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To evaluate the performance of a multi-input deep learning (DL) model in detecting two common 
inherited retinal diseases (IRDs), i.e. retinitis pigmentosa (RP) and Stargardt disease (STGD), and 
differentiating them from healthy eyes. This cross-sectional study includes 391 cases, consisting of 158 
subjects with RP, 62 patients with STGD, and 171 healthy individuals. The image dataset is publicly 
available at ​h​t​t​p​:​/​​/​e​n​.​r​i​​o​v​s​.​s​b​​m​u​.​a​c​.​​i​r​/​A​c​​c​e​s​s​-​t​​o​-​I​n​h​e​​r​i​t​e​d​-​​R​e​t​i​n​a​l​-​D​i​s​e​a​s​e​s​-​I​m​a​g​e​-​B​a​n​k. Separate 
networks using the same hyperparameters were trained and tested on the dataset. Two single-input 
MobileNetV2 networks were employed for color fundus photography (CFP) and infrared (IR) images, 
and a multi-input MobileNetV2 network was applied using both imaging modalities simultaneously. 
The single-input MobileNetV2 achieved 94.44% diagnostic accuracy using CFP, and 94.44% accuracy 
employing IR images, respectively. The multi-input MobileNetV2 network outperformed both single-
input networks with an accuracy of 96.3%. The impact of single-input and multi-input architectures 
was further evaluated on state-of-the-art neural network models and machine learning algorithms. 
The deep learning networks utilized in this study achieved high performance for detection of IRDs. 
Application of a multi-input network employing both CFP and IR image inputs improves the overall 
performance of the model and its diagnostic accuracy.

Keywords  Artificial intelligence, Machine learning algorithms, Deep learning architectures, Inherited retinal 
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Inherited retinal diseases (IRDs) are rare retinal disorders that result in gradual degeneration of the retinal 
pigment epithelium (RPE) and photoreceptors1,2. IRD patients commonly complain of gradual loss of vision, 
nyctalopia or hemeralopia, color vision deficiency and restricted field of vision. Retinitis pigmentosa (RP) is the 
most common type of diffuse photoreceptor dystrophy, with nearly 1.5 million new cases reported annually3,4. 
Furthermore, Stargardt disease (STGD) is the most common type of macular dystrophy with an estimated 
incidence of one per 10,000 individuals3,5.
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Modern procedures for the diagnosis of retinal diseases substantially rely on multimodal imaging in addition 
to retinal examination. Common retinal imaging including color fundus photography (CFP) and infrared (IR) 
imaging, could improve diagnostic accuracy by underscoring known retinal patterns. Vessel attenuation and 
waxy pallor of optic disc is considered the most common clinical manifestations in RP patients. In the final steps 
of disease progression melanin pigment containing bone spicules appear in the mid-peripheral or peripheral 
retina in CFP6. For STGD, pathological changes on CFP include macular atrophy and retinal flecks6.

Recently, AI-based algorithms have been widely applied in the automatic detection and grading of various 
diseases using medical image analysis; in particular, they have been extensively applied for retinal images in 
ophthalmology7–11. Meanwhile, to compensate for limited number of data, transfer learning techniques, VGG12,13, 
Inception14, and ResNet15,16 have so far been employed as state-of-the-art deep neural network architectures, 
especially for CFP and optical coherence tomography (OCT) images. Other lightweight architectures, such as 
MobileNetV217, have also been used. Fundus autofluorescence (FAF)15, OCT, and ultra-widefield images18 have 
been applied to detect various IRDs. In the study by Masumoto et al., high sensitivity was achieved in detecting 
RP on ultra-widefield pseudo color and FAF images18. The combination of convolutional neural networks 
(CNNs), OCT19, and FAF imaging15, has achieved high accuracy in detecting STGD. Multi-class and multi-
labeled models20–22 have been employed to significantly improve the performance of existing methods and cover 
a broader range of retinal disorders. Although some studies have been predicting or detecting IRDs, none of 
them has simultaneously studied different types of IRDs using various retinal imaging modalities. Designing an 
intelligent model could improve the quality and accuracy of the health care system in order to detect patients 
with any type of IRDs by initial screening at the lowest expense and particularly be employed in telemedicine for 
remote areas. In this study, we proposed a novel method based on MobileNetV2 using a multi-input model for 
simultaneous processing of both CFP and IR images.

Methods
Dataset
In this study, a total of 220 patients with two types of IRDs including RP (n = 158) and STGD (n = 62) registered 
at the Iranian National Registry for Inherited Retinal Diseases (IRDReg®). were investigated. This combination 
of data was designed to replicate the real-world prevalence of these diseases ( Stargardt

RP
∼= 1

2.6 )23. The gender 
and age distribution of patients in each of these categories are presented in Table 1. In addition, 171 healthy 
individuals were included as controls. There was no statistically significant difference among the study subjects.

The study protocol was approved by the Ethics Committee of the Ophthalmic Research Center affiliated 
to Shahid Beheshti University of Medical Sciences, Tehran, Iran (IR.SBMU.ORC.REC.1396.15) and was in 
accordance with the Declaration of Helsinki. The study participants signed the consent form and were assured 
that the gathered data would be anonymous. Dataset of the images is publicly available at ​h​t​t​p​:​/​​/​e​n​.​r​i​​o​v​s​.​s​b​​m​u​.​a​
c​.​​i​r​/​A​c​​c​e​s​s​-​t​​o​-​I​n​h​e​​r​i​t​e​d​-​​R​e​t​i​n​a​l​-​D​i​s​e​a​s​e​s​-​I​m​a​g​e​-​B​a​n​k.

Initially, patients with suspected or definitive IRD diagnosis were interviewed to record their visual 
symptoms. Then, they underwent meticulous retinal examination by a retina specialist using a 90D lens and 
indirect ophthalmoscopy. In the next step, two imaging techniques including CFP (Visucam Pro NM; Carl Zeiss 
Meditec AG, Germany) and IR (Heidelberg Engineering, Germany), were applied for all participants.

Data preprocessing techniques, including Crop, Center, Flip (if left-eye image), and Contrast Limited 
Adaptive Enhancement, were applied to reduce the variance of the images and produce a more uniform image 
dataset. Figure 1 shows samples of the raw CFP and IR images.

Proposed method
In the present study, retinal image processing and classification were conducted using MobileNetV2. During 
the training process, the network learns to extract the basic features of the images and thereby, determine 
the type of disease according to these features. In this type of network, first, the features are extracted using 
convolutional layers. Then, the extracted high-level features are fed into the dense layers, the output of which is 
the predicted label of the input retinal images. MobileNetV2 is based on an inverted residual structure where the 
residual connections are between the bottleneck layers. The architecture of MobileNetV2 contains an initial fully 
convolutional layer with 32 filters, followed by 19 residual bottleneck layers [19].

The proposed method is a novel approach that simultaneously receives CFP and IR images. As illustrated in 
Fig. 2, the network’s training begins with cropping the CFP and IR images, which are merged into a single image 
before being fed into the MobileNetV2 network. This innovative method allows the network to leverage the 
complementary information obtained from both types of images, enhancing its ability to predict the presence of 
diseases such as STDG and RP or to determine the normalcy of the individual. The network is designed to output 
the necessary predictions based on the integrated features derived from the combined input images.

Factors Subject RP STGD Healthy eyes P- value

Age (yrs) Mean ± std
Median (min, max)

40 ± 13
40 (7, 74 )

30 ± 12
31 (6, 63 )

38 ± 12
34 (6, 72 ) 0.41

Gender (%)
Male 74 (47%) 27 (44%) 73 (43%)

0.14
Female 84 (53%) 35 (56%) 98 (57%)

Table 1.  Age and gender distribution of the patients who were recruited in this study.
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Implementation and training
The current study utilized the TensorFlowTM24 framework as a deep learning (DL) platform. After preprocessing, 
images were randomly split into a training set and a test set. A CNN architecture based on the MobileNetV2 
model was trained to classify the images into normal, RP, and STGD categories. Transfer learning was applied 
using the initial weights provided by ImageNet25. Our multi-input model was simultaneously implemented and 
trained on CFP and IR images. MobileNetV2 was used as a feature extractor for all of the input paths, and the 
same classifier layers and hyperparameters were applied. A total of 250 (79%) RP, 86 (69%) STGD, and 266 (78%) 
healthy eyes were utilized to train the model. Also, the remaining images were used for the test set. All models 
were trained for 30 epochs on the same training set and were tested on the same test set. The Adam optimizer 
was employed with a learning rate of 10−5 along with a learning rate scheduler that featured a patience of 1 and 
a decay ratio of 0.9. The final layer utilized a SoftMax activation function, and weighted cross-entropy loss was 

Fig. 2.  The schematic overview of the image processing in the present study.

 

Fig. 1.  Two sample raw images of color fundus photograph (CFP) and infrared (IR).
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applied during training to address the imbalance in the dataset. All models had an input shape of 224 * 224 * 3, 
indicating that both image modalities were loaded and processed in RGB format.

In this study, a diverse set of machine learning (ML) algorithms and DL models were employed to evaluate 
the performance of the proposed approach. Among the ML algorithms, the Extremely Randomized Tree26, 
Support Vector Machine (SVM)27, XGBoost28, Random Forest29, and LightGBM30 were utilized due to their 
proven effectiveness in handling structured data and their ability to capture complex patterns. Also several 
state-of-the-art DL models were incorporated to assess the performance on unstructured data, particularly in 
image-related tasks. These models include MnasNet-A131, AlexNet32, VGG1133, ShuffleNetV21 × 34, VGG1333, 
InceptionV335, ResNet5036, VGG1633, DenseNet12137, and MobileNetV238. Each of these architectures was 
chosen for its unique design and capabilities, ranging from lightweight models optimized for mobile devices to 
deeper networks designed for high accuracy in complex tasks. By leveraging this comprehensive set of algorithms 
and models, the evaluation process ensures a thorough analysis of the proposed method’s performance across 
various scenarios and data types.

Evaluation metrics
The performance of the models was evaluated based on various metrics, including accuracy, balanced accuracy, 
precision, F1 score, sensitivity, specificity, and negative predictive value (NPV). The Receiver Operating 
Characteristics (ROC) and Precision-Recall (PR) curves of all classification models were reported for each 
approach. Furthermore, Grad-CAM visualization of the class activation functions was implemented to enhance 
the interpretability of the final multi-input model. This representation shows the regions and areas of the image 
that the model is concentrating on which helps identify the feature the model considers relevant to its prediction. 
This step can ensure that the model detects meaningful elements in an image and makes predictions based on 
meaningful patterns.

Results
The classification performance of various ML algorithms and DL networks is summarized in Table 2, highlighting 
the superiority of DL models over traditional ML approaches. Among the ML algorithms, LightGBM achieved 
the highest accuracy (77.16%) and balanced accuracy (67.92%), outperforming other ML methods such as 
Random Forest and XGBoost. However, the DL models demonstrated significantly better performance, with 
MobileNetV2 achieving the highest accuracy (96.3%) and balanced accuracy (95.48%), along with an AUC of 
99.31%, surpassing all other models. Inception V3 and VGG16 also performed exceptionally well, with equal 
accuracy accuracies of 95.68% and AUC values of 99.37% and 98.52%, respectively. The results indicate that DL 
models, particularly MobileNetV2, provide more robust and reliable classification performance compared to 
traditional ML methods, making them better suited for the automated detection of inherited retinal diseases.

As shown in Table 3, the Multi-input models, which combine CFP and IR images, outperform the Single-input 
models (using either CFP or IR alone). This superiority stems from the complementary information provided by 
the two modalities: CFP captures detailed color-based retinal features, while IR highlights deeper structures and 
vascular patterns. For instance, in the MobileNetV2 model, the Multi-input configuration achieved an accuracy 
of 96.3% and an AUC of 99.31%, whereas the Single-input models (CFP and IR) both achieved an accuracy of 
94.44%. Similarly, in the Inception V3 model, the Multi-input setup achieved an accuracy of 95.68% and an AUC 
of 99.37%, outperforming CFP (92.59%) and IR (93.21%). These results demonstrate that combining CFP and 
IR in Multi-input models enhances sensitivity, accuracy, and the ability to detect more complex retinal disease 
features, offering a significant advantage over Single-input approaches.

Algorithm Accuracy Balanced accuracy Precision F1 Specificity NPV AUC

ML algorithms

Extremely randomized tree26 72.22 (71.6-72.84) 63.88 73.46 65.07 84.02 90.91 88.22

Support vector machine27 72.84 (71.6-73.46) 63.29 57.59 63.69 81.89 92.06 79.38

XGBoost28 75.93 (74.69–76.55) 66.16 59.97 66.51 83.77 93.84 87.15

Random forest29 75.93 (74.07–77.17) 66.16 58.99 66.14 85.69 94.02 80.81

LightGBM30 77.16 (75.3-78.14) 67.92 77.66 69.81 84.53 94.02 81.17

DL networks

MnasNet-A131 83.33 (80.85–86.42) 78.85 82.46 81.96 90.67 93.51 94.93

AlexNet32 87.65 (87.65–90.12) 86.55 87.83 87.52 94.19 93.95 97.58

VGG1133 92.59 (90.12–93.83) 91.33 92.5 92.47 96.17 96.61 97.26

ShuffleNetV21 × 34 93.83 (91.36–94.44) 93.09 93.76 93.78 96.86 96.96 98.39

VGG1333 94.44 (92.59–95.06) 93.22 94.46 94.35 96.97 97.63 98.02

Inception V335 95.68 (95.06–96.3) 94.6 95.71 95.64 97.5 98.2 99.37

ResNet5036 95.06 (94.44–95.06) 93.73 95.13 95 97.08 98.01 98.25

VGG1633 95.68 (95.06–96.3) 94.98 95.64 95.65 97.82 97.98 98.52

DenseNet12137 95.06 (94.44–95.68) 94.47 95.04 95.05 97.63 97.56 98.83

MobileNetV238 96.3 (95.06–96.3) 95.48 96.3 96.27 97.92 98.39 99.31

Table 2.  Classification performance of deep learning models and machine learning algorithm for our 
method (Accuracy, balanced accuracy, precision,, F1 score, specificity, NPV, AUC calculated using a weighted 
approach).
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The Precision-Recall (PR) curves and Receiver Operating Characteristic (ROC) curves for all three models 
are presented in Fig.  3. These curves illustrate the superior performance of the Multi-input model, which 
consistently achieved the highest precision and recall across all disease categories. The ROC curves further 
confirm the Multi-input model’s ability to effectively balance sensitivity and specificity, achieving near-perfect 
AUC values for all three classes (RP, STGD, and healthy eyes).

To enhance the interpretability of the proposed model, Grad-CAM visualizations were generated to identify 
the regions of the retinal images that contributed most to the model’s predictions. As shown in Fig. 4, the Multi-
input model accurately focused on disease-relevant features, such as bone spicules and vascular attenuation 
in RP and macular atrophy and retinal flecks in STGD. These visualizations validate that the model makes 
predictions based on meaningful retinal features, increasing its reliability for clinical applications.

The performance details of the proposed method are summarized in Table 4, which presents the metrics 
for detecting RP, STGD, and normal eyes. The Multi-input model, which combines both CFP) and IR images, 
significantly outperformed the Single-input models in overall performance. Notably, the precision for detecting 
normal eyes improved to 100%. Furthermore, the specificity values for RP and STGD detection increased to 
95.83% and 98.39%, respectively, as indicated in Table 4. These improvements reflect the benefits of integrating 
complementary information from CFP and IR imaging modalities.

Discussion
The current study demonstrated the excellent performance of a DL model in detecting RP and STGD based on 
CFP and IR images. These two entities were selected due to being the most prevalent types of IRDs in different 
populations and the fact that the clinical diagnosis of RP may not be easily possible very early or advanced stages 
of the disease due to similarities to other retinal pathologies. Furthermore, this automated model might improve 
reaching a clinical diagnosis given the widespectrum of causative genes reported in RP.

Based on recommendations of the American Academy of Ophthalmology (AAO)39, non-invasive retinal 
imaging is promising in the diagnosis of IRDs. Herein, we investigated the utility of IR images alongside CFP 
for detection of STGD and RP; this approach has not been previously reported. As shown in Table 5, although 
numerous studies have investigated automated detection of different types of IRDs using different retinal 
images17–19,40,41, none of them has investigated the use of IR images.

In the current study, the MobileNetV2 architecture was trained simultaneously using CFP and IR images 
to diagnose RP and STGD. The single-input analysis using CFP had an acceptable accuracy of 94.44%, AUC of 

Algorithm Input Accuracy Balanced accuracy Precision F1 Specificity NPV AUC

ML algorithms

XGBoost 28

CFP 73.46 63.86 59.9 64.83 81.83 92.42 85.13

IR 73.46 63.86 59.9 64.83 81.83 92.42 85.13

Multi-Input 75.93 (74.69–76.55) 66.16 59.97 66.51 83.77 93.84 87.15

LightGBM 30

CFP 73.46 63.86 58.8 64.49 82.07 92.42 87.69

IR 75.31 71.26 74.69 74.01 85.63 88.42 91.94

Multi-Input 77.16 (75.3-78.14) 67.92 77.66 69.81 84.53 94.02 91.17

DL networks

AlexNet 32

CFP 87.04 83.37 87.13 86.18 92.35 95.06 94.06

IR 87.04 83.37 87.13 87.04 86.18 92.35 95.06

Multi-Input 87.65 (87.65–90.12) 86.55 87.83 87.52 94.19 93.95 97.58

ShuffleNetV2 1 × 34

CFP 90.12 88.97 90.12 90.12 95.26 95.26 98.22

IR 90.74 88.63 90.78 90.5 94.58 96.07 95.41

Multi-Input 93.83 (91.36–94.44) 93.09 93.76 93.78 96.86 96.96 98.39

Inception V3 35

CFP 92.59 90.22 92.72 92.3 95.54 97.32 98.39

IR 93.21 92.51 93.27 93.23 96.51 96.57 97.59

Multi-Input 95.68 (95.06–96.3) 94.6 95.71 95.64 97.5 98.2 99.37

ResNet50 36

CFP 93.21 93.33 93.75 93.27 97.37 96.24 98.39

IR 93.83 91.97 93.91 93.67 96.31 97.66 97.63

Multi-Input 95.06 (94.44–95.06) 93.73 95.13 95 97.08 98.01 98.25

VGG16 33

CFP 94.44 92.85 94.56 94.35 96.65 97.83 98.83

IR 92.59 90.59 92.5 92.35 95.93 97.08 97.8

Multi-Input 95.68 (95.06–96.3) 94.98 95.64 95.65 97.82 97.98 98.52

DenseNet121 37

CFP 93.83 92.72 93.76 93.74 96.7 97.19 97.19

IR 94.44 93.15 94.38 94.37 97.05 97.68 98.83

Multi-Input 95.06 (94.44–95.68) 94.47 95.04 95.05 97.63 97.56 98.83

MobileNetV2 38

CFP 94.44 93.15 94.38 94.37 97.05 97.68 98.83

IR 94.44 93.59 94.43 94.4 97.36 97.4 99.15

Multi-Input 96.3 (95.06–96.3) 95.48 96.3 96.27 97.92 98.39 99.31

Table 3.  Comparison of classification accuracy (%) across different models and training methods (Single input 
vs multi input) for retinal disease image classification. Signifiacnce value bold.
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Fig. 4.  Sample visualizations of the Grad-Cam class activations for both RP and Stargardt disease derived from 
the multi-input model.

 

Fig. 3.  Precision-Recall Curves and ROC Curves for three trained models on color fundus photographs, CFP 
(a & b), infrared, IR (c & d), and multi-input (e & f) images.
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References Image type Disease Model Results

Ta-Ching Chen et al.40 Color Fundus
(1670) RP Xception

AUC-ROC: 96.74%/
Sensitivity: 95.71%
Accuracy: 96.00

Guo et al.17 Color Fundus
(250)

Glaucoma, maculopathy, 
pathological myopia, RP MobileNetV2

Accuracy: 96.2%
Sensitivity: 90.4%
Specificity: 97.6%

Fujinami -Yokokawa et al. 41 Color Fundus and FAF
(417)

Stargardt, RP, occult macular 
dystrophy InceptionV3

Fundus:
Accuracy: 88.2%
Sensitivity/Specificity:
88.3%/97.4%
FAF:
Accuracy: 81.3%
Sensitivity/Specificity: 
81.8%/95.5%

Shah et al.19 OCT (102) STGD CNN
Accuracy: 99.6%
Sensitivity: 99.8%
Specificity:98.0%

Masumoto et al.18 ultrawide-field pseudocolor and 
ultrawide-field autofluorescence (373) RP CNN

Pseudocolor :
Sensitivity: 99.3%
Specificity: 99.1%
Autofluorescence:
Sensitivity: 100%
Specificity: 99.5%

This study Color Fundus and IR
(233) RP, Stargardt Multi-Input MobileNetV2

Accuracy: 96.3%
Sensitivity: 96.3%
Specificity: 97.92%
AUC-ROC:99.31%

Table 5.  The classification results of the similar studies reported in the literature and the model proposed in 
this study.

 

RP STGD Healthy eyes

Training mode

Support 66 38 58

Train images 250 86 284

Test images 66 38 58

Total images 316 124 342

Total patient 158 62 171

Prevalence 0.4074 0.2345 0.3580

Single-input
(CFP)

Precision 0.9412 0.9143 0.9661

Sensitivity 0.9697 0.8421 0.9828

Specificity 0.9583 0.9758 0.9808

NPV 0.9787 0.9528 0.9903

F1 0.9552 0.8767 0.9744

AUC 0.9813 0.9644 0.9973

Single-input
(IR)

Precision 0.8919 0.9688 0.9508

Sensitivity 0.8684 0.9394 1

Specificity 0.9677 0.9792 0.9712

NPV 0.96 0.9592 1

F1 0.88 0.9538 0.9748

AUC 0.9824 0.9902 0.9988

Multi-input
(CFP + IR)

Precision 0.9412 0.9444 1

Sensitivity 0.9697 0.8947 1

Specificity 0.9583 0.9839 1

NPV 0.9787 0.9683 1

F1 0.9552 0.9189 1

AUC 0.9905 0.9868 1

Table 4.  Class-wise performance metrics for RP, STGD, and healthy eyes using different inputs. Signifiacnce 
value bold.
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98.83%, and average precision of 94.38%. Corresponding values utilizing a single input model with IR images 
achieved an overall accuracy of 94.44%, AUC of 99.15%, and average precision of 94.43%. The single-input IR 
model had higher sensitivity for STGD and higher specificity for RP detection. Numerous experiments showed 
that the proposed multi-input approach resulted in higher diagnosis accuracy than classical models that use 
either CFP or IR retinal images as their single input.

In the current study, RP detection using a single-input CFP model showed higher sensitivity compared to 
the model used by Chen et al.40 conducted on CFP images from a large sample of 1153 RP and 517 healthy 
eyes. These authors utilized a fine-tuned Xception architecture model to distinguish RP patients from normal 
eyes with the sensitivity of 95.71%, AUC-ROC of 96.74% and accuracy of 96%. Chen et al. [37] trained and 
validated their model based on registered images in the Taiwan inherited retinal degeneration project employing 
various instruments and technicians. Uur data were collected from the IRDReg® program in which all patients 
were examined by one retina specialist (N.D) and one optometrist (H.S), and a single experienced technician 
conducted all CFP and IR imaging.

Another study on RP patients conducted by Masumoto et al.18 investigated the processing of ultrawide- field 
pseudo color and ultra-wide field autofluorescence images using a VGG16 model for RP detection. They found 
that both imaging modalities achieved high (> 99%) values for AUC-ROC, sensitivity, and specificity metrics. 
This slight difference with our figures can be attributed to the extensive field of data capture by ultrawide- field 
pseudo color and autofluorescence imaging.

Shah et al.19 specifically performed a study on patients with STGD regarding disease detection and severity 
utilizing two methods: VGG19 architecture and a customized LeNet model42. Their model was capable of 
distinguishing STGD patients from healthy controls using optical coherence tomography (OCT) images and 
yielding accuracy of 99%, sensitivity of 99.8%, and specificity of 98% for the first model. This level of performance 
may be attributed to this fact that OCT is focused on retinal structures in the macula, the area most severely 
involved in STGD.

An automated model was developed by Fujinami-Yokokawa et al.41 for prediction of the most common 
causative genes in RP, STGD andOccult macular dystrophy by analyzing CFP and FAF images. The overall 
accuracy, sensitivity, and specificity of CFP was 88.2%, 88.3%, and 97.4%, respectively with Inception V3 
architecture, trained and, tested, with 4-fold cross validation method, while our model could automatically 
detect the RP and STGD more accurately. It could be concluded that the sensitivity of > 90% was achieved 
by analyzing of the CFP images in RP patients with mutation in RP1L1 gene and high specificity (> 90%) was 
identified in detection of RP and STGD patients having mutation in ABCA4, EYS and RP1L1. In a different 
study published by the same author analyzing the OCT images on a small population, the mean accuracy and 
sensitivity of 100% for ABCA4, > 78% for RP1L1, and > 89% for EYS were identified. The analysis of the causative 
genes by automated models is going to be investigated in the future studies of IRDReg® program.

In a study conducted by Miere et al.15 on patients with RP, STGD and Best disease by automated analyzing of 
\FAF images, ehe overall accuracy was 95% for all studied IRDs. The sensitivity, specificity, and AUC-ROC were 
obtained greater than 96% for detection of RP and STGD. In our study, the sensitivity and specificity of IR and 
CFP images for detection of RP and STGD were more than 90%. This difference in results might be attributed to 
the different imaging techniques, variation in parameters and architectures used for classification.

In another study conducted by Miere et al.43, the single input ResNet101 model findings of FAF images with 
highest accuracy of 92% and AUC-ROC of 98.1% were reported for differential diagnosis of advanced age- 
related macular degeneration (AMD) with geographic atrophy from late onset STGD and pseudo- Stargardt 
pattern dystrophy. This study mainly focused on the differential diagnosis of AMD comparison with the above 
mentioned IRD types and no results were reported in detection of STGD disease for further comparison.

Deep neural networks have been extensively used for medical image analysis and diagnosis. The complex 
architecture of such networks allows them to achieve a level of abstraction where high-level information is 
extracted from raw images. This high-level information is then used for classification of the input image. 
MobileNetV2 was chosen over other network architectures in this study due to the highest accuracy and precision 
compared with the other popular architectures, such as DenseNet121, ResNet50, InceptionV3, and VGG16.

The increasing amount of data for diagnosis can be time-consuming and overwhelming for medical 
professionals. This issue is under extensive investigation by ongoing studies and AI applications can be 
particularly be beneficial in medicine, particularly in the field of ophthalmology. AI-based automated models 
enable more accurate diagnosis for referring IRD patients by analyzing their condition. This could also be 
influential in the early diagnosis of other family members suspicious of IRD diseases with less dependency on a 
retina specialist40,41.

Automated AI models can be effective in decision support systems to telescreen and detect patients with 
different IRDs in remote locations with no access to retina specialists. These AI modalities may also lead to more 
accurate IRD diagnosis, foster personalized medicine, assist possible gene therapy, and eventually help provide 
better therapeutic outcomes17.

The current study demonstrated that the suggested multi-input MobileNetV2 outperformed its single-input 
alternatives where only IR or CFP images were used separately. Its efficiency was comparable to other state-of-
the-art neural networks and machine learning algorithms. One of the strengths of the current study was that all 
images were collected from the patients in the Iranian National Registry for Inherited Retinal Diseases (IRDReg®) 
in which the retinal imaging was conducted by a single experienced technician using a same imaging device. The 
proposed multi-input approach seems to enjoy the advantage of high diagnostic accuracy and acceptably low 
amount of data required to train the network. By merging features of IR and CFP images in the model, RP and 
SGDT were diagnosed more accurately than using single input IR and CFP image models.

One of the limitations of the present study was that the DL model could not grade disease severity in RP and 
STGD. This model may have the potential to get improved and diagnose of other types of IRDs, detect disease 
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progression over time and also classify disease severity. In the future studies, other imaging modalities can be 
investigated alongside CFP and IR images.

Conclusion
We proposed a multi-input deep learning neural network model based on MobileNetV2 to classify IRDs. In this 
approach, each individual’s CFP and IR images were fed into the model to get a prediction. Our results indicate 
that by accumulating visual features extracted from both of these imaging modalities, the multi-input model 
outperforms the single-input models separately trained on each set of CFP or IR images. This configuration 
makes use of the complimentary data of the two imaging modalities to help diagnose the condition.

Data availability
Data could be available by sending a request to the corresponding author.
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