

It should be noted that the effective rate of EFF’s Innovation Ecosystem dynamic operational efficiency in 
2009 reached 49%, demonstrating widespread improvement across all streams of the basin. Between 2014 and 
2019, this rate increased from 27 to 42%, accompanied by a spatial transformation from an “upper-middle 
stream dominance” pattern to a “middle-lower stream leadership” structure in the Yellow River Basin. This shift 

Basin

TFP TECH EFF

2009 2014 2019 2023 2009 2014 2019 2023 2009 2014 2019 2023

Yellow River Basin 0.945 1.155 1.084 0.898 0.91 1.14 1.057 0.946 1.039 1.013 1.026 0.949

Upper basin 1.092 1.010 0.964 0.941 0.907 0.937 1.023 1.090 1.206 1.079 0.951 0.870

Middle basin 0.897 1.054 1.025 0.892 0.884 0.959 0.970 1.085 1.024 1.101 1.075 0.826

Lower basin 0.966 0.860 0.929 0.915 0.937 0.918 0.927 1.033 1.033 0.937 1.007 0.886

Table 4.  Dynamic operational efficiency of the innovation ecosystem in the yellow river basin.
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revealed the growth from the upper and middle reaches to the middle and lower reaches, demonstrating the 
potential and advantages of the middle and lower reaches in Innovation and efficiency increase. By 2023, the 
development of EFF in the Yellow River Basin faced significant challenges. Inefficiencies were prevalent across 
the upstream, middle stream, and downstream. These issues highlighted deficiencies in management practices 
and institutional frameworks. This revealed a disconnection between technological Innovation and practical 
application within the basin. Optimizing the Innovation management system is now crucial. Enhancing technical 
efficiency is essential for promoting an efficient and sustainable development of the Innovation Ecosystem.

Temporal evolution patterns and spatial distribution characteristics of the dynamic operational efficiency of 
the Innovation Ecosystem in the Yellow River Basin
Kernel density functions visually depict the temporal evolution patterns and spatial distribution characteristics of 
variables. Therefore, this study utilizes Gaussian kernel density estimation to analyse the Innovation Ecosystem 
dynamic operational efficiency of the Innovation Ecosystem in the Yellow River Basin. Three-dimensional 
kernel density evolution maps of the overall Yellow River Basin (Fig. 3) and the upstream (Fig. 4), midstream 
(Fig. 5), and downstream (Fig. 6) of the Innovation Ecosystem dynamic operational efficiency of the Innovation 
Ecosystem were generated via MATLAB 2023.

From the perspective of TFP, the Yellow River Basin, including its upstream and midstream, displays a left-
skewed kernel density curve during the study period. Peak characteristics alternate between unimodal and 
bimodal patterns, indicating TFP decline and increasing polarization. However, the downstream region shows 
the opposite trend, with no significant polarization. The peak states of the Yellow River Basin and the upper, 

Fig. 2.  Spatial distribution map of Innovation Ecosystem Dynamic Operational Efficiency in Cities of 
the Yellow River Basin. (The map in Fig. 2 is created based on the standard map with the review number 
GS(2022)1873, downloaded from the Standard Map Service System of the Map Technology Review Center of 
the Ministry of Natural Resources of the People’s Republic of China. The base map has not been modified. The 
software used is ArcMap (version 10.8), which can be accessed at [https://www.esri.com/en-us/home].).
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middle, and downstream transitions from “low and flat” or “low and sharp” to “high and sharp”. This transition 
suggests reduced regional disparities and a convergence trend in TFP.

In terms of TECH, the Yellow River Basin and its middle to downstream regions display right-skewed kernel 
density curves, primarily unimodal. This indicates a rising trend in TECH with no significant polarization. All 
three regions exhibit similar shifts in peak distribution shifts, pointing to increasing regional disparities in TECH. 
The upstream, however, shows the opposite development trend with distinct peak states and characteristics. 
Specifically, the regional differences in TECH in the upstream initially narrow but later widen, accompanied by 
emerging polarization.

During the study period, both the entire basin and the downstream show a trend of rightward movement 
in the distribution of EFF. However, their peak states displayed spatially opposite evolutionary patterns. This 
indicates the increased EFF within these regions, their regional differences are developing in opposite directions. 
Specifically, the regional differences decreased across the basin but increased in the downstream. A polarization 
emerged gradually in the basin but declined downstream. Both the upstream and midstream experienced the 
declined EFF trend with polarization signs. The spatial distribution narrowed progressively in the upstream, 
while the midstream differences weakened initially before intensifying.

Regional difference evolution characteristics of the dynamic operational efficiency of the urban Innovation 
Ecosystem in the Yellow River Basin
This study applied the Dagum Gini coefficient decomposition method to examine the spatial difference evolution 
characteristics of the Innovation Ecosystem dynamic operational efficiency of the Innovation Ecosystem across 

Fig. 6.  Kernel density plot of TFP, TECH, and EFF in the downstream of the Yellow River Basin.

 

Fig. 5.  Kernel density plot of TFP, TECH, and EFF in the midstream of the Yellow River Basin.

 

Fig. 4.  Kernel density plot of TFP, TECH, and EFF in the upstream of the Yellow River Basin.

 

Fig. 3.  Kernel density plot of TFP, TECH, and EFF in the Yellow River Basin.
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the Yellow River Basin. Figures 7 and 8 present the temporal trends of the Gini coefficients (GTFP, GTECH, GEFF) 
for TFP, TECH, and EFF from 2009 to 2023. These figures compare patterns in the entire basin with those in its 
upper, middle, and downstream regions.

Analysis of intraregional disparities  Regional disparity analysis in Fig. 7 reveals three key patterns. Both the 
GTFP and GEFF exhibit a “decrease-increase-decrease” trend, with annualized rates of −3.532% and − 2.775%, 
respectively. This pattern suggests progressive narrowing of TFP and EFF gaps among basin cities. Conversely, 
GTECH shows fluctuating growth (0.0078% annual rate) from 2009 to 2023, indicating widening TECH dispar-
ities. Mean values further clarify these trends: GTFP (0.108) closely approximates GEFF (0.106), demonstrating 
aligned spatial divergence patterns for these metrics. Notably, GEFF changes emerge as the dominant factor in 
GTFP variation, while GTECH changes exert comparatively minor influence.

Figure 8 illustrates the evolution of intraregional disparities in TFP, TECH, and EFF within the Innovation 
Ecosystem of the Yellow River Basin from 2009 to 2023. The upstream region shows declining disparities, with 
GTFP and GEFF decreasing at annual average rates, respectively. Conversely, GTECH increases at an annualized 
rate of 0.028%, indicating widening TECH disparities. Mean disparity values reveal a clear hierarchy: GTFP 
(0.1297) > GEFF (0.1186) > GTECH (0.0692). The parallel trends observed between TFP and EFF suggest that 
GEFF fluctuations predominantly drive GTFP variations. This pattern highlights Innovation Ecosystem dynamic 
operational efficiency as a critical determinant of total factor productivity dynamics in the upstream region.

During the fourteen years, the midstream region of the Yellow River Basin showed decreasing disparities in 
TFP, TECH and EFF. The observed average annual decline rates reached − 0.02497%, −0.01537% and − 0.02374%, 
respectively. It indicates gradual improvement in balanced development across these three indicators. Mean 
values of GTFP, GTECH, and GEFF measured 0.0986,0.0644 and 0.1036 respectively. Disparity magnitudes followed 
the order: EFF > TFP > TECH. The parallel evolution of TFP and EFF metrics suggest that fluctuations in GEFF 
predominantly drive variations in GTFP.

The downstream region exhibited negative annual growth rates in green total factor productivity (GTFP) 
components, with mean declines of −0.02497% (TFP), −0.01537% (TECH), and − 0.02374% (EFF), signaling 
progressive convergence among these metrics. Notably, synchronicity emerged between intraregional GTFP and 
GEFF fluctuation patterns, revealing coordinated spatial dynamics of TFP and EFF. This covariation strongly 
implies GEFF variations constitute the principal driver of GTFP fluctuations in the basin’s lower reaches.

In conclusion, the TFP, TECH, and EFF in the upstream, midstream, and downstream of the Yellow River 
Basin exhibit spatial heterogeneity. Critically, metrics exhibit the spatial convergence, with EFF variations 
serving as the primary driver of TFP divergence dynamics. This causal asymmetry establishes a cascade-type 
interdependency between the two factors, wherein localized EFF fluctuations propagate disproportionately 

Fig. 8.  Changes in GTFP, GTECH and GEFF in the upper, middle and downstream of the Yellow River Basin.

 

Fig. 7.  Changes in GTFP, GTECH and GEFF.
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through the productivity system—a phenomenon analogous to a “butterfly effect” in regional economic-
environmental linkages.

Interregional difference analysis  Table 5 delineates divergence dynamics in TFP, TECH, and EFF of the across 
urban Innovation Ecosystem in the Yellow River Basin. It is from 2009 to 2023 that TFP’s annual average growth 
rate was negative across the regions, signaling a convergence in disparities. Spatial decomposition highlights 
elevated disparity coefficients between upper-middle (0.1262) and upper-lower (0.1296) strata, surpassing mid-
dle-lower differentials (0.1098). This tiered disparity structure underscores systemic productivity gaps isolating 
upstream regions, attributable to compounded deficits in technological Innovation infrastructure and resource 
mobility efficiency.

The annual average growth rates of TECH between the upper-middle and upper-lower streams were positive, 
indicating an expansion in their degrees of differentiation. Conversely, the degree of differentiation between 
the middle and lower reaches exhibited a narrowing trend. The dynamic evolution trends and mean values 
between the upper-middle, upper-lower, and middle-downstream are approximately equal, showing a similar 
convergence in TECH disparities between regions.

EFF disparities displayed accelerated convergence, with upper-middle, upper-lower, and middle-lower strata 
recording annualized decline rates of −3.741%, −3.879%, and − 1.505%, respectively. This indicates that the 
convergence rate between the upper-middle and upper-lower streams was faster than that between the middle-
lower streams. Analysis of the mean values revealed that the interregional differences between the upper-middle 
and upper-lower streams were greater than those between the middle-lower streams.

In summary, the degree of differentiation in TFP between the upper-middle and upper-lower reaches 
displayed a converging trend, whereas TECH demonstrated countervailing divergence. The differences in TFP 
and EFF were similar between the upper-middle and upper-lower reaches and were greater than those between 
the middle-lower streams. Crucially, the convergence rate between the upper-middle and upper-lower stream 
was more significant than that between the middle-lower streams.

Disparity sources and contribution analysis  As quantified in Table 6 and visualized in Fig. 9, the sources and 
contributions of regional differences in TFP, TECH, and EFF within the Innovation Ecosystem of the Yellow 
River Basin exhibits distinct drivers of regional productivity disparities. The hyper density (HD) contributed 
43.757% to overall TFP differences, making it the primary source of variation. intraregional differences (IN) 
contributed 31.428%, while interregional differences (BT) had an average contribution of 24.816%.

Significant variability was observed in the contribution rates of HD and BT during the study period. HD’s 
contribution to TECH differences fluctuated between 22% and 61%, whereas BT’s contribution ranged from 4 to 
48%. In contrast, IN’s contribution to TECH differences remained stable at approximately 32.831%.

With respect to the dynamic changes in contribution rates, BT had the largest average contribution to overall 
EFF differences but showed a decreasing trend. IN’s contribution to EFF differences exhibited minor changes, 
whereas HD’s contribution to EFF differences displayed an oscillating upwards trend. HD’s contribution 
decreased from 42.07% in 2009 to 32.492% in 2014, then increased to 33.081% in 2018, and finally reached 
43.871% in 2023.

It has been well identified that the HD is the principal factor affecting the fluctuations in TFP, TECH, and EFF 
differences in the Yellow River Basin. This observation indicates a high degree of overlap and interaction among 
the upper, middle, and down streams. IN maintained stable contributions (29–33%), demonstrating persistent 

Year

TFP TECH EFF

Upper-middle Upper-lower Middle-lower Upper-middle Upper-lower Middle-lower Upper-middle Upper-lower Middle-lower

2009 0.1293 0.1497 0.1081 0.0467 0.0548 0.0529 0.1231 0.1412 0.1051

2010 0.1518 0.1277 0.1233 0.0965 0.0909 0.0681 0.1198 0.1201 0.1547

2011 0.1009 0.1701 0.1545 0.0368 0.0453 0.0399 0.1747 0.0996 0.1530

2012 0.0784 0.0895 0.0743 0.0303 0.0420 0.0296 0.0659 0.0708 0.0848

2013 0.1145 0.1352 0.0875 0.0773 0.0761 0.0680 0.1306 0.1195 0.0884

2014 0.1414 0.1392 0.0968 0.0427 0.0379 0.0409 0.1363 0.1296 0.0762

2015 0.1146 0.1261 0.1312 0.0851 0.0778 0.0984 0.0832 0.1025 0.1093

2016 0.1646 0.1562 0.0913 0.0715 0.1006 0.0880 0.1359 0.1670 0.1039

2017 0.1970 0.1268 0.1464 0.0494 0.0521 0.0307 0.1795 0.1170 0.1388

2018 0.1709 0.1920 0.0993 0.0434 0.0420 0.0516 0.1705 0.1533 0.0839

2019 0.1477 0.0996 0.1191 0.0979 0.0795 0.0725 0.1012 0.1499 0.1112

2020 0.1288 0.1394 0.1523 0.1029 0.1364 0.0937 0.1146 0.1496 0.0912

2021 0.0972 0.1057 0.1137 0.1005 0.0843 0.1047 0.1357 0.1524 0.1197

2022 0.0931 0.1125 0.0775 0.1484 0.1840 0.1495 0.1116 0.1446 0.1367

2023 0.0627 0.0744 0.0721 0.0537 0.0551 0.0489 0.0695 0.0780 0.0838

Average 0.1262 0.1296 0.1098 0.0722 0.0772 0.0692 0.1235 0.1263 0.1094

Annual growth rate −0.047% −0.046% −0.027% 0.009% 0.0003% −0.005% −3.741% −3.879% −1.505%

Table 5.  Gini coefficient table of TFP, TECH, and EFF across regions.
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subregional Innovation inertia. Considering that the smallest impact of BT, reducing HD differences within 
the upper, middle, and lower regions is believed to be crucial to improve the Innovation Ecosystem dynamic 
operational efficiency of the Yellow River Basin.

Analysis of the formation mechanism of regional differences in the dynamic operation efficiency of the 
Innovation Ecosystem in the Yellow River Basin  To further explore the systemic inter-dependencies of the 
Innovation Ecosystem within the Yellow River Basin, it is important to understand that TECH and EFF are de-
rived from the decomposition of the TFP index, indicating a certain level of interdependence among them. The 
logical relationship among TFP, TECH, and EFF is depicted in Fig. 10. Given that the PVAR model allows each 
component to be an endogenous variable, the vector autoregression (PVAR) model was adopted in the present 
research to empirically test the interaction mechanisms among TFP, TECH, and EFF.

Assessing variable stationarity and Granger causality  To validate the PVAR model’s parameter estimation, sta-
tionarity testing was conducted with the application of five different methods—LLC, IPS, HT, ADF-Fisher, and 
PP-Fisher. These tests were systematically applied to TFP, TECH, and EFF across the upper, middle, and down-
stream reaches of the Yellow River Basin. As shown in Table 7, all variables satisfy the stationarity requirement 
at the 1% significance level across all five methods. This robust confirmation of data stationarity ensures the 
reliability of subsequent model estimations and statistical inferences.

To improve model specification and predictive performance, this study employs Granger causality test to 
examine the causal relationships between TFP, TECH, and EFF. The model framework incorporates optimal 
lag selection based on three established information criteria, such as the Bayesian information criterion (BIC), 
Akaike information criterion (AIC), and Hannan-Quinn information criterion (HQIC) for each reaches of the 
Yellow River Basin. The empirical results, including lag order selection and causality analysis, are systematically 
presented in Tables 8 and 9.

Fig. 9.  Changes in the contribution rates of TFP, TECH, and EFF in the Yellow River Basin.

 

Year

TFP TECH EFF

IN BT HD IN BT HD IN BT HD

2009 32.819 31.308 35.874 32.821 27.891 39.288 32.668 25.262 42.070

2010 33.865 3.749 62.386 30.762 22.450 46.788 32.944 6.630 60.426

2011 30.526 20.384 49.090 33.547 28.359 38.094 29.856 13.121 57.023

2012 34.264 9.980 55.756 35.117 36.318 28.565 32.284 23.557 44.159

2013 30.382 32.165 37.453 36.448 18.602 44.950 30.204 30.883 38.912

2014 28.862 43.338 27.801 33.129 27.204 39.667 29.603 37.906 32.492

2015 33.302 28.533 38.164 34.010 4.573 61.417 30.573 30.791 38.637

2016 32.038 42.650 25.312 29.056 48.801 22.143 31.584 26.394 42.022

2017 27.344 22.193 50.463 33.698 7.134 59.169 28.296 21.774 49.930

2018 26.504 36.552 36.944 33.069 11.627 55.304 25.666 41.253 33.081

2019 29.530 22.093 48.377 31.455 26.991 41.554 30.689 22.673 46.638

2020 35.007 6.838 58.155 30.213 45.704 24.083 31.190 35.192 33.619

2021 29.355 36.873 33.772 33.502 17.082 49.416 27.078 45.131 27.791

2022 32.146 20.769 47.085 33.099 21.246 45.655 33.102 32.731 34.166

2023 35.472 14.812 49.716 32.540 26.819 40.641 34.525 21.604 43.871

Average 31.428 24.816 43.757 32.831 24.720 42.449 30.684 27.660 41.656

Table 6.  Regional differences and contributions of TFP, TECH, and EFF in the innovation ecosystem of the 
yellow river basin.
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Table 8 presents the optimal lag order determined by three information criteria across regions. The analysis 
identifies a first-order lag for upstream regions, while midstream and downstream regions show second-order 
lags as optimal.

The Granger causality test results reveal varied interactions among TFP, TECH, and EFF across different 
basins. Upstream regions demonstrate no detectable Granger causality among the three variables (i.e., TFP, 
TECH, and EFF). In contrast, midstream region shows bidirectional Granger causality between TECH and EFF, 
with unidirectional causality from TFP to TECH. Downstream regions also show comprehensive bidirectional 
causality among TFP, TECH, and EFF.

PVAR model analysis of the operational efficiency of the Innovation Ecosystem in the Yellow River Ba-
sin  Because the absence of significant Granger causality relationships between TFP and TECH or EFF in the 

Region Lag order AIC BIC HQIC

Upper

first-order −1.6882* −0.808432* −1.33088*

second-order −0.445603 0.668077 0.006934

third-order 3.37149 4.74737 3.93058

Middle

first-order −0.688039 0.249693 −0.310501

second-order −1.66814* −0.540062* −1.21299*

third-order −1.62008 −0.276753 −1.07697

Lower

first-order −0.796922 0.19878 −0.401176

second-order −5.16243* −3.81814* −4.62492*

third-order −4.97341 −3.81465 −4.5115

Table 8.  Lag order determination. Notes: * represents the significance of the lag order.

 

Region Variable LLC test IPS test HT test ADF test PP test Result

Upper

TFP −4.8101*** −6.3934*** −0.2523*** 54.4748*** 143.1621*** Stable

TECH −5.0069*** −6.6653*** −0.1932*** 69.1529*** 133.1355*** Stable

EFF −6.3273*** −7.1513*** −0.3149*** 94.5792*** 216.6133*** Stable

Middle

TFP −5.5956*** −7.8824*** −0.1300*** 88.0878*** 229.5781*** Stable

TECH −3.5675*** −8.1129*** −0.1778*** 72.0931*** 202.9447*** Stable

EFF −6.0855*** −8.3965*** −0.2291*** 107.3478*** 250.8372*** Stable

Lower

TFP −5.9112*** −9.6986*** −0.1816*** 113.1249*** 322.5222*** Stable

TECH −7.4623*** −9.5422*** −0.1457*** 149.1068*** 319.7177*** Stable

EFF −4.0443*** −9.6315*** −0.1546*** 101.5222*** 338.8066*** Stable

Table 7.  Unit root test. Notes: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level 
respectively.

 

Fig. 10.  Logical relationship among TFP, TECH, and EFF.
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upstream, there are no significant interactions or mechanisms among TFP, TECH, and EFF in the upper region. 
Based on these findings the analysis focuses on the PVAR model results for the interactions among TFP, TECH, 
and EFF in the middle and downstream. The results are presented in Table 10.

The analysis identifies distinct temporal dynamics in regional productivity drivers. When TFP serves 
as the dependent variable, significant second-period lag effects from TECH and first-period lag effects from 
TFP, TECH, and EFF emerge in downstream regions (p < 0.10 and p < 0.05, respectively). These temporal 
dependencies are not observed in midstream regions. When TECH is the dependent variable, the development 
of TECH demonstrates consistent sensitivity to historical TFP levels. Both first and second-period lagged TFP 
significantly influence current TECH in midstream and downstream regions. Lagged TECH and EFF, significant 
at the 5% and 1% levels, respectively, positively influence the current TECH, TFP contributing further positive 
impacts. When EFF is the dependent variable, lagged TECH and EFF (two periods) in the midstream regions 
show weak negative correlations with current EFF, while TFP maintains a significant positive relationship. 
Downstream regions reveal more complex dynamics, with both first and second-period lagged TFP, TECH, and 
EFF demonstrating significant positive and negative effects on EFF improvement (p < 0.01).

In the midstream region, TFP, TECH, and EFF demonstrate self-enhancing mechanisms. Throughout 
the development of TFP, technological progress and economies of scale exhibit counteracting effects on TFP 
development. The advancement of TFP is driven by opposing forces: positive contributions from TECH and 
negative influences from EFF. Furthermore, TECH development promotes EFF improvement, whereas EFF 
growth exerts a suppressive effect on TECH, indicating that TECH plays a core strengthening role in the 
development of TFP.

Discussion
This study assesses the Innovation Ecosystem dynamic operational efficiency of the Innovation Ecosystem in the 
Yellow River Basin, aiming to identify strategies for boosting regional Innovation competitiveness and achieving 
equitable resource allocation. Using city-level data, we analyzed the Ecosystem’s efficiency, spatiotemporal 
patterns, regional disparities, and underlying mechanisms. Results show a fluctuating decline in the Innovation 
Ecosystem dynamic operational efficiency of the region’s Innovation Ecosystem. Compared to the Yangtze 
River Economic Belt, the Yellow River Basin lags in Innovation resource aggregation and allocation efficiency, 
with weaker Ecosystem synergy45. Specifically, the Yangtze River Economic Belt outperforms in transforming 
scientific achievements and fostering Innovation-driven entrepreneurship, supported by robust Innovation 
platforms and higher input-output efficiency46. Relative to the Beijing-Tianjin-Hebei region, the Yellow River 
Basin operates at a lower Innovation level47, with notable gaps in R&D investment intensity48. Meanwhile, the 
Guangdong-Hong Kong-Macao Greater Bay Area surpasses the Yellow River Basin in Innovation infrastructure 

Detection domain and variables

Middle reach Lower reach

TFP TECH EFF TFP TECH EFF

H_TFP L1 0.7943
(1.1261)

−1.4978**

(0.6567)
1.5784
(1.1658)

2.3307*

(1.3368)
−2.4872**

(1.1183)
3.9998***

(1.3000)

H_TECH L1 −0.7567
(1.1641)

1.4778**

(0.6793)
−1.5107
(1.2119)

−2.3757*

(1.2929)
2.3760**

(1.0537)
−3.9450***

(1.2603)

H_EFF L1 −0.8831
(1.2612)

1.7553**

(0.7315)
−1.8407
(1.3066)

−2.6444*

(1.5105)
2.7917**

(1.2838)
−4.4856***

(1.5063)

H_TFP L2 0.8482
(0.8637)

−1.2378**

(0.5250)
1.6556*

(0.9228)
2.0649
(1.5214)

−2.6677**

(1.2107)
3.8738***

(1.4996)

H_TECH L2 −1.2791
(0.9868)

1.4016**

(0.5446)
−2.1823**

(1.0222)
−2.0273**

(1.5207)
2.7803**

(1.2122)
−3.9238***

(1.5003)

H_EFF L2 −0.9153
(0.9663)

1.4553***

(0.5558)
−1.9051*

(1.0162)
−2.1669
(1.6105)

2.7166**

(1.2914)
−3.9709***

(1.6165)

Table 10.  Regression results of the PVAR model. Notes: The values in parentheses are the standard deviations.

 

Equation Excluded

Upper Middle Lower

Chi2 Prob Chi2 Prob Chi2 Prob

H_TFP H_TECH 0.1674 0.920 2.1343 0.344 9.6355 0.022**

H_TFP H_EFF 0.1586 0.924 0.8983 0.638 6.5641 0.087*

H_TECH H_TFP 0.4014 0.818 7.8278 0.020** 9.1069 0.028**

H_TECH H_EFF 0.4589 0.795 8.6266 0.013** 8.4286 0.038**

H_EFF H_TFP 0.2950 0.863 3.3470 0.188 9.6899 0.021**

H_EFF H_TECH 0.3031 0.859 4.6738 0.097** 10.584 0.014**

Table 9.  Granger causality test. Notes: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level 
respectively.
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and resource availability49, leveraging its internationalized, market-driven, and collaborative Ecosystem to 
achieve greater Innovation efficiency and vitality.

Although the Innovation Ecosystem dynamic operational efficiency of Innovation Ecosystem has been 
extensively discussed, limited research has been carried out in specific geographical regions, such as at the 
municipal level in the Yellow River Basin. Moreover, the existing literature predominantly focuses on static 
analyses of Innovation Ecosystem dynamic operational efficiency, which generally neglects the dynamic 
interactions that underpin these systems. This study addresses these gaps by introducing the DEA-Malmquist 
model to dynamically assess the Innovation Ecosystem dynamic operational efficiency of the Innovation 
Ecosystem in the Yellow River Basin. Different from previous research, this work expands the scope of 
Innovation efficiency measurement from a narrow “input-output” framework to a comprehensive “Innovation 
Ecosystem operation chain.” This chain spans the entire Innovation process, including innovation sources, 
market environment, consumer demand. Through kernel density estimation and the Gini coefficient, this 
study further reveals spatial patterns and regional disparities in Innovation Ecosystem dynamic operational 
efficiency. The application of the PVAR model deepens the understanding of the dynamic relationships among 
TFP, TECH, and EFF, as well as regional heterogeneity. By integrating these approaches, this study not only 
advances the theoretical understanding of Innovation Ecosystem but also provides actionable insights and policy 
recommendations for enhancing Innovation capabilities and promoting high-quality development of regional 
Innovation competitiveness in the Yellow River Basin.

It should also be noted that there are still some certain limitations of this research. The analysis of 59 cities in 
the Yellow River Basin may not fully capture the diverse characteristics of Innovation Ecosystem across China. A 
more extensive and representative dataset would be required for broader and deeper investigations. Additionally, 
this research did not thoroughly examine other potential factors influencing Innovation Ecosystem dynamic 
operational efficiency, such as social and cultural elements, shifts in policy environments, and external drivers 
like education, talent development, and digital infrastructure. Future studies should explore the relationships 
between these variables and the Innovation Ecosystem dynamic operational efficiency of Innovation Ecosystem 
to provide a more comprehensive understanding.

Conclusion and policy recommendations
In the present research, the Innovation Ecosystem dynamic operational efficiency of Innovation Ecosystem in 
59 cities within the Yellow River Basin from 2009 to 2023 was initially evaluated via the utilization of the DEA-
Malmquist model. Subsequently, the efficiency distributions, regional disparities, and operational mechanisms 
of these Ecosystems were further investigated with the application of the kernel density estimation, the Gini 
coefficient, as well as the PVAR model. This analysis yielded the following research findings:

(1) The Innovation Ecosystem dynamic operational efficiency of the Innovation Ecosystem in the Yellow River 
Basin within the study period exhibited a fluctuating decline, primarily driven by a decrease in technological 
efficiency. Spatial analysis revealed distinct regional patterns: the upstream and midstream regions displayed 
a left-skewed distribution with significant polarization, while the downstream region showed a right-skewed 
distribution with less polarization.

(2) The Gini coefficients for Innovation Ecosystem dynamic operational efficiency and technical efficiency 
in the Yellow River Basin’s Innovation Ecosystem shows convergence, whereas the coefficient for technological 
change increases. TFP and EFF exhibit spatial convergence across upstream, middle, and downstream regions. 
The convergence rates of TFP, TECH, and EFF were higher between upstream-midstream and upstream-
downstream regions compared to midstream-downstream regions. Hypervariable density emerged as a key 
factor influencing disparities in TFP, TECH, and EFF.

(3) Technical efficiency, technological change, and dynamic efficiency interacted with significant regional 
heterogeneity. In the upstream region, no significant relationships were observed among TFP, TECH, and 
EFF. The midstream region displays a self-reinforcing mechanism for TFP, TECH, and EFF, with mutual 
reinforcement between EFF and TECH. In the downstream region, TECH exhibited a strong self-reinforcing 
mechanism, whereas TFP and EFF exhibit self-weakening mechanisms.

On the basis of these research findings, the following policy recommendations are proposed:
(1) Efforts should be given to integrate advanced management methods and Innovation technologies to 

improve EFF, while simultaneously developing suitable application frameworks to maximize the potential of 
new technologies. This approach will drive the advancement of TECH and foster an organic synergy, resonance, 
and mutual reinforcement between TECH and EFF, ultimately promoting the growth of total factor productivity 
(TFP).

(2) Cities such as Qingdao, Dingxi, and Jining, which are near the efficiency frontier, should serve as 
benchmarks to inspire regions with lower dynamic operational efficiency. Conversely, cities like Ordos, Yantai, 
and Yulin, which exhibit weak technological progress efficiency, can improve by optimizing the application 
of Innovation technologies and scientific management methods, fostering positive interactions between the 
two. Meanwhile, cities such as Hebi, Luohe, and Shizuishan, where technical efficiency lags, can enhance 
their performance by scaling up industrial operations and implementing Innovation resource policies. These 
measures would significantly bolster the overall Innovation Ecosystem dynamic operational efficiency in the 
Yellow River Basin.

(3) Regions within the Yellow River Basin should capitalize on their unique advantages and engage 
in cooperative initiatives with neighboring areas. Establishing a comprehensive system for technological 
Innovation and application can enhance information-sharing mechanisms and improve the efficient utilization 
of Innovation ideas and resources. This approach optimizes resource allocation across regions, strengthens the 
Innovation mindset and motivation of key stakeholders, and fosters positive interactions between Innovation 
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entities and their environments. Such efforts will effectively drive the high-quality development of Innovation 
Ecosystem dynamic operational efficiency.

Data availability
The dataset used and/or analyzed in this study is uploaded as supplementary material or obtained from the cor-
responding author upon reasonable request.
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