Table 4 Sorption isotherm models for MB uptake by AC(H).

From: Statistical modeling of mutagenic azo dye adsorption on bagasse activated carbon

Isotherm model

Linear form

Non-linear form

Parameters

Refs.

Langmuir

\(\frac{{C_{e} }}{{q_{e} }} = \frac{1}{{q_{\max } b}} + \frac{{C_{e} }}{{q_{\max } }}\)

\(R_{L} = 1/\left( {1 + bC_{0} } \right)\)

\(R_{L}\) > 1 (unfavorable adsorption)

\(R_{L}\) = 1 (linear adsorption)

\(0 < R_{L}\) < 1 (favorable adsorption)

\(R_{L}\) = 0 (irreversible adsorption)

\({\text{q}}_{{\text{e}}} = \frac{{{\text{q}}_{\max } {\text{b C}}_{{\text{e}}} }}{{1 + {\text{b C}}_{{\text{e}}} }}\)

Ce (mg/L): equilibrium concentration of the residual MB in the solution

qe (mg/g): removed amount of MB at equilibrium

qmax (mg/g): maximum adsorption capacity

b (L/mg): Langmuir constant

C0: Initial MB concentration

RL: Equilibrium parameter of Langmuir equation

Langmuir107

Weber and Chakravorti39

Freundlich

\(\log q_{e\,} = \,\,\log k_{F} + \,\frac{1}{n}\,\log \,C_{e}\)

\({\text{q}}_{{\text{e}}} { } = {\text{KF}}\left( {{\text{C}}_{{\text{e}}} 1/{\text{n}}} \right)\)

Ce (mg/L): equilibrium concentration of the residual MB in the solution

qe (mg/g): removed amount of MB at equilibrium

kF (mg/g): MB adsorption capacity

n: heterogeneity factor

Freundlich40

Temkin

\({\text{q}}_{{\text{e}}} = {\text{B}}\ln {\text{A}} + {\text{B}}\ln {\text{C}}_{{\text{e}}}\)

\(B = \,\,RT/b\)

\({\text{q}}_{{\text{e}}} { } = {\text{B ln}}\left( {{\text{AC}}_{{\text{e}}} } \right)\)

\(B = \,\,RT/b\)

A (L/g): Temkin isotherm constant (the equilibrium binding constant corresponding to the maximum binding energy)

B (J/mol): Temkin constant related to heat of sorption

b: Temkin isotherm constant (slope)

R: The gas constant (8.314 J/mol K)

T : the absolute temperature at 298 K

Tempkin and Pyzhev41

Dubinin–Radushkevich (D–R)

Ln \({\text{q}}_{{\text{e}}}\) = Ln qmax − Kε2

ε = RTLn(1 + 1/Ce)

\({\text{q}}_{{\text{e}}} = {\text{q}}_{{{\text{max}}}} {\text{exp}}\left( { - {\text{K}}\upvarepsilon ^{2} } \right)\)

\(\upvarepsilon = {\text{RTln}}\left( {1 + \frac{1}{{{\text{C}}_{{\text{e}}} }}} \right)\)

\({\text{E}}_{{{\text{DR}}}} = \sqrt {\frac{1}{{2{\text{K}}_{{{\text{DR}}}} }}}\)

 

Dubinin and Radushkevich106