Table 4 Sorption isotherm models for MB uptake by AC(H).
From: Statistical modeling of mutagenic azo dye adsorption on bagasse activated carbon
Isotherm model | Linear form | Non-linear form | Parameters | Refs. |
---|---|---|---|---|
Langmuir | \(\frac{{C_{e} }}{{q_{e} }} = \frac{1}{{q_{\max } b}} + \frac{{C_{e} }}{{q_{\max } }}\) \(R_{L} = 1/\left( {1 + bC_{0} } \right)\) \(R_{L}\) > 1 (unfavorable adsorption) \(R_{L}\) = 1 (linear adsorption) \(0 < R_{L}\) < 1 (favorable adsorption) \(R_{L}\) = 0 (irreversible adsorption) | \({\text{q}}_{{\text{e}}} = \frac{{{\text{q}}_{\max } {\text{b C}}_{{\text{e}}} }}{{1 + {\text{b C}}_{{\text{e}}} }}\) | Ce (mg/L): equilibrium concentration of the residual MB in the solution qe (mg/g): removed amount of MB at equilibrium qmax (mg/g): maximum adsorption capacity b (L/mg): Langmuir constant C0: Initial MB concentration RL: Equilibrium parameter of Langmuir equation | Langmuir107 |
Weber and Chakravorti39 | ||||
Freundlich | \(\log q_{e\,} = \,\,\log k_{F} + \,\frac{1}{n}\,\log \,C_{e}\) | \({\text{q}}_{{\text{e}}} { } = {\text{KF}}\left( {{\text{C}}_{{\text{e}}} 1/{\text{n}}} \right)\) | Ce (mg/L): equilibrium concentration of the residual MB in the solution qe (mg/g): removed amount of MB at equilibrium kF (mg/g): MB adsorption capacity n: heterogeneity factor | Freundlich40 |
Temkin | \({\text{q}}_{{\text{e}}} = {\text{B}}\ln {\text{A}} + {\text{B}}\ln {\text{C}}_{{\text{e}}}\) \(B = \,\,RT/b\) | \({\text{q}}_{{\text{e}}} { } = {\text{B ln}}\left( {{\text{AC}}_{{\text{e}}} } \right)\) \(B = \,\,RT/b\) | A (L/g): Temkin isotherm constant (the equilibrium binding constant corresponding to the maximum binding energy) B (J/mol): Temkin constant related to heat of sorption b: Temkin isotherm constant (slope) R: The gas constant (8.314 J/mol K) T : the absolute temperature at 298 K | Tempkin and Pyzhev41 |
Dubinin–Radushkevich (D–R) | Ln \({\text{q}}_{{\text{e}}}\) = Ln qmax − Kε2 ε = RTLn(1 + 1/Ce) | \({\text{q}}_{{\text{e}}} = {\text{q}}_{{{\text{max}}}} {\text{exp}}\left( { - {\text{K}}\upvarepsilon ^{2} } \right)\) \(\upvarepsilon = {\text{RTln}}\left( {1 + \frac{1}{{{\text{C}}_{{\text{e}}} }}} \right)\) \({\text{E}}_{{{\text{DR}}}} = \sqrt {\frac{1}{{2{\text{K}}_{{{\text{DR}}}} }}}\) | Dubinin and Radushkevich106 |