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Economic gain for sheep farmers is continually affected by incidences of copper intoxication and 
deficiency. This study assessed the ovine genome for differentially expressed genes (DEGs) influencing 
within-breed variation in hepatic copper content in Polish Merino sheep. To this end, we compared 
whole genome RNA sequence expression data from 12 female Polish Merino sheep liver samples 
(dataset 1) selected and grouped equally into high liver copper (HLC) and low liver copper (LLC) groups. 
Likewise, dataset 2 (a subset of dataset 1) containing 6 samples (HLC = 3; LLC = 3) was analyzed. The 
DEG analysis of HLC vs LLC groups for both data sets revealed a lower number of significant DEGs 
for dataset 1 (n = 64) when compared to dataset 2 (n = 252), respectively. Of the significant DEGs, 53 
were jointly identified with both datasets. Identified DEGs downregulated in the HLC group including 
MVD, DHCR7, LOC101113583 and ERG28 are implicated in cholesterol synthesis, whereas AKR1B10 
and CYP26A1 are associated with retinoic acid synthesis. The cholesterol biosynthetic process 
(GO:0006695) and the retinol metabolism (oas00830) were also observed by analysis of enriched 
gene ontologies, and Kyoto encyclopedia of genes and genomes pathways, respectively. Our findings 
provide new information on candidate genes associated with within-breed differences in hepatic 
copper concentration.
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Sheep are more susceptible to copper (Cu) intoxication when compared with other ruminants such as cattle 
and goats1,2. Cu is an important trace mineral that is involved in many biological processes as a part of many 
copper-dependent enzymes including cytochrome c oxidase (CCO), ferroxidase II, tyrosinase, superoxide 
dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2) that play essential roles in mitochondrial respiration, 
iron oxidation, pigmentation and anti-oxidation of free radicals, respectively3.

Within-breed variability of hepatic Cu levels, under the same feeding condition, have been reported in earlier 
studies4–6. Sivertsen and Løvberg6 found Cu concentration ranges of 89–221 µg/g wet weight (ww) and 87–186 
µg/g ww in the livers of Norwegian Dala ewes kept on pasture at different seasons. Recently, we published a work 
that supported the within-breed variability in liver Cu content in Merinoland sheep7. In this report, hepatic Cu 
ranged from 67–273 mg/kg dry matter (DM) and 20–188 mg/kg DM in Merinoland sheep from two herds kept 
in Bavaria. In addition to the variability in liver Cu concentration, we estimated a heritability of 0.67 (s.e 0.29) 
for this trait7. This is comparable to the heritability of 0.60 (s.e 0.32) estimated by Judson et al.8 in Merino sheep. 
All these findings point to a significant influence of genetic factors.

Existing documentation provides evidence of the involvement of some genes in hepatic Cu transport and 
homeostasis2,9. Among them are cyclooxygenase 17 (COX17), copper transporter 1 (CTR1), copper chaperone 
for superoxide dismutase (CCS), antioxidant-1 (ATOX1), metallothionein (MT), copper-transporting ATPase 
2 (ATP7B), cytochrome c oxidase (CCO) and superoxide dismutase 1 (SOD1). The CTR1, ATOX1 and ATP7B 
genes function in import, transport and efflux of hepatic Cu into, within and out of hepatocytes, respectively10. 
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Other Cu-related genes including CCS and COX17 are involved in Cu transport to SOD1 and CCO target 
proteins, respectively9.

In recent years, advancement in high-throughput technologies such as DNA microarray and RNA 
sequencing (RNA-seq) have been keys in the development of methods used to measure genome-wide gene 
expression patterns11. Previous studies on the expression of genes associated with hepatic Cu levels have 
revealed potential candidate genes associated with differences in liver Cu concentration12–14. Using human 
HepG2 cells and microarray analysis, Muller et al.12 reported changes in gene expression patterns of liver cells 
after Cu overload. Furthermore, the authors found that Cu overload in liver cells resulted in the upregulation 
of genes such as MT1A, HMOX1, TXNRD1, IL8 and GCLM involved in heavy-metal detoxification, oxidative 
stress, electron transport, signaling and glutathione biosynthesis, respectively12. In addition to genome-wide 
transcriptome analysis, the application of RNA-seq permits the use of small sample sizes with the minimum 
recommended value ranging from 3 to 6 replicates per condition15,16. Previous transcriptome analysis studies 
using ovine hepatic tissue have been reported with the identification of differentially expressed genes (DEGs) 
associated with odour and flavour17, fatty acid metabolism18, and lamb tenderness19. Similarly, a recent study 
by Jin et al.20 using RNA-seq technology revealed that genes including ACTN2 and GHRHR were upregulated 
during Cu supplemented feeding, while FOXO3 and TPSB2 were upregulated during Cu deficient feeding of Wu 
Ranke sheep. In that study, expression patterns of liver cells from sheep fed deficient or supplemented Cu were 
compared with sheep on a control diet.

In our study, we hypothesized that gene expression in hepatic tissue with low and high Cu content from 
sheep kept under similar feeding and environmental conditions differ significantly. For testing this hypothesis, 
we analyzed liver Cu content of Polish Merino sheep kept under similar treatment conditions. Liver samples 
of selected sheep with the lowest and highest liver Cu concentration were compared in a genome-wide gene 
expression study to identify differences in gene expression patterns associated with varying liver Cu levels in 
Polish Merino sheep.

Results
Statistics of liver Cu concentration and age
After analysis of samples for hepatic Cu content, our results show that liver Cu concentration for all samples 
ranged from 62.00 to 522.61 mg/kg DM with a mean hepatic Cu concentration of 231.07 mg/kg DM. Mean liver 
Cu concentration of samples in the low liver Cu (LLC) group and samples in the high liver Cu (HLC) group for 
dataset 1 were 130.12 and 372.76 mg/kg DM, respectively (Table 1). For dataset 2, average liver Cu levels for 
the LLC and HLC groups were 100.19 and 318.45 mg/kg DM, respectively. Moreover, a significant difference 
(P < 0.05) in means between the LLC and HLC groups was observed for dataset 1 (Table 1). Regarding the age, 
we observed a range of 250 to 315 days with a mean of 288 days (Table 1) for all samples. Table 1 shows that the 
ages of sampled sheep in the LLC groups for datasets 1 and 2 averaged 282.83 and 296.33 days, respectively. On 
the other hand, mean values for animal ages in the HLC groups for datasets 1 and 2 were 304.17 and 299.67 days, 
respectively. Analysis for dataset 1 shows that ages of the LLC group were significantly lower than that of the 
HLC group (P < 0.05) (Table 1).

Statistics of the RNA sequencing and mapping summary
A total of 12 samples (LLC = 6 and HLC = 6, respectively) were sequenced using the Illumina NovaSeq 6000 
sequencing platform. After filtering for adapter sequences and low-quality reads, the mean number of clean 
reads generated from LLC and HLC groups were 53898532 and 54607901, respectively (Supplementary Table 
S3). In addition, we observed a minimum of 98.32% for Q20 bases and 93.86% for Q30 bases with the percentage 
GC content ranging from 44.18 to 46.16 for all samples. The percentage of the clean reads uniquely mapped 
to the ovine reference genome (NCBI: Ovis aries, ARS-UI_Ramb_v2.0, annotation release 105) ranged from 
91.46% to 95.2% for the LLC and 91.87% to 95.95% HLC groups (Supplementary Table S3), respectively.

Principal components
The principal component analysis derived from the RNAseq reads counts was used to examine the cluster of 
samples. The principal component 1 (PC1) and PC2 for dataset 1 explained approximately 16.5% and 13.7% 
of the variability between samples, respectively (Fig. 1a). Although the PC1 did not separate the samples into 

Sample groups Number

Liver Cu concentration Age

Mean Cu (mg/kg DM) ± SEM Min Max P-value Mean (age in days) Min Max P-value

All 38 231.07 ± 13.70 62.00 522.61 288.00 ± 3.29 250.00 315.00

Dataset 1

LLC 6 130.12 ± 16.17 62.00 179.69
0.00

282.83 ± 7.38 264.00 309.00
0.04

HLC 6 372.76 ± 35.60 296.39 522.61 304.17 ± 4.83 278.00 311.00

Dataset 2

LLC 3 100.19 ± 13.48 62.00 142.58 296.33 ± 6.47 274.00 309.00

HLC 3 318.45 ± 6.40 296.39 331.46 299.67 ± 6.26 278.00 311.00

Table 1.  Descriptive and inferential statistics of liver Cu concentration and animal age of complete dataset and 
liver copper (LC) groups for datasets 1 and 2. LLC = low liver copper; HLC = high liver copper.
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distinct groups (LLC and HLC) in the PCA plots, the PC2 separated most of the samples according to their liver 
Cu (LC) groups. Using dataset 2, a second PCA plot showing PC1 and PC2 was constructed with samples clearly 
separated by PC1 which accounted for 32% of the sample variation (Fig. 1b). Moreover, PC2 explained 19.3% of 
the sample difference for dataset 2. Of the two PCA plots, the PCA plot for dataset 2 showed the better clustering 
of samples into LC groups (Figs. 1a and 1b).

Identified DEGs, enriched functions and protein–protein interaction network.
After mapping and quality control, 30,186 expressed genes were available for differentially expressed genes 
(DEGs) analysis. In this study, analysis of dataset 1 revealed that 120 genes were differentially expressed for 
HLC vs LLC groups, whereas 421 genes were differentially expressed between the groups in dataset 2. However, 
differences were significant only for 64 and 252 genes at FDR ≤ 0.05 (adjusted P-value) and |log2foldchange|≥ 1 
(Supplementary Tables S4a and S4b) for datasets 1 and 2, respectively. Of these DEGs, 31 and 33 DEGs (Fig. 2a, 
Supplementary Table S4a) were significantly upregulated and downregulated in HLC samples for datasets 1, 
respectively. On the other hand, 103 DEGs and 149 DEGs (Fig. 2b, Supplementary Table S4b) were upregulated 
and downregulated in the HLC group for datasets 2, respectively. For clarity, all significantly upregulated genes 
in the HLC group were downregulated in the LLC group, and vice versa. For both datasets, the volcano plots 
show the significantly upregulated or downregulated genes associated with the HLC group (Fig.  2a and b, 
Supplementary Tables S4a and S4b), whereas the heatmap plots reveal the degree of expression for significantly 
up- or downregulated DEGs between the HLC and LLC groups in this study (Fig.  3a and b). A total of 53 
significant DEGs were jointly identified for both datasets. The results of functional enrichment analysis for dataset 
1 show that 11 GO and 3 KEGG pathway terms were significantly enriched at P-value ≤ 0.05. Additionally, 2 GO 
and 1 KEGG pathway terms were significantly enriched at FDR ≤ 0.05 (Fig. 4a). Regarding dataset 2, our results 
show that 41 GO and 20 KEGG pathway terms were significantly enriched at P-value ≤ 0.05 with 14 (8 GO and 6 
KEGG pathway) terms significantly enriched after P-value adjustment at FDR ≤ 0.05 (Fig. 4b). Furthermore, the 
Protein–protein interaction (PPI) network analysis revealed 2 and 9 clusters of interacting DEGs for datasets 1 
and 2, respectively (Fig. 5a and b, Supplementary Table S5). Two PPI clusters were jointly identified using both 
datasets.

Validation of RNAseq data by RT-qPCR
A selection of differentially expressed genes observed in both LC groups and datasets using RNAseq data 
was validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). For dataset 1, the 
direction of the gene expression was observed to be similar to that detected with RNAseq data for all genes 
(APOA4, FMN2, NIPAL1, ALDH1A3, CYP1A1, SPATC1L, FDPS, MVD, DHCR7) with the exception of NR4A1 
(Fig. 6a). This exception was not observed for dataset 2 with the direction of the gene expression found to be 
like the RNAseq data expression (Fig. 6b). Furthermore, the magnitude of the gene expression for both methods 

Fig. 1.  PCA plots of principal component 1 (PC 1) vs PC 2 for datasets 1 (a) and 2 (b). LC = liver copper; 
LLC = low liver copper; HLC = high liver copper; encircled samples = samples selected into dataset 2.
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Fig. 3.  Heatmap plots of the degree of expression of significantly (FDR ≤ 0.05; |log2foldchange (log2FC)|≥ 1) 
up- or down-regulated differentially expressed genes (DEGs) for datasets 1 (a) and 2 (b). LC = liver copper; 
LLC = low liver copper; HLC = high liver copper.

 

Fig. 2.  Volcano plots of significantly (FDR ≤ 0.05; |log2foldchange|≥ 1) up- or down-regulated differentially 
expressed genes (DEGs) in the high liver copper (HLC) group for datasets 1 (a) and 2 (b).
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Fig. 4.  Enriched Gene Ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) pathway terms 
of significantly up- or down-regulated DEGs for datasets 1 (a) and 2 (b). GOTERMs: BP = biological process; 
CC = cellular component; MF = molecular function.
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was observed to be similar in some genes for both datasets. The similarity in magnitude of the gene expression 
improved in dataset 2 when compared to dataset 1 (Fig. 6a and b).

Discussion
This study evaluated differences in gene expression of hepatic tissue with high and low liver Cu concentration in 
Polish Merino sheep. As expected, variation in hepatic Cu levels was evident in the sampled sheep reared under 
similar conditions as seen in Table 1. An earlier study in Merino sheep kept under similar rearing conditions by 
Judson et al.8 found values of 6.7 and ± 2.6 as mean and standard deviation of liver Cu, respectively. Findings by 
Judson et al.8 equate to a 37.3% coefficient of variation for the liver Cu values and supports evidence of within-
breed variation in liver Cu concentration in sheep. Additionally, our result supports recent findings by Adeniyi 

Fig. 5.  Protein–protein interaction network of DEGs associated with variation in liver copper indicating the 
two jointly identified clusters for datasets 1 (a) and 2 (b). Genes within a cluster are indicated by a similar node 
colour. Edges represent high confidence (0.9) interactions.
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et al.7 on within-breed variations in liver Cu accretion in Merinoland sheep when kept under similar feeding 
and environmental conditions. On average, 93.84 and 93.99% of the clean reads were uniquely mapped to the 
ovine reference genome (NCBI: Ovis aries, ARS-UI_Ramb_v2.0, annotation release 105) for the LLC and HLC 
groups, respectively. This indicates that the transcriptome sequencing quality is good. Some samples selected 
for transcriptome analysis did not clearly separate in a PCA plot (Fig. 1a) according to LC groups. Therefore, a 
subset of dataset 1 (dataset 2) was reanalyzed with better clustering in the PCA plot (Fig. 1b). A comparison of 
the DEG analyses with the two different data sets show that the number of significant DEGs was lower for dataset 
1 (n = 64) when compared to dataset 2 (n = 252) suggesting an increase in significant DEGs discovery. This may 
be due to higher similarity in expression patterns of samples in each LC groups for dataset 2 as evidenced by the 
better sample clustering seen in the second heatmap plot (Fig. 3b). The selected significant DEGs observed with 
RNAseq data were successfully validated using RT-qPCR.

In this study, the expression of 33 and 149 genes was significantly downregulated in the HLC group for datasets 
1 and 2, respectively. Of these, 5 downregulated genes jointly identified for both datasets are directly involved 
in the cholesterol biosynthesis pathway including mevalonate diphosphate decarboxylase (MVD), squalene 
epoxidase (SQLE), 7-dehydrocholesterol reductase (DHCR7), farnesyl diphosphate synthase (FDPS) and 
lanosterol 14-alpha demethylase (LOC101113583)21,22. The MVD, FDPS, SQLE, lanosterol 14-alpha demethylase 
and DHCR7 enzymes catalyze the production of isopentenyl-5-pyrophospate, farnesyl-pyrophosphate, 
2,3-oxidosqualene, 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol and cholesterol, respectively, within 
the cholesterol biosynthetic pathway. In addition to this, many more cholesterol-related genes including 
mevalonate kinase (MVK), 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and NAD(P) dependent 
steroid dehydrogenase-like (NSDHL) encoding enzymes that produce mevalonate-5-phosphate, 3-hydroxy-3-
methylglutaryl-CoA and cholesta-8(9)-en-3beta-ol, respectively, were significantly downregulated for dataset 2. 
An association between Cu concentration and cholesterol biosynthesis has been suggested in earlier studies23–25. 
In these studies, it was observed that cholesterol biosynthesis was downregulated in ATP7B-deficient mice 
resulting from increased copper levels. Likewise, reviews by other authors indicate that a possible relationship 
exist between Cu homeostasis and lipid metabolism26–28. Similarly to the cholesterol synthesis-related genes, 
the ergosterol biosynthetic protein 28 homolog (LOC101110679) gene was downregulated in the HLC group. 
A recent study by Capell-Hattam et al.29 shows the involvement of ERG28 protein in cholesterol synthesis via 
activation of SREP2. Moreover, we also identified the FUN14 domain-containing protein 2 (LOC114118711) 
gene, known to aid triglyceride homeostasis via SREBP1c upregulation30,31, as a downregulated gene in the 
HLC group. In line with the review of earlier studies by Blades et al.27, our results confirm that cholesterol 
biosynthesis is upregulated in hepatocytes with low Cu concentration and downregulated in hepatic cells with 
high Cu concentration, respectively.

Furthermore, this study identified the insulin induced gene 1 (INSIG1) as an upregulated gene in the LLC 
group. The INSIG1 protein has been identified as an important protein involved in the regulation of cholesterol 
synthesis via sterol regulatory element-binding proteins (SREBPs) and 3-hydroxy-3-methylglutaryl coenzyme A 
reductase (HMG-CoA reductase)32. The SREBPs are membrane bound transcription factors that modulate the 
expression of genes involved in lipid synthesis, while HMG-CoA reductase is a rate-limiting enzyme involved 
in the cholesterol synthesis pathway22,33. The INSIG1 protein forms a complex with SREBP cleavage-activating 

Fig. 6.  Comparison of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RNAseq 
measured expression of selected significantly (FDR ≤ 0.05; |log2foldchange|≥ 1) up- or down-regulated 
differentially expressed genes (DEGs) in the high liver copper (HLC) group for datasets 1 (a) and 2 (b).
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protein (SCAP) and SREBPs in the endoplasmic reticulum (ER), leading to the inhibition of cholesterol synthesis 
occasioned by preventing SREBPs transport to the Golgi apparatus32,34. Likewise, INSIG1 protein binds directly 
to HMG-CoA reductase resulting in the accelerated degradation of the enzyme followed by suppression of 
cholesterol synthesis32. Though INSIG1 functions in the reduction of cholesterol levels, it is possible that the 
significantly higher expression of INSIG1 gene observed in the LLC group indicates a feedback response to high 
cholesterol levels in the hepatocytes. In this study, we noted that these cholesterol-related genes were significantly 
downregulated in the HLC group for both datasets. This suggests that genes associated with cholesterol synthesis 
are downregulated in liver cells with high liver Cu concentration and upregulated in hepatocytes with low liver 
content. However, these results do not explain the cause for within-breed variation in hepatic Cu levels in the liver 
samples because changes in cholesterol biosynthesis are considered an outcome of changes in Cu concentration 
levels as reviewed by Blades et al.27 and Engle28.

Four genes involved in retinoic acid metabolism including aldo-keto reductase family 1 member B10 
(LOC101107697 or AKR1B10), cytochrome P450 26A1 (LOC101103439 or CYP26A1), aldehyde dehydrogenase 
1 family member A3 (ALDH1A3) and nuclear receptor 4A1 (NR4A1) genes35,36 were significantly differently 
expressed. Of these, AKR1B10 and CYP26A1 were downregulated, while ALDH1A3 and NR4A1 were 
upregulated in the HLC group. Retinoic acid has been associated with intrinsic apoptotic pathways that occur 
after mitochondrial permeation occasioned by the modulation of proapoptotic (e.g. Bax) and anti-apoptotic (e.g. 
Bcl-2) proteins that mediate mitochondrial-based apoptosis37. Additionally, retinoic acid has also been indicated 
in the regulation of the expression of caspases that mediate inflammatory responses and apoptosis37,38.

AKR1B10 catalyzes the reversible step in retinoid metabolism by converting retinal (substrate for retinoic 
acid production) to retinol, whereas CYP26A1 regulates retinoic acid levels by conversion to its hydroxy- and/
or oxo-metabolites36,39. These findings suggest that AKR1B10 and CYP26A1 assist with the reduction of retinoic 
acid concentration with the attendant effect on retinoic acid signaling. Conversely, the aldehyde dehydrogenase 
1 family member A3 (ALDH1A3) and nuclear receptor 4A1 (NR4A1) genes associated with retinoic acid 
production and signaling were upregulated in the HLC group. ALDH1A3 is an enzyme that catalyzes the 
conversion of retinal to retinoic acid leading to increased retinoic acid production40, whereas NR4A1 is a 
transcription factor for the regulation of gene expression associated with retinoic acid signaling39. Notably, 
studies have shown that NR4A1 induces mitochondrial related apoptosis by targeting Bcl-2 located on the 
mitochondria41,42, and interacts with another gene that was upregulated in the HLC group in this study known 
as apolipoprotein A4 (APOA4). APOA4 downregulates gluconeogenesis in mice and human hepatocytes43,44. 
Thus, genes associated with an increase in retinoic acid synthesis and signaling were upregulated in the HLC 
group, while genes associated with decreased retinoic acid synthesis were downregulated.

Similar to our observation regarding cholesterol biosynthesis and retinoic acid activity, a report by Muchenditsi 
et al.45 on gene expression in ATP7B deficient mice showing the Wilson disease phenotype with increased Cu 
accumulation found that cholesterol biosynthesis and liver X receptor/retinoid X receptor (LXR/RXR) activation 
were downregulated and upregulated, respectively. Furthermore, the spermatogenesis and centriole associated 
1 like (SPATC1L) gene located 148.7 Kilobases (Kb) from a SNP (rs427314005) that was identified in our 
previous genome-wide association study on genes influencing liver Cu concentration in Merinoland sheep was 
downregulated in the HLC group7. The SPATC1L protein reportedly associates with the regulatory subunit of 
protein kinase A, whereas its involvement in Cu homeostasis is unknown. A look at the recent sheep genome 
annotation (Ovis aries ARS-UI_Ramb_v2.0 genome assembly in NCBI) reveals that a gene known as lanosterol 
synthase (LSS) is located approximately 35 Kb from the SPATC1L gene. This implies that both genes are linked 
within the genome, though no interaction has been established between their proteins. The LSS gene has been 
implicated in the catalysis of a reaction that produces a substrate within the cholesterol biosynthesis pathway 
named lanosterol. This suggests that the SPATC1L and LSS genes may be associated with variation in liver copper 
accumulation in Polish Merino sheep. Interestingly, the LSS gene was differentially expressed at FDR ≤ 0.05 in 
this study but not significant due to a |log2foldchange| less than 1 (|log2foldchange| for LSS = 0.999). Further 
studies need to be conducted to ascertain the effect or not of these genes on hepatic Cu levels.

In this study, some significantly enriched GO terms including cholesterol biosynthetic process (GO:0006695), 
endoplasmic reticulum membrane (GO:0005789) and cholesterol metabolic process (GO:0008203) were jointly 
identified for both datasets with involved genes including INSIG1, APOA4, MVD and DHCR. Besides, some 
KEGG pathway terms including retinol metabolism (oas00830), metabolic pathways(oas01100) and steroid 
biosynthesis (oas00100) were enriched for both datasets in this study. Genes such as LOC101107697, ALDH1A3 
and LOC101103439 were involved in the enrichment of these KEGG pathway terms. Other significantly 
enriched KEGG pathway terms identified for dataset 2 in this study include PPAR signaling pathway (oas03320) 
and cholesterol metabolism (oas04979). In agreement with the gene enrichment analysis, sterol biosynthesis 
and retinol metabolism were the primary functions of the two PPI network clusters jointly identified for both 
datasets. Genes such as DHCR7 and SQLE were included in the cluster for sterol biosynthesis, while ALDH1A3 
and CYP26A1 were part of the cluster for retinol metabolism. Our findings suggest that cholesterol and retinol 
metabolism processes are associated with variations in hepatic Cu levels in Polish Merino sheep. This study has 
some limitations such as the relative low number of samples used in transcriptome analysis as well as the slight 
variation in age at slaughter (included as a fixed effect in the DEG analysis) among the samples. Additionally, 
an inclusion of male lambs in a new study may aid our understanding on sex influence on gene expression 
associated with within-breed differences in hepatic Cu concentration.

Conclusion
A total of 53 significantly up- or downregulated genes were jointly observed for both datasets. Of these, 
we identified that some downregulated genes in the HLC group including MVD, SQLE, DHCR7, FDPS, 
LOC101113583 and ERG28 are associated with cholesterol synthesis. Likewise, this study revealed 4 genes 
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including AKR1B10, CYP26A1, ALDH1A3 and NR4A1 that are implicated in retinoic acid synthesis. Moreover, 
GO and KEGG pathway enrichment highlighted processes involving cholesterol biosynthesis, endoplasmic 
reticulum membrane, steroid biosynthesis and retinol metabolism. A gene (SPATC1L) located near a SNP 
identified in our previous study was significantly downregulated in the HLC group. Our findings deliver possible 
candidate genes and processes that may influence or serve as an indicator for difference in within-breed liver 
Cu concentration in sheep, and may aid in breeding improvements for reduction in the occurrence of Cu 
intoxication or deficiency in sheep farming.

Materials and methods
All sampled lambs of the Polish Merino breed were raised for lamb meat production on a commercial farm 
in Poland. Lambs were slaughtered in a commercial abattoir and carcasses were prepared for sale. Biological 
samples were collected post-mortem from these carcasses. As no animal was slaughtered for scientific purposes, 
the responsible Ethics Committee did not classify this study as animal experiment.

Sample collection
Lambs were raised indoors under similar environmental conditions. All sheep had free access to drinking water 
and were fed ad libitum on the same diet of hay, pellet concentrate, silage and whole oats grains. Lambs were 
fasted 24 h before slaughter. Samples of liver tissue from the lobus caudatus region were collected from 38 lambs 
immediately after slaughter into FixRNA (Eurx, Gdańsk, Poland) according to manufacturer’s instructions, 
stored for 24 h in this buffer at 4 °C, and subsequently frozen in cryotubes at − 80 °C for long-term storage. 
In addition, samples were collected from the lobus caudatus region of the liver, and frozen at − 20 °C for the 
determination of liver Cu content. Sex and ages at slaughter were recorded for all lambs.

Determination of Cu content in liver and feed samples, grouping of samples
All 38 liver samples were freeze-dried, crushed and stored in tubes. Analysis of liver Cu concentration was 
performed with an inductively coupled plasma-optical emission spectrometer (ICP-OES; Agilent 720ES, 
Darmstadt, Germany) at a wavelength of 327.4 nm after microwave digestion as described by Adeniyi et al.7. 
Furthermore, mineral concentrations of feed samples were determined by a service laboratory (Intertek Food 
Services GmbH, Linden, Germany) (Supplementary Table S1). Liver copper concentration values were reported 
in mg/kg DM. Of the 38 samples analyzed for liver Cu concentration, a subset of 12 samples (dataset 1) from 
ewes with the lowest (n = 6) and highest (n = 6) Cu concentration were selected into two liver Cu (LC) groups 
(LLC = low liver Cu; HLC = high liver Cu) for RNA sequencing and analysis.

RNA extraction
Total RNA was extracted from the selected liver samples (dataset 1; n = 12) using a Universal RNA Purification 
Kit (Eurx, Gdańsk, Poland) according to the manufacturer’s protocol for animal tissues with the use of RNA 
Extracol reagent (Eurx, Gdańsk, Poland). RNA quantity and purity were assessed on a Nanodrop 2000 
spectrophotometer (Thermo Scientific, Waltham, MA, USA). RNA integrity was evaluated on an Agilent 
Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA) using an RNA Nano 6000 Assay Kit 
RNA (Agilent Technologies, Santa Clara, CA, USA). RNA degradation and contamination were monitored on 
1% agarose gel. All the samples passed the quality control requirements (RNA integrity number (RIN) ≥ 7.5) and 
were processed for downstream applications.

RNA sequencing and cDNA mapping
Firstly, ribosomal RNA was removed from total RNA using TruSeq Stranded Total RNA Library Prep (Illumina, 
San Diego, CA, USA). RNA-seq libraries were prepared using Novogene NGS Stranded RNA Library Prep Set 
(PT044). All cDNA libraries were sequenced using a paired-end strategy with a reading length of 150 bps on an 
Illumina NovaSeq 6000 sequencing platform (Illumina, San Diego, CA, USA) at a depth of 50 million reads per 
sample by Novogene (Beijing, China). These raw data were processed using fastp v0.20.1 ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​O​
p​e​n​G​e​n​e​/​f​a​s​t​p​​​​​)​​​4​6​​ to remove adapter sequences and trim low-quality reads to obtain clean data for downstream 
analysis. The paired-end reads that passed the quality control were mapped to the sheep reference genome 
(NCBI: Ovis aries, ARS-UI_Ramb_v2.0, annotation release 105) using STAR v2.7.9a aligner ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​
m​/​a​l​e​x​d​o​b​i​n​/​S​T​A​R​​​​​)​​​4​7​​​.​​

Principal component analysis
Using the count matrix, a principal component analysis (PCA) was performed with dataset 1 using prcomp 
package in R v3.3.3 software (https://www.R-project.org/)48 after count matrix data transformation with the 
rlog function in R “DESeq2” package49. Subsequently, a PCA plot comparing the first principal component (PC 
1) against PC 2 was drawn with the ggplot package in R. Due to incomplete clustering of the samples, a subset 
of dataset 1 (dataset 2) consisting of 6 individuals (LLC: n = 3; HLC: n = 3) with the best possible clustering of 
samples into LC groups according to PC 1 of the first PCA plot was selected. As described for dataset 1, a second 
PC analysis was performed for dataset 2 with the construction of a PCA plot showing the first two PCs.

Statistical analysis
A t-test and Mann-Whitney U test to compare means of LC groups for liver Cu concentration and age were 
performed for dataset 1 using the t.test and wilcox.test functions in R v3.3.3 “stats” package, respectively48. Prior 
to this, data on liver Cu concentration and age were tested for fulfillment of parametric test assumptions using 
the shapiro.test and var.test functions in the above-mentioned package in R with the LC groups data for liver Cu 
concentration fulfilling all parametric test assumptions whereas data for age did not. No statistical analysis was 
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carried out for dataset 2 due to low sample size. Descriptive statistics of all samples and LC groups of datasets 1 
and 2 were calculated using the dplyr package in R50.

Analysis of differentially expressed genes (DEGs analysis)
Using dataset 1, a comparison of the reads per gene for both LC groups was analysed for determination of 
differentially expressed genes (DEGs) using DESeq2 package in R v3.3.349. The DEGs analysis of HLC 
vs LLC was performed with a generalized linear model that included age as fixed effect with two categories 
(less or more than 300  days, respectively). This was implemented in the DESeq2 package with the function 
DESeqDataSetFromMatrix (design: ~ age + LC_Groups). The DEGs were identified as significant at FDR ≤ 0.05 
(adjusted P-value)51 and |log2foldchange|≥ 120. This log2foldchange threshold was selected in order to account 
for small biological but meaningful changes in expression that may occur between both LC groups, considering 
that hepatic Cu levels of most (4 samples of 6) of the samples for each groups were within normal physiological 
liver Cu levels for sheep (100–400  mg Cu/Kg DM)52, and may result in a slight increase in the number of 
identified DEGs. Result of the DEGs analysis was used in the construction of a volcano plot to show significantly 
up- or down regulated DEGs using ggplot2 package in R53. Furthermore, a heatmap plot showing differences in 
the expression profile of significantly up- or down regulated DEGs for LLC and HLC samples was drawn using 
heatmap3 package in R54. Prior to the construction of the heatmap plot, count data was normalized using the vst 
function in R “DESeq2” package. Using similar parameters, DEGs analysis and heatmap plotting was repeated 
for dataset 2 with the results of DEGs analysis plotted in a volcano plot.

DEGs identification, enrichment and PPI network analyses
Differentially expressed genes identified as significant in the analyses of datasets 1 and 2 were separately included 
in functional enrichment analysis using the Database for Annotation, Visualization and Integrated Discovery 
(DAVID v2023q4) software (https://david.ncifcrf.gov, accessed on 12 September 2024)55–57. The gene list was 
analyzed by selecting the ovine gene annotations. The gene ontology (GO) and pathways terms including 
biological process (BP), cellular component (CC), molecular function (MF) and Kyoto encyclopedia of genes 
and genomes (KEGG)58, were investigated in this study. Enriched GO and KEGG pathway terms were considered 
significant at P-value ≤ 0.05 and FDR ≤ 0.0551 before and after correction for multiple testing, respectively. 
Using the search tool for the retrieval of interacting genes (STRING v12.0: https://string-db.org/) with a high 
confidence interaction score of 0.959, protein-protein interaction (PPI) network analysis was performed for 
identified DEGs for both datasets, separately. The result from the PPI analysis was viewed using Cytoscape 
v3.10.2 (https://cytoscape.org/)60.

Reverse transcription-quantitative PCR analysis
From the jointly identified DEGs and genes involved in enriched pathways considered significant in both datasets, 
a total of 10 DEGs (5 upregulated and 5 downregulated) were selected for RT-qPCR. From extracted RNA, 
first-strand cDNAs were synthesized using smART First Strand cDNA Synthesis kit (Eurx, Gdańsk, Poland) 
according to the manufacturer’s instructions. SYBER Green chemistry was used to measure the gene expression 
levels on a Bio-Rad CFX Opus 96 Real-Time PCR System. The primers of DEGs selected for validation were 
designed using Primer-BLAST software (​h​t​t​p​s​:​​/​/​w​w​w​.​​n​c​b​i​.​n​​l​m​.​n​i​h​​.​g​o​v​/​​t​o​o​l​s​/​​p​r​i​m​e​r​​-​b​l​a​s​t​​/​i​n​d​e​x​.​c​g​i, accessed 
on 10th June, 2024)61. The glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) and actin beta (ACTB) 
genes were used as endogenous controls with primer information sourced from Schulze et al.62 and French et 
al.63, respectively. The qPCRs were performed in triplicate in a final volume of 20 µl containing 50 ng cDNA, 10 
µl SG qPCR Master Mix (Eurx, Gdańsk, Poland), 5 pmol of each primer (forward and reverse) (Supplementary 
Table S2), 0.2 U uracil-N-glycosylase (UNG), and nuclease-free water. The qPCR program was started with UNG 
pre-treatment at 50 °C for 2 min., followed by initial denaturation at 95 °C for 10 min., 40 cycles of 94 °C for 15 s, 
60 °C for 30 s, and 72 °C for 30 s, and ended with a final stage of melting curve analysis, which was carried out 
using following conditions: 94 °C for 5 s, 70 °C for 5 s and then a gradual increase in temperature to 95 °C at a 
ramp rate of 0.5 °C/5 s to ensure that single product was amplified in each reaction. All qPCR reactions showed 
a single peak on the dissociation curve confirming the specific amplification of PCR products. The average cycle 
threshold (Ct) values of the genes were normalized to the geometric means of the controls. The delta delta Ct 
method was used to analyze the relative expression levels of the studied genes. Then, the log2foldchange was 
calculated from the relative expression.

Data availability
All sequence data generated during this study has been deposited to the ArrayExpress collection in BioStudies 
with the accession number E-MTAB-14752 (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​e​b​​i​.​​a​c​.​​u​k​/​​b​i​o​s​t​​u​d​​i​e​s​/​​a​r​r​a​y​e​​x​p​r​​e​s​​s​/​s​t​u​​​d​i​​e​s​/​​E​​-​M​T​A​B​​-​​1​
4​7​​​5​2​?​k​e​y​​=​5​e​​a​7​​7​d​​9​4​-​6​​1​​5​d​-​4​​​7​e​7​-​8​2​2​f​-​5​d​2​0​f​c​c​3​4​e​a​5).
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