Table 3 Performance evaluation of rank aggregation feature ensemble feature selection with different classifiers.
From: Enhancing blockchain transaction classification with ensemble learning approaches
Dataset | Classifiers | Acy | Pre | Rec | F-1 | Spe | BAcy |
---|---|---|---|---|---|---|---|
D1 | SVM | 93.10 | 96.23 | 92.57 | 94.36 | 93.97 | 93.27 |
DT | 92.76 | 95.87 | 92.37 | 94.09 | 93.42 | 92.89 | |
KNN | 86.98 | 89.24 | 88.60 | 88.92 | 84.63 | 86.62 | |
LR | 87.90 | 91.94 | 88.58 | 90.23 | 86.74 | 87.66 | |
RF | 90.83 | 93.93 | 90.98 | 92.43 | 90.58 | 90.78 | |
ELM | 91.97 | 95.50 | 91.74 | 93.58 | 92.36 | 92.05 | |
GBoost | 92.64 | 96.44 | 92.15 | 94.25 | 93.58 | 92.86 | |
XGBoost | 93.44 | 95.38 | 93.78 | 94.58 | 92.90 | 93.34 | |
AdaBoost | 92.66 | 95.87 | 92.21 | 94.00 | 93.40 | 92.80 | |
D2 | SVM | 91.16 | 91.66 | 93.26 | 92.45 | 88.24 | 90.75 |
DT | 90.75 | 92.64 | 90.98 | 91.80 | 90.45 | 90.72 | |
KNN | 83.99 | 86.43 | 85.27 | 85.84 | 82.31 | 83.79 | |
LR | 85.82 | 90.17 | 85.83 | 87.95 | 85.81 | 85.82 | |
RF | 92.33 | 93.60 | 92.84 | 93.22 | 91.65 | 92.25 | |
ELM | 92.12 | 93.05 | 93.29 | 93.17 | 90.54 | 91.92 | |
GBoost | 91.97 | 93.46 | 93.15 | 93.31 | 90.20 | 91.68 | |
XGBoost | 92.02 | 94.17 | 92.68 | 93.42 | 90.98 | 91.83 | |
AdaBoost | 92.23 | 93.93 | 93.05 | 93.49 | 90.99 | 92.02 | |
D3 | SVM | 92.40 | 95.88 | 93.98 | 94.92 | 87.50 | 90.74 |
DT | 92.30 | 95.54 | 94.14 | 94.84 | 86.75 | 90.44 | |
KNN | 91.45 | 95.24 | 93.27 | 94.24 | 85.97 | 89.62 | |
LR | 90.50 | 95.40 | 92.20 | 93.77 | 84.63 | 88.42 | |
RF | 92.50 | 95.87 | 94.09 | 94.97 | 87.65 | 90.87 | |
ELM | 92.20 | 95.17 | 94.41 | 94.79 | 85.54 | 89.97 | |
GBoost | 92.45 | 95.89 | 94.35 | 95.11 | 85.75 | 90.05 | |
XGBoost | 92.95 | 96.13 | 94.84 | 95.48 | 86.01 | 90.43 | |
AdaBoost | 93.15 | 96.18 | 95.02 | 95.60 | 86.44 | 90.73 |