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In real-world scenarios, adverse weather conditions can significantly degrade the performance of 
deep learning-based object detection models. Specifically, fog reduces visibility, complicating feature 
extraction and leading to detail loss, which impairs object localization and classification. Traditional 
approaches often apply image dehazing techniques before detection to enhance degraded images; 
however, these processed images often retain a rough appearance with a loss of detail. To address 
these challenges, we propose a novel network, DehazeSRNet(DSNet), which is designed to optimize 
feature transmission and restore lost image details. First, DSNet utilizes the dehaze fusion network 
(DFN) to learn dehazing features, applying differentiated processing weights to regions with light and 
dense fog. Second, to enhance feature transmission, DSNet introduces the MistClear Attention (MCA) 
module, which is based on a re-parameterized channel-shuffle attention mechanism and effectively 
optimizes feature information transfer and fusion. Finally, to restore image details, we design the 
hybrid pixel activation transformer (HPAT), which combines channel attention and window-based 
self-attention mechanisms to activate additional pixel regions. Experimental results on the Foggy 
Cityscapes, RTTS, DAWN, and rRain datasets demonstrate that DSNet significantly outperforms 
existing methods in accuracy and achieves exceptional real-time performance, reaching 78.1 frames 
per second (FPS), highlighting its potential for practical applications in dynamic environments. As 
a robust detection framework, DSNet offers theoretical insights and practical references for future 
research on object detection under adverse weather conditions.
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In recent years, object detection methods based on deep learning1–5 have demonstrated notable performance 
in various traffic scenarios. Currently, mainstream object detection algorithms are primarily benchmarked 
against standard datasets, such as MSCOCO6, PASCAL-VOC7, and Imagenet8. In real-world environments, 
images captured by cameras are frequently influenced by unavoidable environmental factors, such as fog, snow, 
and rain. These conditions can blur object contours in the images, significantly affecting the performance of 
detection systems.

The low visibility, image blur, and increased noise in foggy conditions present substantial challenges for object 
detection. Current solutions can be divided into three categories. The most common strategy is to preprocess the 
input image using established dehazing algorithms (such as AOD-Net9, FFA-Net10) before inputting it into the 
detection network. However, images processed in this way exhibit limited generalization capability in practical 
applications because the restored images remain unclear and may lose important details. An alternative approach 
is to directly train the detection model on degraded images. This strategy often relies on the feature extraction 
capability of the detection model. Several studies11–13, have optimized the entire model with a joint loss for 
restoration and detection. Moreover, several methods14,15 have enhanced detection performance by incorporating 
domain adaptation techniques, enabling models trained under normal weather conditions to transfer effectively 
to adverse conditions, such as rain and fog. However, this approach faces challenges in feature extraction, as well 
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as in the transmission and fusion of feature information. These difficulties result in increased computational 
complexity and reduced inference speed, making it less suitable for resource-constrained environments.

To address this challenge, we introduce the DehazeSRNet (DSNet) model, comprising three core modules. 
First, the Dehaze Fusion Network (DFN) module learns dehazing features by combining channel attention 
and pixel attention mechanisms. By assigning differentiated processing weights to thin and dense haze 
regions, the DFN module significantly enhances dehazing performance. Next, the MistClear Attention (MCA) 
module improves feature transmission and fusion efficiency. Leveraging channel shuffling and structurally 
re-parameterized convolutions, the MCA module effectively optimizes feature information transmission and 
fusion accuracy. As depicted in Fig. 4, the structurally re-parameterized convolution employs a multi-branch 
architecture during training, which is transformed into a single-branch structure during inference, streamlining 
the inference process. This reduction in computational complexity enhances inference speed, which is crucial 
for real-time object detection in foggy conditions. Finally, the HPAT module combines channel attention and 
window self-attention mechanisms to activate more pixels and recover lost image details. The window self-
attention mechanism applies adaptive weighting to local regions, focusing on critical areas to facilitate detail 
recovery and enhance object detection accuracy. As shown in Fig. 1, more details are retained after being 
processed by DSNet.

Our contributions can be summarized as follows:

•	 A novel DehazeSRNet (DSNet) model is introduced, integrating three innovative modules: the DFN, which 
employs channel and pixel attention mechanisms to optimize feature extraction by addressing uneven haze 
distribution; the MCA, which enhances feature fusion efficiency using channel-shuffling-based structural 
re-parameterized convolutions; and the HPAT, which combines channel attention and window self-attention 
mechanisms to strengthen cross-window feature interactions and recover image details.

•	 DSNet demonstrates exceptional performance on the Foggy Cityscapes dataset, achieving a highest detection 
precision of 37.8% mAP-a significant improvement over existing methods-while maintaining an inference 
speed of 78.1 FPS. Moreover, DSNet exhibits strong robustness and generalization capabilities on the RTTS 
dataset as well as on other adverse weather datasets, including DAWN and rRain.

•	 The model’s modular design and optimized computational efficiency highlight its practical application po-
tential, making DSNet particularly suitable for resource-constrained real-time scenarios, such as autonomous 
driving and intelligent surveillance under challenging adverse weather conditions.

The rest of this paper is organized as follows. In Sect. 2, we review the related work on dehazing methods for 
object detection and foggy day object detection. In Sect. 3, we present our proposed method in detail. In Sect. 4, 
we provide experimental results and analysis. Finally, in Sect. 5, we summarize our work.

Related work
Image dehazing
Image dehazing is an important research direction in the field of computer vision, aiming to enhance visibility by 
removing haze effects from images. In recent years, many researchers have proposed various methods to address 
this issue, which can be primarily categorized into traditional methods and deep learning-based approaches.

Prior-based dehazing methods aim to utilize well-validated priors during the dehazing process. Ju et al.16 and 
Wang et al.17, drawing upon the principles of hazy imaging , typically employ an atmospheric scattering model 
to simulate the image generation process. This model can be expressed as:

	 I(x) = J(x)t(x) + A(1 − t(x)),� (1)

where I(x) is the hazy image captured by the camera; J(x) is the clear image; A is the global atmospheric light; 
and t(x) represents the medium transmission. Therefore, the image dehazing process can be expressed as:

Fig. 1.  a shows the image processed by traditional dehazing methods, b presents the image processed by 
our proposed DSNet method. To provide a more intuitive comparison of the two methods, specific areas are 
highlighted with red boxes and enlarged in the images.
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J(x) = (I(x) − At(x))

t(x) + A,� (2)

According to Eq. (2), traditional methods can utilize prior knowledge for image dehazing. He et al.18 proposed 
the Dark Channel Prior, which relies on the observation that certain regions in natural outdoor images 
demonstrate extremely low pixel values in specific channels. Zhu et al.19 introduced color attenuation prior to 
effectively recovering depth information to estimate transmission. Although these methods have demonstrated 
effectiveness in image dehazing, their performance is often limited because manually designed priors may not 
generalize well across diverse hazy images.

Learning-based methods aim to leverage the powerful feature extraction capabilities of Convolutional Neural 
Networks (CNNs) in combination with large-scale paired data for image dehazing20. Ren et al.21 conducted 
pioneering research utilizing CNNs to tackle the haze removal challenge. Qin et al.10 proposed an end-to-
end Feature Fusion Attention Network (FFA-Net) to directly recover haze-free images, in which the Feature 
Attention (FA) module integrates channel attention and pixel attention mechanisms. Li et al.9 introduced the 
AOD-Net method for image dehazing utilizing CNNs. Chen et al.22 proposed a Detail Enhancement Attention 
Block (DEAB) comprising Detail Enhancement Convolution (DEConv) and Content-guided Attention (CGA) 
to enhance feature learning, thereby improving dehazing performance. Although these methods can improve 
image quality to some extent, they may inadequately emphasize detailed information, impacting dehazing 
performance.

Object detection in foggy weather
Object detection in hazy weather faces numerous challenges due to the decline in image quality. Haze can reduce 
visibility, blur object boundaries, and exacerbate scattering effects, thereby decreasing detection accuracy. In 
recent years, researchers have proposed various solutions through image enhancement techniques, domain 
adaptation, as well as models specifically tailored for object detection under hazy conditions. Liu et al.23 employed 
a Differentiable Image Processing (DIP) module to enhance hazy images prior to detection. Subsequently, 
Kalwar et al.24 designed a Gated Differentiable Image Processing (GDIP) module, achieving progressive image 
enhancement through a multi-stage guidance scheme. Zhang et al.11 introduced a CPA-Enhancer chain-of-
thought prompting mechanism, which adapts to unknown degradation conditions by incorporating a chain-
of-thought prompting mechanism for image enhancement. Wang et al.14 proposed the R-YOLO framework, 
consisting of an Image Quasi-Translation Network (QTNet) and a Feature Calibration Network (FCNet) to 
progressively adapt from clear weather domains to adverse weather conditions. To address domain adaptation for 
vehicle detection in heavy fog, Hu et al.15 introduced an algorithm called DAGL-Faster, which handles domain 
differences from three perspectives: local image level, global image level, and instance level. Additionally, it 
incorporates consistency regularization to facilitate simultaneous alignment at both image and instance levels, 
optimizing overall alignment effects. Zhang et al.25 introduced the MSFFA-YOLO network, which combines 
YOLOv7 with a multi-scale feature fusion attention mechanism to enhance object localization and classification 
accuracy in hazy conditions, while simultaneously improving image visibility via a recovery subnet. Zhong et al.26 
proposed DR-YOLO, integrating the atmospheric scattering model and co-occurrence relationship graph into 
an end-to-end detection framework. This approach enhances dehazing feature extraction and object detection 
performance through a recovery subnet and relationship reasoning module, while an adaptive feature fusion 
module further improves detection effectiveness. Wang et al.27 proposed RDMNet, a restoration-enhanced 
object detection network for adverse weather scenarios. It uses a dual-branch structure with a restoration branch 
and degradation modeling to capture multi-scale degradation representations, improving adaptability to various 
weather conditions. A multi-scale bidirectional feature fusion module and restoration-weight decay strategy 
enable collaborative optimization of detection and restoration tasks.

Although the aforementioned methods have made significant contributions to the field, they still tend to lose 
image details after processing. When the visual features extracted by the model are insufficiently influenced by 
haze, it can negatively impact the performance of the detector.

Methodology
The method proposed in this paper is DehazeSRNet (DSNet). In target detection under foggy conditions, 
challenges primarily stem from reduced visibility, which complicates feature extraction and results in the loss 
of image details. Therefore, our proposed DSNet consists of three components, as shown in Fig. 2: the Dehaze 
Fusion Network (DFN) facilitates the detector’s learning of dehazing features, followed by the MistClear Attention 
(MCA) module, which improves both the efficiency and accuracy of feature extraction. Lastly, the Hybrid Pixel 
Activation Transformer (HPAT) module further refines the image to restore lost details. The remainder of this 
section will provide a detailed overview of DFN, MCA, and HPAT.

Dehaze fusion network module
Hazy environments significantly impair image quality, with uneven distributions of thin and dense fog regions 
leading to varying degrees of detail loss across different areas. Traditional CNN-based image dehazing networks 
often treat channel and pixel features uniformly, disregarding the non-uniformity of haze distribution and 
lacking targeted optimization. To overcome this limitation, we propose the Dehaze Fusion Network (DFN) 
module, which incorporates Channel Attention and Pixel Attention mechanisms to enhance flexibility in 
processing diverse types of information. By focusing on pixels within dense fog regions and prioritizing critical 
channel information, the DFN module achieves targeted dehazing optimization. The Group Architecture of the 
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DFN module, illustrated in Fig. 3, highlights its advantages in effectively addressing the challenges posed by 
non-uniform haze distributions.

The Channel Attention (CA) module primarily focuses on the importance variations of features across 
different channels. First, the global spatial information of each channel is converted into a channel descriptor 
through a global average pooling operation:

	
Gc = hp(fc) = 1

E × F

E∑
i=1

F∑
j=1

Xc(i, j),� (3)

where Xc(i, j) represents the value of the c-th channel Xc at position (i, j), and hp denotes the global pooling 
function. After pooling, the feature map’s shape changes from C × E × F  to C × 1 × 1, effectively capturing 
the global information of each channel. Next, the channel descriptor undergoes two convolution layers, followed 
by ReLU and sigmoid activation functions to generate attention weights for each channel:

	 BAc = σ (Conv (δ (Conv (Gc)))) ,� (4)

where σ is the sigmoid activation function, and δ is the ReLU activation function. Finally, element-wise 
multiplication is performed between the input feature Fc and the channel attention weight BAc to obtain the 
weighted channel feature W ∗

c , which emphasizes the channel information in thick haze regions (Fig. 4):

	 W ∗
c = BAc ⊗ Wc.� (5)

The Pixel Attention (PA) module addresses the uneven distribution of haze in the image, ensuring that the 
network assigns higher weights to regions with thick haze and areas containing high-frequency information. 
To achieve this, the channel-weighted output W ∗ is fed into the PA module. The PA module processes this 
input through two convolution layers, followed by ReLU and sigmoid activation functions to generate pixel-level 
attention weights P A, changing the shape from C × H × W  to 1 × H × W :

Fig. 2.  The overall structure of DehazeSRNet (DSNet). First, the DFN module extracts dehazing features 
using the Group Architecture (G-n) to address uneven haze distribution. These features are then processed 
by the MCA module to enhance feature extraction and fusion. Finally, the HPAT module refines the image, 
progressively recovering lost details. Within the HPAT module, Residual Hybrid Attention Groups (RHAG) are 
employed to restore intricate image details, ensuring the model’s effectiveness in adverse weather conditions.
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	 P A = σ(Conv(δ(Conv(W ∗)))),� (6)

where σ is the sigmoid activation function, and δ is the ReLU activation function. Finally, element-wise 
multiplication is performed between W ∗ and P A to obtain the final output of the Future Attention (FA) 
module, denoted as W̃ :

	 W̃ = W ∗ ⊗ P A.� (7)

To visually demonstrate the effectiveness of the PA module, pixel-level feature weight maps are presented in Fig. 
5. As shown in Fig. 6, even in environments with high-concentration haze, the DFN module effectively removes 
the haze, preserving key scene details’ clarity and significantly enhancing the image’s visibility. Experimental 
results indicate that the DFN demonstrates strong adaptability to varying haze densities, maintaining consistent 
dehazing performance and generating clear, information-rich images across different haze levels.

Fig. 4.  The composition of the RCS module comprises: a the RepVGG structure utilized during the training 
phase and b the RepConv structure employed during model inference or deployment. In these structures, 
rectangles with black borders represent specific module operations performed on the tensors, while rectangles 
with gradient-filled shading indicate the properties of the tensors, with the width of the rectangle reflecting the 
number of channels in the tensor.

 

Fig. 3.  The group architecture structure within the DFN module.
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MistClear attention module
Although the DFN module effectively extracts both global and local feature information during dehazing, 
feature extraction in hazy conditions remains challenging, particularly in terms of inference speed. To overcome 
this limitation, we propose the MistClear Attention (MCA) module, which accelerates the inference process 
while enhancing feature fusion capabilities. The specific structure of the MCA module is depicted in Fig. 2, with 
its core component, the RCS module, illustrated in Fig. 4. Inspired by ShuffleNet, the RCS module integrates 
the strengths of RepVGG28 and RepConv. By utilizing channel shuffling-based structurally re-parameterized 
convolutions, the RCS module significantly increases the information density of feature extraction and 
substantially reduces inference time. Consequently, the MCA module plays a critical role in object detection 
under hazy conditions, enhancing both the computational efficiency and real-time performance of the network.

Under foggy conditions, image visibility is significantly reduced, and the loss of fine details complicates 
feature extraction, thereby posing greater challenges for object detection algorithms. Specifically, the low contrast 
and blurring induced by fog exacerbate inter-channel information redundancy within the image. Traditional 
convolutional neural networks (CNNs) often rely on local features from specific channels, overlooking potential 
information from other channels, which leads to inefficiency and an increased computational burden. To 
address this issue, the RCS module effectively mitigates inter-channel information redundancy through a 
channel-shuffling mechanism, optimizing both information flow and feature extraction efficiency. The channel-
shuffling process disrupts the original channel order and rearranges it, allowing features from different channels 
to be combined more effectively. This operation fosters broader interaction between channels, reducing the 

Fig. 6.  After processing through the DFN, images with varying fog densities are displayed. The first row 
presents foggy images from the Foggy Cityscapes dataset, each with simulated attenuation coefficients of 0.005, 
0.01, and 0.02, respectively. The second row displays the corresponding dehazed images.

 

Fig. 5.  PA attention map.
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accumulation of redundant features and thus enhancing feature extraction efficiency. Particularly under foggy 
conditions, this mechanism facilitates the extraction of more discriminative features from blurry images, 
ultimately improving object recognition accuracy.

The RCS module integrates the advantages of RepVGG/RepConv with ShuffleNet, leveraging structural 
reparameterization and channel-shuffling operations. During the training phase, it captures rich feature 
information through a multi-branch structure, and during inference, it is transformed into a simplified single-
branch structure, thereby reducing memory consumption and accelerating the inference process. This design 
is particularly well-suited for object detection tasks in low-visibility environments, such as foggy conditions, 
thereby enhancing the model’s overall performance.

Additionally, the MCA module enhances feature reuse and information flow between different channels 
by stacking multiple RCS modules across various layers of the network, all while maintaining low memory 
consumption and computational complexity. The MCA module also incorporates the concept of path 
aggregation, aligning feature maps of different sizes through a combination of upsampling and downsampling 
operations, thereby facilitating information exchange across multiple prediction layers and ensuring both fast 
and high-accuracy inference. To further optimize computational efficiency, the MCA module employs a multi-
scale feature fusion strategy. By reducing the number of detection heads and optimizing anchor generation, it 
alleviates the computational burden and significantly shortens the computation time of post-processing steps, 
such as Non-Maximum Suppression (NMS). Due to its superior computational efficiency and accuracy, the 
MCA module is particularly well-suited for resource-constrained real-time object detection tasks, such as 
autonomous driving and video surveillance systems, where high detection accuracy and speed are critical, even 
under foggy conditions.

Hybrid pixel activation transformer module
Although the DFN and MCA modules provide effective solutions for feature extraction and inference efficiency, 
dehazed images may still appear coarse, falling short of the requirements for downstream tasks such as object 
detection. To further enhance image detail quality, we propose the Hybrid Pixel Activation Transformer (HPAT) 
module, which refines and strengthens image features. The HPAT module integrates channel attention and 
self-attention mechanisms, incorporating the Integrated Overlap Attention Block (IOAB) to facilitate efficient 
interactions between adjacent window features. This design activates more pixels and enhances image details, 
thereby significantly improving object detection accuracy under hazy conditions. Collaborating seamlessly 
with the previously introduced DFN and MCA modules, the HPAT module forms part of a comprehensive 
framework, encompassing feature extraction, detail refinement, and recovery, ensuring robust support for 
efficient and accurate object detection in complex weather scenarios.

As illustrated in Fig. 7, the entire network comprises three components: shallow feature extraction, deep 
feature extraction, and image reconstruction. Each RHAG consists of multiple Dynamic Attention Integration 
Blocks (DAIB), one Integrated Overlap Attention Block (IOAB), and a 3 × 3 convolution layer with a residual 
connection. The reconstruction module utilizes a pixel shuffling method29 to upsample the fused features.

Fig. 7.  The overall architecture of the HPAT, along with the structures of the RHAG, DAIB, and IOAB.
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The DAIB enhances the network’s representational power by integrating a convolution block based on 
channel attention into the standard Transformer architecture. Notably, shifted window-based self-attention (SW-
MSA) is applied intermittently within consecutive DAIB layers, as demonstrated in30,31. To prevent conflicts 
between the Channel Attention Block (CAB) and Multi-Head Self-Attention (MSA) during optimization and 
visual representation, a small constant, α, is added to the CAB output. For a given input feature X , the DAIB 
computation process is as follows: Feature Preprocessing:

	 XE = LE(X),� (8)

Feature Fusion:

	 XF = (S)W -MSA(XE) + αCAB(XE) + X,� (9)

Output Calculation:

	 Y = MLP (LE(XE)) + XF ,� (10)

Here, XE  and XF  represent intermediate features, and Y  is the output of the DAIB. Specifically, each pixel is 
treated as an embedded token, and MLP refers to a multi-layer perceptron. In the self-attention module, the 
input feature X  has dimensions H × W × C  and is divided into HW

M2  local windows of size M × M . For the 
local window features XW ∈ RM2×C , the query, key, and value matrices are derived through linear mappings 
to compute Q, K, and V . The formula for calculating window self-attention is:

	
Attention(Q, K, V ) = SoftMax

(
QKT

√
d

+ B

)
V,� (11)

where d denotes the dimension of the query/key, and B represents the relative position encoding.
The CAB consists of two convolutional layers and a Channel Attention (CA) module. Transformers often 

require a large number of channels for token embedding, which can be computationally expensive. To address 
this, we reduce the number of channels in the convolutional layers using a constant β, which decreases the output 
channel count from C  to C

β . We then expand it back to C  channels in the second layer. Finally, the CA module is 
applied to recalibrate the channel features, improving object detection performance in foggy conditions.

The IOAB consists of an Overlapping Cross Attention (OCA) layer and a Multi-Layer Perceptron (MLP) 
layer, similar to the standard Swin Transformer block31. In the OCA, as shown in Fig. 8, we use different window 
sizes to partition the projected features. Specifically, for input features X , the queries, keys, and values XQ, XK , 
and XV ∈ RH×W ×C  are defined as follows: XQ is divided into HW

M2  non-overlapping windows of size M × M , 
while XK  and XV  are split into HW

M2  overlapping windows of size Mo × Mo, where

	 Mo = (1 + γ) × M,� (12)

and γ controls the overlap size. The overlapping partitioning can be viewed as a sliding window with kernel size 
Mo and stride M . To ensure consistent window sizes, zero padding of γM

2  is applied. The attention matrix is 
calculated using the same procedure as in Eq. (11), with a relative position bias B ∈ RM×Mo . Unlike Window 
Self-Attention (WSA), OCA computes keys and values over a broader range to capture more relevant information 
for the queries.

To comprehensively evaluate the dehazing performance of the proposed DSNet model in real-world 
environments, we conducted qualitative experiments on the RTTS dataset, which consists of real-world images 
captured under foggy conditions. As illustrated in Fig. 9, DSNet effectively removes haze from the input images, 
significantly enhancing visual clarity and visibility. The processed images reveal more useful information, 
restore important target regions previously obscured by fog, and preserve greater scene detail and structural 

Fig. 8.  The overlapping window partition for OCA.
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content. These results demonstrate that DSNet maintains excellent dehazing performance in practical scenarios, 
showcasing its robustness and potential for real-world applications.

Experiment and analysis
This section begins with an introduction to the datasets and evaluation metrics utilized in our experiments. 
Subsequently, we provide a detailed account of the implementation of DSNet on these datasets. Specifically, we 
assess our method on both synthetic and real-world datasets to compare its performance with that of state-of-
the-art (SOTA) methods. Additionally, an ablation study is conducted to further validate the effectiveness of our 
network.

Evaluation metrics and datasets
Evaluation metrics: To quantitatively evaluate the performance of the object detector, we utilize mean Average 
Precision (mAP), a widely recognized metric in object detection. mAP assesses the model’s overall performance in 
multi-class detection tasks by averaging precision values across different recall levels, providing a comprehensive 
measure of both accuracy and stability. Another critical evaluation metric is Frames Per Second (FPS), which 
indicates the number of images the model can process per second. This metric is particularly important in 
resource-constrained scenarios, as it reflects the real-time processing capability of the model. Additionally, 
detection speed is evaluated through inference time per image, where shorter inference times signify faster 
detection speeds.

Datasets: Given the limited availability of publicly accessible datasets for detecting adverse weather 
conditions in real-world scenarios, we selected the Foggy Cityscapes, RTTS, DAWN, rRain, and KITTI datasets 
to comprehensively evaluate and compare the performance of our proposed DSNet with other detection methods 
under challenging weather conditions. The Foggy Cityscapes dataset offers significant advantages in foggy 
environments, as it accurately simulates the effects of fog on images using a physics-based model, providing 
high-quality synthetic fog images that facilitate effective evaluation of the model’s performance in simulated 
foggy scenarios. The RTTS dataset further strengthens the practical relevance of the evaluation, as it includes 
foggy images captured from real-world traffic scenes, encompassing a variety of traffic-related objects such as 
motorcycles, bicycles, and pedestrians, thereby enabling the assessment of the model’s performance in complex 
and dynamic real-world traffic environments. Meanwhile, the DAWN and rRain datasets serve as test sets to 
validate the robustness of our method under diverse weather conditions. KITTI is a dataset for clear weather 
conditions. A detailed description of the datasets used is provided in Table 1.

The Foggy Cityscapes dataset38 is a synthetic dataset designed to simulate foggy environments with high 
realism. It integrates a physics-based optical model, accurately estimated depth maps, and precise atmospheric 

Fig. 9.  The images processed by the proposed DSNet model are presented, where the first row shows the 
original foggy images, and the second row displays the corresponding dehazed results.

 

Scientific Reports |        (2025) 15:21584 9| https://doi.org/10.1038/s41598-025-03902-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


light simulation to faithfully replicate the effects of fog on images. Each foggy image is generated by blending a 
clear image with depth maps sourced from the Cityscapes dataset using a rendering technique. Consequently, 
the annotations and data segmentation of the foggy images adhere to the standards of the original Cityscapes 
dataset. For our training process, we utilized the most challenging version of the foggy scenes, with a simulated 
attenuation coefficient set to β = 0.02, ensuring more representative foggy environmental conditions.

The Real-world Task-driven Testing Set (RTTS)39 is a subset of the extensive RESIDE dataset, comprising 
both synthetic and real-world hazy images. RTTS includes 4,322 annotated foggy images captured under 
real-world conditions. The dataset encompasses five primary categories of traffic-related objects: motorcycles, 
bicycles, pedestrians, buses, and cars. The majority of these images originate from authentic traffic and driving 
scenarios, showcasing a diverse range of scenes.

The DAWN dataset40 is a substantial image dataset focused on vehicle detection under adverse weather 
conditions, designed to provide researchers with a comprehensive and realistic platform for assessing and 
enhancing the performance of vehicle detection systems in challenging weather scenarios. This dataset comprises 
1,027 images captured in real traffic environments, encompassing four types of severe weather conditions: fog, 
snow, rain, and dust storms. Each image is annotated with professional object bounding boxes that clearly 
indicate the location and size of vehicles, thereby enabling researchers to utilize this dataset for training and 
testing vehicle detection algorithms.

The rRain dataset41 is a specially curated collection of real driving images captured under rainy conditions, 
comprising 1900 natural rain images taken at various locations and times. These images are annotated with five 
categories of traffic-related objects: pedestrians, bicycles, motorcycles, cars, and buses.

The KITTI dataset42, captured under clear weather conditions, contains real-world image data from various 
scenes, including urban, rural, and highway environments. Each image includes up to 15 vehicles and 30 
pedestrians, with varying degrees of occlusion and truncation. For our purposes, we have retained annotations 
for pedestrians, bicycles, cars, and trucks.

Implementation details
The training of DSNet was performed using input images with a resolution of 640 × 640 and a batch size of 
16, over a total of 100 epochs. To enhance training stability and mitigate overfitting, Mosaic augmentation was 
disabled during the final 10 epochs. The initial learning rate was set to 1 × 10−2, and a weight decay parameter 
of 5 × 10−4 was applied to prevent gradient explosion and promote efficient model convergence. We set the 
weighting factor in HPAT (α), the squeeze factor between two convolutions in CAB (β), and the overlapping 
ratio of OCA (γ) as 0.01, 3, and 0.5. During training, a Cosine Annealing Decay strategy was employed to 
dynamically adjust the learning rate, enabling finer adjustments with smaller learning rates in later stages, 
thereby improving the model’s generalization capability. The experiments were implemented using the PyTorch 
framework and conducted on an NVIDIA GeForce RTX 3090 GPU with 24 GB of memory.

Performance of detectors on fog weather
Considering that DSNet prioritizes model accuracy and real-time performance, and that YOLOv8 excels in 
both areas, we selected YOLOv8 as the backbone of our baseline model. To ensure fairness, our approach 
was compared with state-of-the-art models within the YOLO series. In the “Separate” method, we evaluated 
AODNet9, FFANet10, and CPAEnhancer11; in the “Domain Adaptation” category, we compared DAGL-Faster15, 
SWDA33, LODS34, and R-YOLO14; and for the “Union” method, we selected CF-YOLO35, CDNet36, DR-
YOLO26,RDMNet27 and TogetherNer37 as benchmarks for comparison.

Table 2 presents a performance comparison of our method against existing state-of-the-art techniques on the 
Foggy Cityspaces dataset. The table lists the names of the various methods, the types of training data utilized, 
and their mean Average Precision (mAP). The baseline method, YOLOv8, trained exclusively on foggy images, 
achieved a mAP of 32.4%. Subsequently, we report the performance of various separate and domain adaptation 
methods, with CPAEnhancer achieving a mAP of 36.2%. Within the domain adaptation category, DAGL-Faster 
demonstrated the best performance, achieving a mAP of 36.7%. In the union method, our proposed approach 
achieved a mAP of 37.8% using only foggy images for training, significantly outperforming other methods and 
demonstrating its effectiveness and superiority in foggy conditions.

To present performance results across various categories, Table 3 summarizes the quantitative outcomes 
of different object detection methods on the Foggy Cityspaces dataset. The table includes the mAP for each 
method across various target categories, including cars, motorcycles, buses, bicycles, pedestrians, cyclists, trains, 
and trucks. Our model demonstrates exceptional performance, achieving a precision of 0.451 in Bus detection 
and resulting in an overall mAP of 37.8%, significantly surpassing other methods. This outcome indicates that 
the proposed approach exhibits superior detection capabilities under complex foggy conditions, particularly 

Dataset Number of Images

Foggy Cityscapes 3450

RTTS 4322

DAWN 1027

rRain 1900

KITTI 7481

Table 1.  Number of images in each dataset.
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in critical target recognition, thereby further validating its effectiveness in practical applications. Examples of 
detection results from DSNet are presented in Fig. 10, illustrating the model’s ability to accurately identify nearby 
objects even when obscured by fog. Additionally, we conducted heatmap visualizations, which are detailed in 
Fig. 11.

Although the proposed DSNet model demonstrates exceptional performance under most weather conditions, 
it still exhibits certain limitations in extremely dense fog conditions. Specifically, Fig. 12a illustrates a case where 
a traffic sign was mistakenly identified as a car. Despite the absence of occlusion, the model may misclassify 
the traffic sign due to the visual similarities between traffic signs and cars under dense fog conditions. Fig. 12b 
and c further demonstrate the model’s performance degradation in heavy fog environments. In Fig. 12b , the 
motorcycle was not correctly detected, and in Fig. 12c , the pedestrian in the background was not detected. Dense 
fog significantly reduces image details, especially the visibility of distant objects, thereby impairing the model’s 
detection capability. These failure cases highlight the impact of reduced image quality on model performance 
in low-visibility conditions. While the model performs well under most scenarios, further optimization is 
needed to enhance its robustness and accuracy in extreme weather conditions, such as heavy fog, to improve its 
performance in complex environments.

To validate our model’s capability in real foggy scenes, we conducted experiments on the RTTS dataset, 
with results presented in Table 4. The table presents the precision for five object categories: buses, cars, bicycles, 
motorcycles, and pedestrians. Notably, our method exhibited exceptional performance across all categories, 
achieving a precision of 0.676 for the bicycle category and an overall mAP of 73.4%, thereby outperforming 
all comparison methods. This result indicates that the proposed approach provides enhanced accuracy and 
robustness for object detection in real foggy environments, thus making it suitable for practical applications.

Method Car Mcycle Bus Bicycle Person Rider Train Truck mAP(%)

YOLOv8 0.607 0.176 0.413 0.262 0.364 0.399 0.152 0.215 32.4

AODNet 0.578 0.173 0.442 0.261 0.327 0.378 0.269 0.196 32.8

FFANet 0.623 0.15 0.421 0.281 0.374 0.411 0.227 0.241 34.1

CPAEnhancer 0.621 0.198 0.423 0.324 0.38 0.424 0.262 0.26 36.2

DAGL-Faster 0.49 0.3 0.4 0.42 0.36 0.47 0.22 0.28 36.7

SWDA 0.44 0.3 0.36 0.35 0.3 0.42 0.33 0.25 34.3

LODS 0.48 0.33 0.39 0.37 0.34 0.45 0.19 0.27 35.8

R-YOLO 0.565 0.25 0.397 0.367 0.394 0.424 0.192 0.202 34.9

CF-YOLO 0.626 0.165 0.432 0.299 0.37 0.378 0.304 0.231 35.1

CDNet 0.626 0.195 0.424 0.338 0.377 0.399 0.306 0.177 35.5

DR-YOLO 0.64 0.151 0.411 0.31 0.39 0.414 0.235 0.211 34.5

RDMNet 0.51 0.05 0.25 0.16 0.23 0.2 0.01 0.08 18.5

TogetherNet 0.53 0.1 0.21 0.17 0.27 0.22 0.03 0.08 20.3

Ours 0.634 0.167 0.451 0.309 0.4 0.437 0.365 0.26 37.8

Table 3.  Performance evaluation for each object class on Foggy Cityscapes. Bold indicates the best 
performance.

 

Method Training for detection head mAP(%)

Baseline YOLOv832 Foggy images only 32.4

Separate

AODNet9 Foggy images only 32.8

FFANet10 Foggy images only 34.1

CPAEnhancer11 Foggy images only 36.2

 Domain adaptation

DAGL-faster15 Clean and foggy images 36.7

SWDA33 Clean and foggy images 34.3

LODS34 Clean and foggy images 35.8

R-YOLO14 Clean and foggy images 34.9

 Union

CF-YOLO35 Foggy images only 35.1

CDNet36 Foggy images only 35.5

DR-YOLO26 Foggy images only 34.5

RDMNet27 Clean and foggy images 18.5

TogetherNet37 Clean and foggy images 20.3

Ours Foggy images only 37.8

Table 2.  Comparison of performance with state-of-the-art methods on the Foggy Cityspaces dataset, with the 
best results in bold font.
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Performance of detectors in other adverse weather conditions
To validate the robustness of our method, we conducted experiments using the DAWN and rRain datasets. 
Table 5 presents the performance comparison derived from the DAWN dataset, encompassing average precision 
(mAP) results across various weather conditions, including fog, rain, sand, and snow. Our model demonstrates 
strong stability across diverse weather scenarios, achieving an overall mAP of 53.5% and surpassing existing 
methods such as YOLOv8 (50.6%) and AODNet (50.9%). Notably, our approach exhibits exceptional precision 
in sandy conditions, achieving a precision of 52.5%. These results highlight the adaptability and effectiveness 
of the proposed method in varied environments. Figure 13 illustrates the detection results of our DSNet on the 
DAWN dataset, along with visualizations of other comparative methods. Each row corresponds to a specific 
weather condition (fog, rain, sand, or snow), while each column represents a detection method. It is evident that 
our approach consistently delivers more accurate detection results across various adverse weather conditions.

Additionally, Table 6 presents a performance evaluation for each object category within the rRain dataset. Our 
model performs effectively across all categories, notably achieving a precision of 0.305 in the bicycle category, 
which contributes to an overall mAP of 30.7%, surpassing several comparative methods. These results further 
validate the superiority of our approach in complex and variable environments, underscoring its effectiveness in 
practical application scenarios.

Fig. 11.  Visualization of feature maps for DSNet based on the Foggy Cityspaces dataset. The feature maps 
exhibit stronger color distributions and finer localization, indicating enhanced target detection accuracy.

 

Fig. 10.  We visualize the detection results of our DSNet on the Foggy Cityspaces dataset and compare them 
with some other methods.
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DSNet aims to enhance object detection performance, demonstrating exceptional results not only in foggy 
conditions but also in other adverse weather scenarios, such as rain. This success can be attributed to its modular 
architecture, which integrates the MCA, DFN, and HPAT modules, thereby enhancing the model’s robustness 
and adaptability. The DFN module effectively extracts information from diverse environmental backgrounds 
through multi-scale feature fusion. Meanwhile, the HPAT module employs channel attention and window 
self-attention mechanisms to activate more pixel regions, enhancing feature interaction and improving the 
recognition of critical features obscured by adverse conditions. Furthermore, the MCA module optimizes feature 
transfer and fusion, significantly enhancing feature extraction efficiency. By training under various weather 
conditions, DSNet learns a broader range of features and patterns, thereby strengthening its adaptability in 
high-noise or low-contrast environments. The model’s design also facilitates seamless integration with existing 

Method Fog Rain Sand Snow All

YOLOv8 59.2 46.0 49.9 54.1 50.6

AODNet 59.3 47.7 48.6 57.1 50.9

FFANet 61.5 49.9 49.6 54.1 51.7

CPAEnhancer 61.3 50.1 48.8 53.9 51.3

CDNet 63.6 49.0 46.9 70.9 51.5

CF-YOLO 62.9 48.1 47.2 74.3 51.8

DR-YOLO 62.2 54.4 48.9 72.6 52.1

RDMNet 50 44 32.6 50 36.1

TogetherNet 45.6 45.9 27 51.9 31.9

Ours 63.3 51.3 52.5 72.1 53.5

Table 5.  Performance comparison based on the DAWN dataset. All indicates the combined map value. Bold 
indicates the best performance.

 

Method Bus Car Bicycle Mcycle Person mAP(%)

YOLOv8 0.604 0.837 0.616 0.676 0.780 70.3

AODNet 0.616 0.828 0.579 0.683 0.775 69.6

FFANet 0.621 0.840 0.595 0.679 0.783 70.3

CPAEnhancer 0.602 0.843 0.652 0.687 0.786 71.4

CDNet 0.614 0.833 0.626 0.678 0.780 70.6

CF-YOLO 0.619 0.849 0.631 0.697 0.787 71.6

DR-YOLO 0.614 0.856 0.622 0.721 0.808 72.4

RDMNet 0.46 0.75 0.28 0.47 0.69 53

TogetherNet 0.47 0.75 0.26 0.48 0.69 52.9

Ours 0.643 0.855 0.676 0.702 0.792 73.4

Table 4.  Performance evaluation for each object class on RTTS. Bold indicates the best performance.

 

Fig. 12.  Our method exhibits cases of false positives and false negatives.
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detection algorithms, ensuring real-time performance, even under resource constraints. Collectively, these 
factors contribute to the enhanced object detection capabilities of DSNet across diverse weather conditions.

Performance of detectors in clear weather
To evaluate the performance of DSNet under clear weather conditions, we conducted experiments on the KITTI 
dataset, with the results presented in Table 7. It can be observed that most compared methods experience a 

Method Bus Car Bicycle Motorcycle Person mAP(%)

YOLOv8 0.198 0.650 0.228 0.121 0.233 28.6

AODNet 0.213 0.625 0.252 0.107 0.223 28.4

FFANet 0.246 0.647 0.234 0.108 0.225 29.2

CPAEnhancer 0.216 0.640 0.276 0.073 0.230 28.7

CDNet 0.190 0.655 0.214 0.162 0.218 28.8

CF-YOLO 0.187 0.684 0.249 0.097 0.230 28.9

DR-YOLO 0.229 0.670 0.196 0.108 0.239 28.8

RDMNet 0.151 0.546 0.227 0.086 0.159 23.4

TogetherNet 0.125 0.540 0.212 0.047 0.123 20.9

Ours 0.239 0.663 0.305 0.107 0.222 30.7

Table 6.  Performance evaluation for each object class on rRain. Bold indicates the best performance.

 

Fig. 13.  The detection results of our DSNet on the DAWN dataset, along with visualizations of some 
comparative methods, are presented below.
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performance drop under clear conditions compared to the baseline. In contrast, only CF-YOLO and our 
proposed method show improvements. Notably, DSNet achieves the highest mAP across multiple categories, 
reaching an overall mAP of 94.4%, outperforming all other models. These results demonstrate that DSNet not 
only maintains robust performance in adverse weather conditions but also exhibits excellent detection capability 
under clear weather scenarios.

Ablation study
In this section, we conducted ablation experiments on the Foggy Cityspaces dataset to thoroughly evaluate the 
contributions of each module in DSNet. The experimental results are summarized in Table 8, illustrating the mAP 
performance of the model under various module combinations. The baseline model achieved a mAP of 32.4%. 
Following the introduction of the DFN module, the mAP increased to 34.1%, demonstrating its effectiveness in 
learning dehazing features. The further addition of the MCA module resulted in an mAP of 34.9%, underscoring 
its critical role in optimizing feature transfer. Upon integrating the HPAT module, the model’s performance 
significantly improved, as HPAT further refines the image. In version V4, the mAP rose to 36.4%, while the final 
version V5, which consolidates all modules, achieved a mAP of 37.8%, demonstrating the significant effects of 
module synergy. These results indicate that each module positively influences object detection performance at 
various levels, particularly under adverse weather conditions, where their combination substantially enhances 
the model’s detection capability. The ablation study not only validates the effectiveness of our model design but 
also offers important theoretical support for future research.

To evaluate the contribution of CA and PA to the model’s performance, we conducted an ablation study on 
the DFN module, with the results presented in Table 9. When both CA and PA are utilized simultaneously, the 
model achieves the highest mAP. This outcome demonstrates that combining these two attention mechanisms 
within the DFN module effectively learns and optimizes dehazing features, thereby significantly enhancing the 
model’s performance.

To further validate the advantages of the MCA module in feature transmission, fusion, and inference speed, 
as shown in Table 10, the inclusion of the MCA module leads to a significant increase in FPS, from 44.6 to 78.1. 
This improvement demonstrates that the MCA module not only optimizes computational efficiency but also 
accelerates the inference process, thereby enhancing model performance. Furthermore, detection accuracy is 
also improved, indicating that the MCA module plays a crucial role in enhancing feature fusion and information 

Module mAP (%)

PA 36.0

CA 36.7

PA+CA 37.8

Table 9.  Details ablation study of the DFN module. Bold indicates the best performance.

 

Module V0 V1 V2 V3 V4 V5

Baseline ✓ ✓ ✓ ✓ ✓ ✓
DFN ✓ ✓ ✓ ✓
MCA ✓ ✓ ✓
HPAT ✓ ✓ ✓
mAP(%) 32.4 34.1 34.9 35.9 36.4 37.8

Table 8.  Ablation study results on the Foggy Cityspaces dataset.

 

Method Person Bicycle Car Truck mAP(%)

YOLOv8 0.854 0.943 0.98 0.991 94.2

AODNet 0.853 0.94 0.979 0.987 94

FFANet 0.851 0.924 0.981 0.99 93.7

CPAEnhancer 0.86 0.938 0.978 0.988 94.1

CDNet 0.843 0.942 0.978 0.989 93.8

CF-YOLO 0.88 0.925 0.977 0.989 94.3

DR-YOLO 0.819 0.904 0.966 0.987 91.9

RDMNet 0.71 0.83 0.96 0.98 87.1

TogetherNet 0.68 0.85 0.95 0.968 86.2

Ours 0.865 0.938 0.983 0.991 94.4

Table 7.  Performance evaluation for each object class on KITTI. Bold indicates the best performance.
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flow, enabling the model to achieve faster processing while maintaining or even boosting detection performance. 
These results provide compelling evidence of the importance of the MCA module for real-time object detection 
tasks, particularly in foggy environments.

To validate the effectiveness of the Channel Shuffle operation, we designed several alternative channel 
rearrangement strategies for comparative experiments. Specifically, Channel Reverse rearranges channels by 
completely reversing their order; Channel Random generates a fully random channel arrangement for each input 
image; and Channel Interleave adopts a fixed-interval alternating strategy to interleave channels. In contrast, 
Channel Shuffle employs a grouped shuffling approach that reorganizes and interweaves channels, enabling 
more efficient feature recombination and fusion. As shown in Table 11, Channel Shuffle achieves the highest 
mAP and the FPS among all methods. These results demonstrate that Channel Shuffle effectively facilitates inter-
channel information interaction, significantly reduces redundant feature accumulation, and enhances feature 
extraction efficiency, particularly under hazy conditions.

In the IOAB module, we introduced a constant γ to regulate the degree of overlap in the cross-attention 
mechanism. To examine the influence of different overlap ratios on image detail recovery, we evaluated 
model performance using γ values ranging from 0 to 0.75, as presented in Table 12. Notably, when γ = 0, the 
module reduces to a standard Transformer block. Experimental results reveal that the model achieves optimal 
performance at γ = 0.5. However, when γ is set to 0.25 or 0.75, the model’s performance either stagnates or 
declines. This observation suggests that an inappropriate overlap ratio may weaken feature interactions between 
adjacent windows, adversely impacting the recovery of image details.

Efficiency analysis
Table 13 compares the real-time performance of DSNet with that of other methods. DSNet achieved a frame 
rate of approximately 78.1 frames per second (FPS) on an RTX 3090 GPU. Although DSNet did not attain the 
highest frame rate, it maintained commendable real-time performance while achieving the best object detection 
mAP. This indicates that DSNet not only retains robust real-time capabilities in dynamic environments but also 
prioritizes detection accuracy, making it an ideal choice for applications that require a combination of efficiency 
and precision. These results underscore the effectiveness of DSNet in delivering reliable performance in practical 
applications, particularly in scenarios where timely decision-making is crucial.

Conclusion
In this study, we propose DSNet, an innovative model specifically designed for object detection under adverse 
weather conditions. DSNet efficiently extracts dehazing features through the DFN module, optimizes feature 
transmission and fusion with the MCA module, and restores image details using the HPAT module, thereby 
significantly improving object detection accuracy in foggy environments. Experimental results demonstrate 
that DSNet outperforms existing methods across multiple datasets, including Foggy Cityscapes, RTTS, DAWN, 
rRain, and KITTI. particularly under low-visibility foggy conditions, where its detection accuracy surpasses 
that of current approaches. This paper offers a detailed introduction to the design of DSNet and validates its 
superior performance through comparative experiments with SOTA methods, ablation studies, and visualization 
analyses. The design of DSNet demonstrates significant potential for practical applications, particularly in 
autonomous driving and intelligent video surveillance. In autonomous driving scenarios, DSNet restores image 
details through the HPAT module, reducing false and missed detections caused by impaired visibility, thereby 

γ 0 0.25 0.5 0.75

mAP (%) 36.6 35.9 37.8 37.0

Table 12.  Ablation study on the overlapping ratio of IOAB. Bold indicates the best performance.

 

Module mAP(%) Inference time (s) FPS

Channel interleave 36.3 13.3 75.1

Channel random 36.6 13.5 74.1

Channel reverse 37 15.3 65.4

Channel shuffle 37.8 12.8 78.1

Table 11.  Performance comparison of different channel operations. Bold indicates the best performance.

 

Module Inference Time (s) FPS mAP (%)

Without MCA 0.0224 44.6 35.9

With MCA 0.0128 78.1 37.8

Table 10.  Ablation study on the impact of mca module in Foggy Cityscapes dataset. Bold indicates the best 
performance.
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significantly improving pedestrian detection accuracy and safety. For instance, in dense fog, DSNet ensures that 
the vehicle system can accurately detect pedestrians and other obstacles at a distance, providing more reliable 
support for autonomous driving. Furthermore, DSNet’s application in video surveillance systems demonstrates 
robust real-time performance. With the optimization provided by the MCA module, DSNet delivers clear video 
images even in adverse weather, ensuring timely responses to potential threats. Future work will focus on further 
optimizing the DSNet model to enhance its adaptability to other complex weather conditions, such as rain and 
snow, and exploring its potential across a broader range of real-time applications. This will not only advance 
technology in autonomous driving and intelligent surveillance but also open new avenues for object detection 
research under adverse weather conditions.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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