Table 3 Performance evaluation of rank aggregation feature ensemble feature selection with different classifiers.

From: Enhancing blockchain transaction classification with ensemble learning approaches

Dataset

Classifiers

Acy

Pre

Rec

F-1

Spe

BAcy

D1

SVM

93.10

96.23

92.57

94.36

93.97

93.27

DT

92.76

95.87

92.37

94.09

93.42

92.89

KNN

86.98

89.24

88.60

88.92

84.63

86.62

LR

87.90

91.94

88.58

90.23

86.74

87.66

RF

90.83

93.93

90.98

92.43

90.58

90.78

ELM

91.97

95.50

91.74

93.58

92.36

92.05

GBoost

92.64

96.44

92.15

94.25

93.58

92.86

XGBoost

93.44

95.38

93.78

94.58

92.90

93.34

AdaBoost

92.66

95.87

92.21

94.00

93.40

92.80

D2

SVM

91.16

91.66

93.26

92.45

88.24

90.75

DT

90.75

92.64

90.98

91.80

90.45

90.72

KNN

83.99

86.43

85.27

85.84

82.31

83.79

LR

85.82

90.17

85.83

87.95

85.81

85.82

RF

92.33

93.60

92.84

93.22

91.65

92.25

ELM

92.12

93.05

93.29

93.17

90.54

91.92

GBoost

91.97

93.46

93.15

93.31

90.20

91.68

XGBoost

92.02

94.17

92.68

93.42

90.98

91.83

AdaBoost

92.23

93.93

93.05

93.49

90.99

92.02

D3

SVM

92.40

95.88

93.98

94.92

87.50

90.74

DT

92.30

95.54

94.14

94.84

86.75

90.44

KNN

91.45

95.24

93.27

94.24

85.97

89.62

LR

90.50

95.40

92.20

93.77

84.63

88.42

RF

92.50

95.87

94.09

94.97

87.65

90.87

ELM

92.20

95.17

94.41

94.79

85.54

89.97

GBoost

92.45

95.89

94.35

95.11

85.75

90.05

XGBoost

92.95

96.13

94.84

95.48

86.01

90.43

AdaBoost

93.15

96.18

95.02

95.60

86.44

90.73