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Friction Stir Welding (FSW), a solid-state welding process, is used to weld AA 1100 alloy plates 
together, varying weld parameters such as spindle speed, feed rate, and axial load. The Taguchi L27 
orthogonal array is employed to study the effects of multiple factors with minimal test runs. Tensile 
tests are conducted on welded samples to determine the time of failure. Using the Signal to Noise (S/N) 
Ratio to maximise the tensile strength, the influencing parameters and their effect are determined. 
Weibull analysis is used to calculate weld reliability. Soft computing techniques, such as Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) and Artificial Neural Networks (ANN), have been developed 
to predict weld reliability based on parameters. The ANFIS model demonstrates superior performance, 
with an average percentage error of 4.61% compared to 19.95% for ANN and a Root Mean Square Error 
(RMSE) of 0.002 versus 0.008 for ANN. Optimal FSW parameters for maximising joint reliability are 
1200 rpm spindle speed, 18 mm/min feed rate, and 7 kN axial load, resulting in a predicted reliability of 
0.87. The study highlights the potential of ANFIS as an effective tool for predicting and optimising FSW 
joint reliability in AA 1100 aluminium alloys.
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Friction Stir Welding (FSW) is one of the most innovative and revolutionary solid-state joining processes, 
patented in 1991 by the UK-based Welding Institute (TWI). The method transformed the welding of metals, 
especially those considered “difficult-to-weld,” such as alloys of aluminium, magnesium and dissimilar materials 
where the weldment does not melt at the weld. Since its inception, the automotive, aerospace, maritime, and 
even railway industries have utilised FSW extensively. FSW focuses on energy efficiency, environmental safety, 
and producing high-quality welds1–3. FSW stands out from the traditional fusion welding techniques as it 
does not touch the melting point of the processed materials, reducing problems such as porosity, brittleness, 
and cracking that arise in the traditional methods4. As a result, FSW has received much research attention, 
with ongoing efforts to optimise process parameters and evaluate its versatility for use in various alloys and 
material systems. The literature review deeply delves into the various advancements in FSW over time, including 
optimising welding parameters, using advanced computational tools, and escalating challenges. Further, the 
gaps in the current research landscape and potential methods to enhance efficiency and improve the application 
of FSW processes are identified. These are achieved through the following research questions.

RQ1  What parameters of FSW can maximise reliability in the AA 1100 aluminium alloy plate?

RQ2   How is the weld reliability of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) compared with that of 
Artificial Neural Networks (ANN)?
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These questions have enabled us to adopt multiple techniques to determine the effective tool for predicting 
and optimising FSW joint reliability in AA 1100 aluminium alloys. The remainder of the paper is organised 
as follows: Section two explains the various dimensions of relevant literature explored, followed by the gap 
identified. It is followed by the experimental analysis section, which defines the design, process settings, and 
various tools and analyses employed to test the performance and optimisation. The effects of Process Parameters 
on the Performance of AA 1100 FSW Joints are presented in section four. It is followed by determining the 
reliability using various techniques in section five. Section six explains the contribution of the study to literature 
and practice. Section seven summarises the study and presents the limitations and scope for future research. 
The next section presents an exhaustive review of various themes of literature to identify the explored areas and 
potential research gaps that could be bridged to improve the performance of various techniques employed in 
predicting the weld reliability of FSW in AA 1100 aluminium alloys.

Friction stir welding process
The FSW process uses a non-consumable rotating tool that travels along a contact line between two metals to 
soften an alloying material through frictional heat. At the weld interface, this softened alloying material allows 
for plastic deformation and mechanical mixing of the two metals. The final bond’s mechanical properties are 
high strength and excellent, making FSW an attractive choice for many industries that require lightweight yet 
strong components. FSW’s growing attractiveness stems primarily from its capability to weld materials that 
are difficult to join, such as aluminium alloys and other non-ferrous metals. FSW’s ability to preserve original 
material properties without developing large heat-affected zones (HAZ) and defects has made it popular5. The 
tool movement and material flow of stages involved in welding are shown in Fig. 1 6.

'

Parametric study in friction stir welding
The FSW process produces weld quality dependent on critical parameters like speed, welding speed, axial force, 
tool geometry, and tilt angle7. The effects are discussed below to achieve defect-free, high-quality joints. FSW 
can help improve the material mechanics of Fine-grained AA1050 aluminium alloys. Optimising rotational 
and welding speed for a high-quality weld can enhance strength and ductility8. It signifies the importance of 
process parameters in determining the weld quality. Studies have emphasised attaining the desired accuracy 
for tool rotation and axial force to minimise the entry of defects such as voids and cracks9–11. FSW of AA6061 
aluminium alloy in annealed and T6 conditions can fetch superior welds in high-strength aerospace alloys by 
optimising rotational speed, welding speed, and axial force12. Interaction of these parameters is essential for 
defect-free welds in materials and is difficult to join via conventional methods13. Tool designs and profiles also 
dramatically influence the welds’ mechanical properties, microstructure, hardness and structural strengths14.

Parametric optimisation techniques in friction stir welding process
Understanding the capabilities of the FSW process, researchers became interested in using various optimisation 
techniques to achieve quality welds and enhance process efficiency. Comparison of different methods such as 
Probability Weighted Moments (PWMs), Maximum Likelihood Methods (MLMs), Method of Moments (MoM), 
and Least Square Method (LSM) for estimating the parameters of the Weibull distribution proved the MLM to 
be the most accurate one15. The mutual association between the rotational speed and welding speed and their 
role in determining the weld quality can be understood by Taguchi-based grey relational analysis to multi-
objective optimisations and similar soft computing techniques16. Mathematical modelling techniques expose 
the strengths and limitations of the various parameters and process settings17. Fuzzy logic improves efficiency 
and decision-making18, and fuzzy Taguchi helps optimise parameters to attain high-quality welds19. Studies have 
also focused on summarising the various strategies used to optimise the welding processes to lay a foundation 
for prospects20.

Fig. 1.  Schematic representation of the FSW process6.
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Meanwhile, optimising FSW parameters for dissimilar materials remains a challenge. Isa et al.21 reviewed 
recent improvements in the FSW of dissimilar metals, which included aluminium and copper. The research 
indicated the need for further investigation to optimise the process parameters and application of various 
techniques. Several works have been performed to improve the welding process for dissimilar materials owing 
to their practical significance. Double-side friction stirs Z shape butt-lap welding (DS-FSZW) improved FSW’s 
joint quality and reliability in Ti/Al dissimilar joints22. Integration of the Response Surface Method  (RSM) 
and a Teaching-Learning-Based Optimisation  (TLBO) algorithm enhanced reliability in predicting the weld 
of dissimilar Magnesium alloys, leading to better mechanical properties and weld quality23. Dialami et al.24 
developed an advanced friction model of FSW by considering non-uniform pressure to improve the simulation 
of temperature, forces, and torque, with experimental analysis for validation.  It was revealed that optimising 
the environmental parameters is a key to achieving better prediction and welds. Toorajipour et al.25 proposed 
a multi-objective dragonfly algorithm optimised toward the parameters of FSW. Despite the proven potential 
of the dragonfly algorithm, bio-inspired algorithms remain a less explored area in enhancing the FSW process.

Application of artificial intelligence techniques in FSW
Recent advances in soft computing and Artificial Intelligence (AI) have opened up new avenues for optimising 
FSW processes. We applied soft computing models like fuzzy logic and ANN to predict weld quality and 
optimise FSW processes. Considering the explosive growth in the application of AI and ML, Kumar et al.26 
conducted an extensive discussion on their applications in FSW operations. Using the framework based on the 
structure of ANN, the researchers could predict the effect of heat generation on the mechanical properties of 
the materials welded under real-time process monitoring with AI. Okuyucu et al.27 demonstrated that ANNs 
can effectively correlate FSW welding parameters such as weld speed and tool rotation speed with properties 
like tensile strength, yield strength, elongation, and hardness of the weld metal and HAZ. These models can 
describe weld characteristics using real-time data. These advancements showcase the increasing intelligence of 
the welding systems in handling dynamic conditions. However, these AI models must be capable of working 
under challenging conditions and constraints to ensure the production of promising joints for real-time 
application with long-term durability28. The ANFIS demonstrates successful applications for modelling and 
optimising performance in FSW processes. Research demonstrates that ANFIS systems combined with Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO) or Harris Hawks Optimization (HHO) produce 
reliable Ultimate Tensile Strength (UTS) predictions for FSW processes when operating with welding speed, tool 
rotational velocity, and axial force parameters29,30. Analysis of FSW joint properties by ANFIS models produces 
better results than traditional RSM, according to Shehabeldeen et al.31. The Taguchi method establishes optimal 
FSW parameters, and ANFIS applications achieve advanced accuracy in experimental result predictions32. 
Simulation-based research demonstrates how ANFIS modelling supports FSW process optimisation, which can 
lead to automated operations and enhanced intermetallic bonding in multiple industrial applications.

The fatigue behaviour of friction stir butt-welded aluminium alloys has been, and design curves have been 
analysed to avoid fatigue in real-life applications33. Optimum conditions have been determined across diverse 
areas of FSW: mathematical techniques in AA8011-6062 alloys34, tribological properties of Cu–Ni–Sn alloys35, 
soft computing techniques for cutting tools36, fuzzy logic-based software reliability quantification framework to 
test the robustness of the software37, AI in manufacturing and welding operations38, etc. The study on friction stir-
welded copper canisters of nuclear waste containment by Cederqvist and Öberg39 holds enormous importance 
for the long-term reliability of FSW joints. There is an overwhelming need to investigate the functioning of 
the FSW joints under changing environmental conditions, particularly in critical applications like aerospace 
and nuclear energy. Optimising FSW for dissimilar materials will always be an active challenge and requires 
further development of advanced tool designs and process parameters. Lastly, establishing consistent quality 
and reliability of FSW joints in industrial applications requires integrating AI-based real-time control systems 
and developing advanced temperature monitoring techniques. These discoveries reveal that much-unexplored 
territory remains despite significant advancements in FSW. The investigators will continue to improve the FSW 
process and expand its application to a wide range of industries, such as aerospace and automotive, reaching out 
to even more industrial companies.

In this work, ANN and ANFIS methods are utilised to predict the reliability of FSW joints. ANN demonstrates 
distinguished performance in analysing unclear patterns via an automated learning process, which works well 
with extensive dataset applications. ANFIS combines neural network learning functions with fuzzy logical 
reasoning to process complex parameter interactions while improving its ability to address uncertainties in data. 
The order-based design delivers improved interpretability among the system’s structural elements. Evidently, 
the prediction reliability depends on several aspects of the FSW process. The results of the studies confirm the 
necessity of utilising the capabilities of various techniques and considering the holistic optimisation of FSW. 
Integrating AI algorithms and machine learning into process monitoring would imply real-time feedback and 
adaptability to the welding process. Table 1 shows the sources summary, highlighting the research question’s 
relevance, contributions, and insights and identifying gaps in the literature.

Research gaps
FSW, a newly developed metallic joining process, offers several advantages over fusion welding processes. In 
recent years, much work has been done to improve FSW parameters and weld quality concerning high-strength 
material applications, particularly aluminium alloys. Despite the significant advancements in FSW process 
optimisation and weld quality enhancement, some gaps still require attention. The most significant gap remains 
in integrating AI and advanced computational models with real-time process control. ANN and fuzzy logic 
models have produced promising results for weld quality prediction, but their industrial implementation is still 
in its infancy. Advanced research is demanded to guarantee the scalability and efficient operation of these models 
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in dynamic, real-world environments. Another area of research interest is the long-term reliability of FSW joints, 
especially in harsh environmental conditions.

Materials and methods
Materials
The FSW is performed on aluminium alloy of AA 1100 plates with a 100 mm × 100 mm × 3 mm dimension. 
Specimens were machined to the required dimensions through a wire Electric Discharge Machining process. 
The chemical composition of the aluminium AA 1100 is determined through an Optical Emission Spectrometer; 
the summary is shown in Table 2. The yield strength of the alloy varies from 34 to 115 MPa, ultimate tensile 
strength varies from 90 to 165 MPa and hardness from 23 to 44 HB, depending on the temper.

Methodology
The study focussed on the FSW of AA 1100 aluminium alloy plates. An experiment design is generated using 
the Taguchi L27 orthogonal array, with spindle speed, feed rate, and axial load as the welding parameters. The 
FSW process is performed by varying these parameters. Tensile tests are conducted to measure the time to failure 
for each welded sample. The results are then analysed using Weibull distribution to estimate reliability. Soft 
computing models, including ANN and ANFIS, are developed to predict reliability. The models are trained, and 
their performance is compared, followed by optimisation of the FSW parameters and validation of the results. 
The methodology followed in the current study is presented in Fig. 2.

The most influencing FSW parameters based on the literature chosen in this study are spindle speed (rpm), 
feed rate (mm/min) and axial load (kN). In FSW, selecting appropriate process parameters is important for 
optimising weld quality and efficient operation. The factors, along with their respective levels, of spindle speed, 
feed rate, and axial load are chosen with such care as to produce a balance between the generation of heat, 
material flow, tool durability, and prevention of defects. The spindle speed, ranging between 1100 and 1300 
RPM, is necessary to ensure frictional heat generated from the rotary tool that should plasticise the material. It 
also ensures enough heat input without overheating and over-the-tool wear. Feed rates, set at between 15 and 
21 mm/min, also control the traverse speed of the tool. It provides a proper mix of the material and prevents 
defects like pores or inadequate penetration due to maintaining a balance between the heat generated and the 
movement speed. Lastly, axial load, which ranges from 5 to 9 kN, gives sufficient downward pressure for material 
consolidation without excessive forces that would cause damage to the tool or workpiece. These parameters 
match the standard industrial requirements for FSW processes and have been devised to achieve broad 
applicability to various materials, including aluminium alloys and mild steel, while reducing the risks of process 
failure such as flash, voids, or incomplete welds. The Taguchi method is utilised for designing experiments to 

Elements Contents

Aluminium 99

Silicon + Iron 0.95

Copper 0.20

Zinc 0.10

Manganese 0.50

Beryllium 0.0008

Table 2.  Elemental analysis of AA 1100 aluminium alloy.

 

Theme References
Relevance of research 
questions Contributions/insights Identified gaps

FSW process
Singh et al.1; Gebreamlak et al.2; Kaygusuz 
et al.3; Mishra and Ma5; Khalafe et al.13; 
Sezhian et al.6; Kwon et al.8

Provides a fundamental 
understanding of FSW required 
for RQ1 and RQ3

FSW is a solid-state joining process that 
has several advantages, including high 
bond strength and minimal defects
Improves mechanical properties in alloys 
such as AA 1100

A lack of real-time models for industrial 
applications
There is little data on long-term 
reliability and challenges in welding 
dissimilar materials

Parametric 
study in 
FSW

Gite et al.7; Kwon et al.8; Chauhan and 
Kumar9; Prakash et al.10; Albunduqee and 
Al-Bugharbee11; Rani et al.12; Hasnol14; 
Khalafe et al.13,

Directly related to RQ1 by 
optimising FSW parameters 
for reliability in AA 1100 alloy 
plates

Identifying key parameters (rotational 
speed, welding speed, tool geometry)
Optimising parameters produces high-
quality, defect-free joints

Few studies on dissimilar materials and 
parameter interactions to reduce defects
There is a need for refined tool designs 
and advanced optimisation

Parametric 
optimisation 
techniques

Osarumwense and Rose15; Ghetiya et 
al.16; He et al.17 Azadegan et al.18; Chi and 
Hsu19; Prabhakar et al.20; Isa et al.21; Alok 
et al.23; Toorajipour et al.25

Relevant to RQs 1 and 3 for 
determining optimal welding 
parameters and evaluating 
reliability using methods such 
as Weibull analysis

Optimisation techniques such as 
Taguchi, RSM, and bio-inspired 
algorithms improve FSW results
Soft computing techniques improve 
decision-making

Optimisation for materials with different 
properties is still in its early stages
Advanced bio-inspired algorithms are 
required for dynamic control, as is 
integration with AI

Soft 
computing 
and AI in 
FSW

Okuyucu and Arcaklioglu27; Boulahem 
et al.28; Lomolino et al.33; Elanchezhian et 
al.34; Gokulachandran and Mohandas36; 
Rizvi et al.37; Pitchipoo et al.38; Ilangovan 
et al.35; Cederqvist and Öberg39

Addresses RQ2 by comparing 
ANN to other AI models 
and RQ3 through AI-based 
reliability evaluations

AI models such as ANN predict weld 
quality and optimise parameters
Soft computing methods outperform 
traditional models for predicting weld 
results

The AI models for real-time control 
have not been fully implemented
More research is needed into AI-based 
long-term reliability and integration 
with real-time feedback systems

Table 1.  Summary of the literature review.
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explore the influence of different parameters on the average and variability of a process performance indicator, 
which determines the effectiveness of the process. Taguchi method involves reducing process variation through 
robust Design of Experiments (DoE)16.

Optimisation and prediction of FSW joints are carried out using the Taguchi approach, ANN, and ANFIS. 
The integrated approach provides a structured methodology to design experiments, optimise parameters, and 
predict modelling for reliable welds with performance. The Taguchi method represents a commonly applied 
optimisation method that optimises product quality and process execution through noise variability reduction. 
Through robust design methodology, a system designs itself to ignore external forces while maintaining peak 
operational effectiveness. Taguchi method’s experimental design performs efficient factor exploration by 
conducting minimum experiments through orthogonal arrays. Central to this approach lies the signal-to-noise 
ratio that enables the selection of the optimal parameters by using the larger-is-better approach for maximum 
response outcomes, including tensile strength. The Signal to Noise (S/N) ratio is calculated using Eq. (1):

	
S/N = −10log10

(
1
n

∑ 1
y2

i

)
,� (1)

where yi represents the observed values, and n denotes the number of experiments. A part of this approach 
evaluates process parameter significance and their interaction effects through Analysis of Variance (ANOVA). 
The logarithmic structure of S/N ratios shows that process enhancement requires minimised variability and 
maximised performance output. Higher performance outcomes are more efficiently achieved when using the 
Taguchi method in scenarios that demand strong increments of efficiency or strength. The Taguchi approach 
maximises the S/N ratio to find optimal FSW parameters that increase weld reliability. However, the Taguchi 
approach does not consider the complex non-linear relationship between input variables and the output weld 
quality, although it provides an efficient means of optimising process parameters.

The ANN approach is presented to model and predict FSW performance using a machine learning approach 
to overcome this limitation. ANN draws inspiration from the brain’s anatomy with layers of neurons connected 
and capable of learning complex inter-relations between the input parameters such as spindle speed, feed rate, 

Fig. 2.  Methodology for the current study.
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and axial load, and the output response like tensile strength and reliability. The basic operation in an ANN is a 
combination of weighted transformations with activation functions, represented by Eq. (2):

	
y = f

(∑
wixi + b

)
,� (2)

where wi, xi, b and f  stand for the weights, input variables, bias, and activation function, respectively. The ANN 
model will be trained using backpropagation to adjust its weights for minimum prediction error. Although ANN 
can capture non-linear relationships, it does not possess interpretability. It suffers from low datasets, which 
makes it difficult to generate insights on the influence of the individual parameters of FSW.

The ANFIS is integrated as a hybrid approach, which combines the advantages of ANN and fuzzy logic to 
overcome these shortcomings. ANFIS uses fuzzy if–then rules to model uncertain and imprecise relationships, 
thus better allowing for interpretability while exploiting the learning capability of ANN. A standard ANFIS 
system consists of a fuzzy layer that gives input membership functions, a rule layer that applies fuzzy logic rules 
to the inputs, and an output layer that provides predictions based on a linear function. The process of fuzzy 
inference does follow the Sugeno-type model wherein the rule is expressed by Eq. (3):

	 f = px + qy + r,� (3)

where p, q, and r are parameters adjusted during training. The final output is then computed by Eq. (4):

	
Output =

∑ wi∑
wi

fi,� (4)

where wi represents for the rule activation strength. Hybrid learning is implemented in the training of the 
ANFIS model, using the gradient descent combined with the least squares method to adjust the parameters step 
by step. It makes ANFIS powerful in modelling complicated non-linear interactions of FSW parameters while 
still being interpretable from its rule-based structure. This study systematically optimises, models, and predicts 
the reliability of FSW joints by integrating the Taguchi approach, ANN, and ANFIS. Taguchi method introduces 
a structured experimental design and establishes optimal welding parameters, while ANN enhances prediction 
accuracy by learning complex relationships. ANFIS further refines these predictions through fuzzy logic for 
better reliability and interpretability. This multi-method approach ensures that FSW process optimisation is 
statistically robust and computationally efficient to enhance joint performance and reliability.

The levels of spindle speed chosen in this study are 1100 rpm, 1200 rpm and 1300 rpm. For feed rates, 15 mm/
min, 18 mm/min and 21 mm/min and an axial load of 5 kN, 7 kN and 9 kN are considered for the current study 
as detailed in Table 3. The design of experiments was generated using Taguchi L27 orthogonal array with the 
three levels of three welding parameters as discussed above.

The FSW setup is shown in Fig. 3. The machine was developed by modifying a milling machine, and load is 
applied through the hydraulic circuits. The FSW fixture setup includes a clamping system that securely holds 
the aluminium plates during welding. Considering the applied loads and heat during welding, the fixture does 
not allow the workpieces to deform or warp. In addition, the fixture has adjustable clamps and accommodating 
plates of all sizes for uniform contact between the tool and workpiece. The FSW tool consists of a shoulder and a 
probe and is made from hardened steel to accommodate the high forces of the process. An L27 orthogonal array-
based design of the experiment plan was developed based on the weld parameters and their levels.

Experimental analysis of FSW
The macroscopic image of the friction weld sample is presented in Fig. 4. The tensile specimens are prepared 
based on ASTM E8 standard. The tensile specimen with dimension s and samples are machined out through the 
wire EDM process from the welded sample, as depicted in Figs. 5 and 6.

Results and discussions
The tensile strength and time to failure are recorded for every specimen. The time to failure is the response to 
performing reliability analysis40. The statistical distribution chosen for the reliability analysis in this study is 
Weibull. The obtained results are outlined in Table 4.

Effects of process parameters on the performance of AA 1100 FSW joints
The effects of spindle speed, feed rate, and axial load on the performance of FSW joints in AA 1100 aluminium 
alloy exhibit complex, non-linear interactions. Lower spindle speeds, specifically 1100  rpm, consistently 
produced superior results, achieving tensile strengths up to 61.60  MPa and failure times of 162.08  s under 

Parameter

Levels

1 2 3

Spindle speed (rpm) 1100 1200 1300

Feed rate (mm/min) 15 18 21

Axial load (kN) 5 7 9

Table 3.  Weld parameters and their levels.
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optimal conditions. The spindle speed of 1200 rpm generally underachieved, while 1300 rpm was sometimes 
similar to 1100 rpm. The interaction between feed rate and spindle speed was very strong, with 18 mm/min 
always producing the highest tensile strengths and longest failure times, especially at 1100 rpm and 1300 rpm. 
The most significant 21 mm/min feed rate also produced exceptional results in certain configurations. Axial 
load was inconsistent, where the lower load of 5 kN often surpassed higher loads, especially at spindle speeds of 
1100 rpm and 1300 rpm. The best parameter combination that yielded the highest tensile strength and longest 
failure time was found to be spindle speed at 1100 rpm, feed rate at 21 mm/min, and axial load at 7 kN, implying 
that low heat input and moderate forging pressure are advantageous for AA 1100 FSW joints (Fig. 7).

The superior performance observed at low spindle speeds, for instance, 1100 rpm, could be due to a better 
microstructure, which results from sufficient heat input to effect plasticisation without causing undue grain 
growth. Such a balance between dynamic recrystallisation and grain growth would naturally lead to a fine-
grained structure with good mechanical properties. Higher spindle speeds, like 1200–1300  rpm, resulted in 
overheating, extreme grain growth, and sometimes partial melting, greatly degrading the mechanical property. 
The spindle speed and feed rate interaction determine the heat input per unit length. Thus, the optimal results 
are 1100 rpm and 21 mm/min, wherein the balance of heat generation and dissipation exists, allowing enough 
material flow and preserving an ideal microstructure. This increased strength could result from a higher cooling 
rate, yielding finer grains.

In contrast, process parameters such as spindle speed and feed rate play a critical role in determining material 
flow and the quality of the weld joint. For example, a low spindle speed (1100 rpm) exhibited superior performance 
at higher feed rates of 21 mm/min by allowing effective transportation of materials and consolidation without 
defects. Instead, higher axial loads of up to 9 kN resulted in turbulent flow and incomplete fusion, leading to 

Fig. 4.  Macroscopic image of the friction weld sample.

 

Fig. 3.  Experimental setup of FSW.
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Fig. 6.  Tensile samples machined out through the FSW sample.

 

Fig. 5.  Tensile specimen with dimensions.
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lower performance. Therefore, the process parameters were found at 1100 rpm, 21 mm/min, and 7 kN. From the 
analysis of the response table for means in Table 5, it is evident that spindle speed, feed rate, and axial load all 
have different effects on performance, with spindle speed being the most significant factor. The best performance 
is obtained at spindle speed level 1100 RPM (Level 1) with a mean response of 41.96, while the worst is obtained 
at 1200 RPM (Level 2). The Delta value for spindle speed is 12.70, meaning the spindle speed is the dominant 

Fig. 7.  Effects of spindle speed, feed rate, and axial load on joint performance.

 

Exp. no Spindle speed (RPM) Feed rate (mm/min) Axial load (kN) Tensile strength (MPa) Time of failure (sec)

1 1100 15 5 37.63 62.061

2 1100 15 7 28.46 69.091

3 1100 15 9 45.5 139.066

4 1100 18 5 44.4 156.001

5 1100 18 7 54.2 105.059

6 1100 18 9 38.88 134.093

7 1100 21 5 44.61 124.041

8 1100 21 7 61.6 162.082

9 1100 21 9 22.41 75.005

10 1200 15 5 22.27 53.077

11 1200 15 7 44.83 112.074

12 1200 15 9 14.4 40.054

13 1200 18 5 36.4 58.092

14 1200 18 7 13.27 77.066

15 1200 18 9 40.97 91.07

16 1200 21 5 35.5 111.05

17 1200 21 7 45.61 130.052

18 1200 21 9 10.05 48.061

19 1300 15 5 14.95 89.052

20 1300 15 7 39.25 87.02

21 1300 15 9 11.62 84.039

22 1300 18 5 52.2 126.056

23 1300 18 7 49.28 131.045

24 1300 18 9 19.82 92.078

25 1300 21 5 57.2 128.065

26 1300 21 7 31.58 58.095

27 1300 21 9 61.3 143.038

Table 4.  Experimental results of FSW joints.
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factor influencing the response. The feed rate also comes in at a significant level, 21 mm/min, Level 3, showing 
the best performance at 41.10. The Delta value for feed rate is 12.33, which shows it as the second highest 
influence factor. Axial load is the least influential of the factors, with Level 2 at 7 kN being the best performance 
at 40.90. Higher axial loads of 9 kN (Level 3) only yield lower performance (Fig. 8).

The optimum parameters for maximum performance are the spindle speed at 1100 RPM, feed rate at 21 mm/
min, and an axial load of 7 kN. This combination of optimum levels of the parameters, with spindle speed being 
the most critical in the performance of FSW joints, is likely to yield the best performance, as depicted in Table 
5. The outcome shows that spindle speed, RPM, has the most significant effect on output, followed by feed rate, 
mm/min. Axial load, kN, contributes the least. While no factor is statistically significant at p < 0.05 level, spindle 
speed has the highest variability impact, hence the most influential. The calculated Delta values further support 
this ranking, and it thus follows that optimisation of spindle speed and feed rate can yield effective output control.

Three confirmation tensile tests have been conducted under the optimum combination of factors obtained 
based on the Taguchi design to determine the confirmatory tensile test values of 52.4  MPa, 53.1  MPa, and 
53.6 MPa (Fig. 9). These values are within the 95% confidence interval (45.60–57.40 MPa) predicted for tensile 
strength, validating the optimisation process.

The experimental results match closely with the theoretical predicted value of 51.50  MPa, proving that 
the chosen parameter settings effectively improve tensile strength. Deviations observed within the range are 
expected for processes and, therefore, do not diminish the robustness of the selected conditions. This validation 
establishes that the optimised parameters by the Taguchi approach are effective and can be confidently applied 
to improving tensile strength in similar experimental setups.

Determination of reliability
Reliability was estimated using the Weibull distribution, with the Median Rank Method (MRM) and MoM 
being statistical techniques used to estimate probability distributions’ shape and scale parameters. The welding 
parameters are input, and reliability estimated using Weibull distribution are given as targets in ANFIS and ANN 
in Matlab Software. ANFIS and ANN are soft computing techniques used to determine reliability, validate the 
results with experimental results, and find errors.

The following terms are used for the reliability calculation:

Fig. 8.  Interaction effects of process parameters on joint performance.

 

Level Spindle speed (RPM) Feed rate (mm/min)
Axial load
(KN)

1 41.96 28.77 38.38

2 29.26 38.85 40.90

3 37.50 41.10 29.43

Delta 12.70 12.33 11.47

Rank 1 2 3

Table 5.  Main effects of process parameters on SN ratio for joint performance.
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	1.	 Time of failure → t
	2.	 Shape factor → m
	3.	 Scale factor → η

Reliability with respect to time [R(t)] is given by Eq. (5):

	 [R (t)] = e
−

(
t
η

)m

.� (5)

Since the shape factor and scale factor should be calculated to estimate reliability, two methods, the MRM and 
MoM, are used and compared to determine the best method to find the reliability15.

Median rank method
The Weibull distribution’s median rank technique estimates unreliability values using the binomial distribution 
of cumulative data and failure order number. The cumulative binomial formula; i.e., Eq. (6), can be used to get 
the rank for every percentage point larger than zero and less than one:

	

(
Bernard′s approximation

)
MR = j − 0.3

n + 0.4 ,� (6)

where j is the failure serial number and n is the total number of samples. From Isa, Moghadasi et al. (2021), this 
can be linearised as Eq. (7):

	
ln

(
ln

( 1
1 − MR

))
= m (ln (t)) − m (ln (h)) .� (7)

Equation (7) forms in y = m(x) + b equation format, where m is the slope and b is the intercept. These values will 
be validated with the predicted values of a soft computed model, namely, an ANN and ANFIS System.

Method of moments
An approach for estimating population parameters is the MoM. It begins by describing the population moments 
as functions of the important parameters. The distribution mean and sample mean are matched using the MoM. 
Eqs. (8) and (9) are the formulas to calculate shape and scale parameters, respectively15:

	
Shape Parameter = 1.2785 ×

( Average time
Standard deviation

)
− 0.5004,� (8)

	
Scale parameter = Average time(

1 +
(

1
Shape parameter

)) .� (9)

Comparison of the methods in determining the reliability
Shape and scale parameters are calculated using the MRM and MoM. Then parameters are substituted for in 
reliability Eq. (5). The reliability values obtained from the MRM and MoM are shown in Table 6. These methods 
prove that the best method for estimating the two-parameter Weibull distribution is to consider the total 
deviation as a measure of comparison. Therefore, reliability values obtained using the MoM for the respective 
weld parameters are shown in Table 7, and the results are used as a reference for comparing the predicted values.

Reliability values using ANN
A collection of computational methods based on AI (human-like decision) and natural selection are known as 
soft computing techniques. They are designed to solve exceedingly complicated problems quickly and affordably 
in the absence of analytical formulations. The two soft computing techniques used in the present study are 

Fig. 9.  Experimental validation of FSW joints.
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ANFIS and ANN. ANN instructs computers to analyse data like a human brain. Deep learning is a type of 
machine learning that uses linked neurons in a layered framework to simulate the human brain. The ANN 
Model structure employed in the current study is shown in Fig. 9. The ANN training data used in the present 
study is given in Table 8.

In Figure 10, input, output, and hidden refer to weld parameters, experimental results, and rules. The 
simulation of trial set values from the ‘input’ and the ‘target’, as well as the ‘sample’, is used to determine how 
efficient the neural network is in predicting the reliability of welded joints41. The Matlab software simulates the 
trial values, and this tool is efficient enough to consider the number of iterations required to bring regression 
values of training, validation, and testing to the highest percentage. The reliability values are obtained through 
an ANN, and the steps are followed using Matlab software. The obtained reliability values predicted through the 
ANN method are displayed in Table 9.

The ANN model used a sigmoid transfer function given in Eq. (10), indicated by the map inputs within a range 
of 0–1, efficiently responding to non-linear relationships. The learning algorithm applied was backpropagation 
with gradient descent. This algorithm adjusts the weights and biases iteratively to minimise prediction error 
through error calculation, gradient computation, and, finally, weight updates. Such an approach improves the 
capability of the model to capture complex FSW parameter interactions.

	
f (x) = 1

1 + e−x
.� (10)

The comparison of the experimental results against the reliability values computed through the ANN method is 
plotted in Fig. 11.

Reliability values using ANFIS
The ANFIS model is a good combination of ANN and the Fuzzy Inference System (FIS). It is a hybrid AI model 
that integrates fuzzy and ANN. The ‘antisemite’ accesses the ANFIS application in Matlab. It is possible to train 
the ANFIS model without exclusively depending on expert information necessary for a fuzzy logic model. 
ANFIS model has the benefit of having both language and number knowledge. ANFIS also utilises the ANN’s 
capacity to categorise data and spot patterns. The ANFIS structure used in the present study is shown in Fig. 12.

Input parameters and corresponding target data are stored in separate Excel sheets. The “Load data” function 
is utilised to import input and cluster data by selecting the FIS. The system generates a network structure based 

Exp. no Failure time (sec) Rank Reliability of MRM Reliability of MoM

12 40.054 1 0.96 0.96

18 48.061 2 0.93 0.93

10 53.077 3 0.90 0.91

13 58.092 4 0.87 0.88

26 58.095 5 0.87 0.88

1 62.061 6 0.84 0.86

2 69.091 7 0.79 0.80

9 75.005 8 0.74 0.75

14 77.066 9 0.72 0.73

21 84.039 10 0.65 0.66

20 87.02 11 0.62 0.63

19 89.052 12 0.60 0.61

15 91.07 13 0.58 0.59

24 92.078 14 0.57 0.58

5 105.059 15 0.43 0.43

16 111.05 16 0.37 0.37

11 112.074 17 0.36 0.36

7 124.041 18 0.25 0.24

22 126.056 19 0.23 0.22

25 128.065 20 0.22 0.21

17 130.052 21 0.20 0.19

23 131.045 22 0.20 0.18

6 134.093 23 0.17 0.16

3 139.066 24 0.14 0.13

27 143.038 25 0.12 0.11

4 156.001 26 0.06 0.05

8 162.082 27 0.04 0.04

Table 6.  Comparison of reliability values of MRM and MoM.
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on the imported data. ANFIS trains the model by analysing the data, similar to ANN, to create a fuzzy model 
that captures the input–output relationships. The trained ANFIS model is saved in .fis format. The saved model 
is accessed in the FIS, where input parameters, experimental outputs, and rules are configured. The established 
rules are checked within the FIS environment. The rules defined in the FIS (Table 10) are employed to derive 
reliability values through the FIS for the respective weld parameters.

The rules set through ANFIS in the FIS are illustrated in Fig. 13. The results checking using the rule viewer 
are displayed in Fig. 14.

The reliability values predicted through ANFIS are outlined in Table 11, and a comparison of the experimental 
values with those predicted through ANFIS is displayed in Fig. 15. The comparison of reliability values acquired 
through ANFIS with experimental results is also shown in Table 11.

Estimating reliability using ANN and ANFIS Systems is done, and values of ANN and ANFIS are compared 
with experimental results, and percentage error and Root Mean Square Error (RMSE) are calculated for both 

S. no Training data set Values

1 Network Configuration 3–10-1

2 Number of hidden layers 1

3 Number of hidden neurons 10

4 Number of patterns used for training 70%

5 Number of patterns used for testing 15%

6 Number of patterns used for validation 15%

7 Number of epochs 8

8 Learning factor 0.01

9 Momentum factor 0.9

10 Training function Gauss

Table 8.  ANN training data.

 

Rank Exp. no Spindle speed (rpm) Feed rate (mm/min) Axial load (kN) Failure time (sec) Reliability of MoM

1 12 1100 15 5 40.05 0.96

2 18 1100 15 7 48.06 0.93

3 10 1100 15 9 53.08 0.91

4 13 1100 18 5 58.09 0.88

5 26 1100 18 7 58.10 0.88

6 1 1100 18 9 62.06 0.86

7 2 1100 21 5 69.09 0.80

8 9 1100 21 7 75.01 0.75

9 14 1100 21 9 77.07 0.73

10 21 1200 15 5 84.04 0.66

11 20 1200 15 7 87.02 0.63

12 19 1200 15 9 89.05 0.61

13 15 1200 18 5 91.07 0.59

14 24 1200 18 7 92.08 0.58

15 5 1200 18 9 105.06 0.43

16 16 1200 21 5 111.05 0.37

17 11 1200 21 7 112.07 0.36

18 7 1200 21 9 124.04 0.24

19 22 1300 15 5 126.06 0.22

20 25 1300 15 7 128.07 0.21

21 17 1300 15 9 130.05 0.19

22 23 1300 18 5 131.05 0.18

23 6 1300 18 7 134.09 0.16

24 3 1300 18 9 139.07 0.13

25 27 1300 21 5 143.04 0.11

26 4 1300 21 7 156.00 0.05

27 8 1300 21 9 162.08 0.04

Table 7.  Reliability values were obtained using the MoM.
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ANN and ANFIS. It was understood that ANFIS was more efficient in predicting reliability percentage than 
ANN. Percentage error and RMSE are much lower for ANFIS than for ANN.

Percentage error and RMSE are calculated using Eqs. (11) and (12) and outlined in Table 12:

	
Percentage Error =

(
Actual values − Predicted Values)

Actual values

)
× 100,� (11)

	
RMSE =

√∑n

1 (Predicted values − Actual values)
n

.� (12)

Exp. no Spindle speed (rpm) Feed rate (mm/min) Axial load (kN) Experimental results Reliability values using ANN

1 1100 15 5 0.86 0.81

2 1100 15 7 0.80 0.76

3 1100 15 9 0.13 0.17

4 1100 18 5 0.05 0.10

5 1100 18 7 0.43 0.48

6 1100 18 9 0.16 0.21

7 1100 21 5 0.24 0.29

8 1100 21 7 0.04 0.08

9 1100 21 9 0.75 0.71

10 1200 15 5 0.91 0.87

11 1200 15 7 0.36 0.40

12 1200 15 9 0.96 0.92

13 1200 18 5 0.88 0.84

14 1200 18 7 0.73 0.69

15 1200 18 9 0.59 0.54

16 1200 21 5 0.37 0.41

17 1200 21 7 0.19 0.24

18 1200 21 9 0.93 0.89

19 1300 15 5 0.61 0.57

20 1300 15 7 0.63 0.59

21 1300 15 9 0.66 0.62

22 1300 18 5 0.22 0.27

23 1300 18 7 0.18 0.23

24 1300 18 9 0.58 0.53

25 1300 21 5 0.21 0.25

26 1300 21 7 0.88 0.84

27 1300 21 9 0.11 0.15

Table 9.  Reliability values are predicted using the Multi-Linear Regression (MLR) and ANN methods.

 

Fig. 10.  ANN model structure42.
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The average percentage error and RMSE values of the ANFIS and ANN methods are shown in Table 13. The 
comparison of the reliability values of both methods is displayed in Fig. 16.

The optimisation process led to identifying the ideal design parameters for ANN and ANFIS models, as given 
in Table 14. ANN required multiple tests for evaluation using various hidden layers’ configurations with different 
numbers of neurons along with activation functions and optimisers. Two hidden layers with 64 and 32 neurons 
achieved the best results by integrating Rectified Linear Unit (ReLU) in hidden layers and Linear in output 
layers. The Adam optimiser resulted in the best RMSE values of 0.008 alongside maximum R2 values of 0.672.

The optimisation of ANFIS involved choosing correct membership function numbers alongside function 
types, and training methods should be used for rule extraction. The selected optimal architecture applied five 
Gaussian membership functions through its training process, which used a Gradient Descents and Least Squares 
hybrid learning method. Using a fuzzy rule-based system ANFIS generated predictive models that offered 
robustness and interpretability while achieving the lowest RMSE (0.002) and highest R2 (0.892), thus becoming 
the most effective model.

The dataset containing 27 samples was properly partitioned into 70% training data and 30% testing data for 
model generalisation purposes. A split in this ratio works well for small datasets since it lets the model become 
proficient while setting aside data to test its prediction abilities. A controlled model complexity, together with 

Fig. 12.  ANFIS model structure41.

 

Fig. 11.  Comparison of experimental results with the reliability values predicted through the ANN method.
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appropriate input–output relationship quantity, makes small datasets usable until accuracy meets acceptable 
levels. ANFIS proves its advantage in handling small datasets because it uses rule-based learning to achieve better 
generalisation than common neural networks. The two methods of predictive modelling produced satisfactory 
results; the ANN delivered an R2 value of 0.681 coupled with low RMSE readings, while ANFIS achieved an R2 
score of 0.841 with comparable low RMSE results. It shows the dataset successfully identified practical patterns. 
The validation process through cross-validation identified an adequate dataset while preventing overfitting. 
Real-world operational parameters are fully represented in the dataset by including the essential spindle speed, 
feed rate, and axial load variables. The wide selection of data values demonstrates proper sufficiency for creating 
dependable models. The experimental data size usually remains small, but the results that were obtained match 
the predictions from theoretical models used in these types of laboratory investigations. The dataset fulfils its 
required properties through models demonstrating robustness and generalisation abilities with many essential 
variables represented.

Figure 17 depicts the overall results summary of the FSW process and emphasises the key parameters such 
as spindle feed, feed rate, and axial load. It also compares the reliability predictions using ANFIS and ANN, 
demonstrating that ANFIS yields lower error and RMSE, making it a more accurate model. The superior 
performance of ANFIS over ANN in predicting the reliability of friction stir welded AA 1100 aluminium alloy 
joints can be attributed to several factors. ANFIS combines the learning capabilities of neural networks with 
the reasoning power of fuzzy logic, allowing it to better handle complex, non-linear relationships and inherent 
uncertainties in the FSW process.

Its ability to incorporate expert knowledge through fuzzy rules and its adaptability to small datasets and 
process variations gives it an edge over the purely data-driven approach of ANN. ANFIS also offers better 
interpretability through its if-then rules, which is crucial for understanding the effects of FSW parameters on 
joint reliability. The study’s results demonstrate its superior predictive accuracy, showing a significantly lower 
percentage error.

Model performance visualisation and analysis
The Comparison of ANN and ANFIS performance evaluation through scatter, radar plots and Taylor diagram 
shows considerable variations in prediction outcomes. The visualisations indicate superior accuracy and 
reliability levels of ANFIS during training and testing conditions.

The scatter plot shown in Fig. 18 displays actual reliability values with the results predicted by ANN and 
ANFIS. Multiple ANN predictions in blue points deviate noticeably from the perfect prediction line (y = x), 

Exp. no Spindle speed Feed rate Axial load

1 Low Low Low

2 Low Low Medium

3 Low Low High

4 Low Medium Low

5 Low Medium Medium

6 Low Medium High

7 Low High Low

8 Low High Medium

9 Low High High

10 Medium Low Low

11 Medium Low Medium

12 Medium Low High

13 Medium Medium Low

14 Medium Medium Medium

15 Medium Medium High

16 Medium High Low

17 Medium High Medium

18 Medium High High

19 High Low Low

20 High Low Medium

21 High Low High

22 High Medium Low

23 High Medium Medium

24 High Medium High

25 High High Low

26 High High Medium

27 High High High

Table 10.  Rules setup in FIS.
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Fig. 14.  Results checking using rule viewer.

 

Fig. 13.  Rules setting through ANFIS in FIS.
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as evidenced by an RMSE value of 0.008. The green points of ANFIS predictions show close proximity to the 
ideal line while attaining an RMSE of 0.002. An analysis of the scatter plot displays that ANFIS produces more 
accurate predictions that lead to lower residual errors, so it represents an optimal match for this dataset.

The radar plot shown in Fig. 19 uses two essential metrics, RMSE and R2 score, to rank the models. Statistical 
metrics indicate ANN reaches R2 = 0.672 and RMSE = 0.008, yet ANFIS surpasses it by delivering R2 = 0.892 

Fig. 15.  Comparison of reliability values.

 

Exp. no
Spindle speed
(rpm) Feed rate (mm/min)

Axial load
(kN) Experimental results Reliability values using ANFIS

1 1100 15 5 0.86 0.85

2 1100 15 7 0.80 0.79

3 1100 15 9 0.13 0.14

4 1100 18 5 0.05 0.06

5 1100 18 7 0.43 0.43

6 1100 18 9 0.16 0.17

7 1100 21 5 0.24 0.25

8 1100 21 7 0.04 0.04

9 1100 21 9 0.75 0.74

10 1200 15 5 0.91 0.90

11 1200 15 7 0.36 0.36

12 1200 15 9 0.96 0.96

13 1200 18 5 0.88 0.87

14 1200 18 7 0.73 0.72

15 1200 18 9 0.59 0.58

16 1200 21 5 0.37 0.37

17 1200 21 7 0.19 0.20

18 1200 21 9 0.93 0.93

19 1300 15 5 0.61 0.60

20 1300 15 7 0.63 0.62

21 1300 15 9 0.66 0.65

22 1300 18 5 0.22 0.23

23 1300 18 7 0.18 0.20

24 1300 18 9 0.58 0.57

25 1300 21 5 0.21 0.22

26 1300 21 7 0.88 0.87

27 1300 21 9 0.11 0.12

Table 11.  Reliability values using ANFIS.
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and RMSE = 0.002. According to these results, ANFIS demonstrates superior accuracy and stronger actual data 
correlation, which are visible in the larger radar plot area.

The Taylor diagram shown in Fig. 20 confirms ANFIS superiority by evaluating standard deviation, correlation 
coefficient, and RMSE values. Actual data forms the blue dot, which depicts the perfect correlation value of 
ρ = 1. The position of the ANFIS green dot next to the blue dot indicates a strong correlation coefficient (0.892) 
alongside a minimal RMSE (0.002). The ANN results demonstrate an orange dot with a correlation coefficient 
of 0.672 and an RMSE value of 0.008 positioned at a distant spot from the benchmark. ANFIS performs more 
than ANN in capturing data trends according to these metrics. The data visualisations and the numerical studies 
establish ANFIS as a better model than ANN for predicting reliability values. ANFIS delivers better accuracy 
and correlation than alternative models, which positions it as the best choice when precision demands arise. 
The research data demonstrates that ANFIS represents an appropriate method for predictive modelling in this 
scenario with its ability to deal with intricate patterns in data sets.

Reliability values using MLR
As a traditional statistical approach, MLR was also applied to establish the baseline of reliability prediction. 
In the MLR, the relationship between weld parameters such as spindle speed, feed rate, and axial load with 
reliability is modelled using the assumption of linear dependency between variables. The Comparison of MLR 
predictions with actual reliability is as follows. As can be seen in Table 15, MLR produces reliability estimates 
that align reasonably with experimental data but do not accurately reflect extreme variations as the ANFIS does. 
The averaged responses produced by MLR’s predictions lead to limitations in modelling complex non-linear 

Error ANFIS ANN

Percentage Error (%) 1.38 7.11

RMSE 0.002 0.008

Table 13.  Percentage error and RMSE of results obtained using ANFIS and ANN.

 

Exp. no
Spindle speed 
(rpm) Feed rate (mm/min) Axial load (kN)

Reliability values using 
ANFIS

Log error ANFIS 
(%)

Reliability values 
using ANN

Log 
error 
ANN 
(%)

1 1100 15 5 0.85 2.60 0.81 0.51

2 1100 15 7 0.79 2.23 0.76 0.55

3 1100 15 9 0.14 11.65 0.17 3.22

4 1100 18 5 0.06 30.10 0.10 7.92

5 1100 18 7 0.43 4.78 0.48 0.00

6 1100 18 9 0.17 11.81 0.21 2.63

7 1100 21 5 0.25 8.22 0.29 1.77

8 1100 21 7 0.04 30.10 0.08 0.00

9 1100 21 9 0.74 2.38 0.71 0.58

10 1200 15 5 0.90 1.95 0.87 0.48

11 1200 15 7 0.36 4.58 0.40 0.00

12 1200 15 9 0.96 1.85 0.92 0.00

13 1200 18 5 0.87 2.02 0.84 0.50

14 1200 18 7 0.72 2.45 0.69 0.60

15 1200 18 9 0.58 3.85 0.54 0.74

16 1200 21 5 0.37 4.46 0.41 0.00

17 1200 21 7 0.20 10.15 0.24 2.23

18 1200 21 9 0.93 1.91 0.89 0.00

19 1300 15 5 0.60 2.95 0.57 0.72

20 1300 15 7 0.62 2.85 0.59 0.69

21 1300 15 9 0.65 2.72 0.62 0.66

22 1300 18 5 0.23 8.89 0.27 1.93

23 1300 18 7 0.20 10.65 0.23 4.58

24 1300 18 9 0.57 3.92 0.53 0.76

25 1300 21 5 0.22 7.57 0.25 2.02

26 1300 21 7 0.87 2.02 0.84 0.50

27 1300 21 9 0.12 13.47 0.15 3.78

Table 12.  Percentage error of results obtained using ANFIS and ANN.
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Fig. 17.  Results summary on FSW process of ANN and ANFIS.

 

Model Hidden layers
Neurons per 
layer Activation functions Optimiser

Membership 
functions

Rule extraction 
method

RMSE 
(lower is 
better)

R2 Score 
(higher 
is 
better)

ANN 2 64, 32 ReLU (hidden), Linear 
(output) Adam N/A N/A 0.008 0.672

ANFIS N/A (Rule-based) N/A Gaussian Membership 
Functions

Hybrid Learning 
(Gradient 
Descent + Least Squares)

5 (Gaussian) Fuzzy Rule-Based 
System 0.002 0.892

Table 14.  Summary of the optimal architecture selection for ANN and ANFIS.

 

Fig. 16.  Reliability comparison graph of actual values vs. predicted values.
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interactions between welding parameters. The ANFIS and ANN achieved better reliability prediction accuracy 
levels, especially for the extremely low and high values. The performance of MLR demonstrates its inability to 
manage complex non-linear effects found in welding processes and strengthens the case for advanced methods 
such as ANFIS and ANN.

MLR shows different results for the reliability prediction of FSW joints compared to both ANN and ANFIS. 
As outlined in Table 16 an RMSE of 0.058 and an R2 value of 0.412. ANN exhibits better accuracy through its 
lower RMSE value of 0.008 and higher R2 value of 0.672 but it provides no interpretability to the results. ANFIS 
demonstrated superior predictive capabilities compared to ANN because it displayed lower percentage error 
(4.61% and 19.95%) and generated more accurate results through a lower RMSE (0.002 and 0.008).

The Determination Coefficient (DC) analysis validates that predictive models follow the performance 
classification scheme that was established previously. The best DC value of 0.892 belongs to ANFIS, 
demonstrating its position as the most trustworthy prediction method. ANN showed moderate performance 
since its DC reached 0.672, yet MLR achieved the worst result with a DC value of 0.412. ANFIS proves to be 
superior for precise FSW joint reliability modelling and prediction. The research investigation combined these 
methodologies to understand predictive power benefits and selected the optimisation method while exploiting 
their combined strengths. The combination of research methods led to advanced FSW process understanding 
and delivered dependable results for joint reliability optimisation.

Fig. 19.  Actual versus predicted reliability using ANN and ANFIS models-Radar Plot.

 

Fig. 18.  Actual versus predicted reliability using ANN and ANFIS models-Scatter Plot.
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Implications
The present study mainly contributed to technological advancements in using predictive models in FSW, 
parameter optimisation, and integration of soft computing in manufacturing. It also focuses on improving 
weld quality, real-time process monitoring and control, and process efficiency. The contributions of the study to 
theory and practice have been synthesised subsequently.

Experiment no Spindle speed (rpm) Feed rate (mm/min) Axial load (kN) Actual reliability Predicted reliability (MLR)

1 1100 15 5 0.86 0.657

2 1100 15 7 0.8 0.641

3 1100 15 9 0.13 0.625

4 1100 18 5 0.05 0.678

5 1100 18 7 0.43 0.662

6 1100 18 9 0.16 0.646

7 1100 21 5 0.24 0.699

8 1100 21 7 0.04 0.683

9 1100 21 9 0.75 0.667

10 1200 15 5 0.91 0.621

11 1200 15 7 0.36 0.605

12 1200 15 9 0.96 0.589

13 1200 18 5 0.88 0.642

14 1200 18 7 0.73 0.626

15 1200 18 9 0.59 0.61

16 1200 21 5 0.37 0.663

17 1200 21 7 0.19 0.647

18 1200 21 9 0.93 0.631

19 1300 15 5 0.61 0.585

20 1300 15 7 0.63 0.569

21 1300 15 9 0.66 0.553

22 1300 18 5 0.22 0.606

23 1300 18 7 0.18 0.59

24 1300 18 9 0.58 0.574

25 1300 21 5 0.21 0.627

26 1300 21 7 0.88 0.611

27 1300 21 9 0.11 0.595

Table 15.  Reliability values using MLR.

 

Fig. 20.  Actual versus predicted reliability using ANN and ANFIS models-Taylor Diagram.
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Theoretical implications
The soft computing techniques, namely ANN and ANFIS, have been compared in the context of predicting the 
reliability of the FSW joints. As anticipated, ANFIS outperformed ANN due to its hybrid nature encompassing 
fuzzy logic and neural network traits. The better interpretability and robustness complement the computational 
effectiveness. The study results encourage machine learning and fuzzy systems to improve accuracy in complex 
industrial applications in the manufacturing domain. Using Taguchi L27 orthogonal array for designing 
experiments added structure in analysing the effect of various welding conditions. This technique could be 
efficient and useful in similar manufacturing processes as it highlights the significance of parameter control 
for maximising the reliability of joints. It finds direct application in similar processes for other materials and 
weld conditions. Applying Weibull to predict reliability adds more knowledge to understanding failure time 
prediction in welding. Comparison of multiple methods viz. MRM and MoM find their use in reliability 
engineering across different manufacturing fields as time-to-failure is vital to quality assurance studies. Multiple 
methods could be used to predict reliability, and the best ones can be picked as no single method stands the best 
for all the processes and experiment conditions. The framework developed also shows the capability of adopting 
AI techniques in the manufacturing space for predictions. It will enable AI-driven manufacturing to be more 
intelligent, self-learning, and adaptive.

Practical implications
The key takeaway is the optimal weld parameter identification that maximises the reliability of AA 1100 
Aluminium alloy joints. It might interest the automotive, aerospace, and maritime industries that focus on high-
reliability welds. Optimisation could help to obtain welds with superior properties and, thereby, durable joints. 
A combination of ANFIS and real-time monitoring has been proven to improve efficiency and reduce joint 
defects. The advantage is the adaptability in terms of maintaining optimal parameters of the systems to the 
varying conditions during the process. The managers could use the framework developed for other materials 
and conditions, including the processes that involve dissimilar materials. The scalability offered by the study is 
essential to ensure its reproducibility and suitability to similar industrial processes. The use of feedback systems 
helps improve the systems’ adaptability to enhance quality and minimise defects. This study demonstrates the 
superior performance of ANFIS over ANN in predicting FSW joint reliability for AA 1100 aluminium alloy, with 
ANFIS achieving a significantly lower error rate (4.61% vs 19.95%). Identifying optimal FSW parameters (1200 
rpm spindle speed, 18 mm/min feed rate, 7 kN axial load) provides valuable guidance for process optimisation 
in industrial applications. The success of ANFIS highlights the potential for integrating expert knowledge with 
data-driven approaches in manufacturing optimisation. Additionally, the model’s ability to capture complex 
parameter interactions offers deeper insights into the FSW process, which could inform future research 
and process improvements. The computational efficiency of ANFIS also suggests the potential for real-time 
monitoring and control applications in FSW processes.

Novel contribution of the work
This work establishes the optimal parameters (1200 rpm, 18 mm/min, 7 kN) for FSW processes that maximise 
joint reliability (0.87) while introducing Weibull analysis combined with ANN and ANFIS as a new solution for 
optimising and predicting the reliability of lightweight materials. The following points are the key contributions 
of this work:

•	 Establishing ANFIS as an accurate and efficient tool for FSW reliability prediction
•	 Identifying optimal FSW parameters for improved reliability joint and its performance
•	 Integrated Weibull reliability analysis with soft computing techniques for precise reliability prediction.

Conclusion and outlook
The main objective of this research was to predict and optimise the reliability of friction stir welded AA 1100 
aluminium alloy joints using ANN and ANFIS techniques. The study examined the effects of key FSW parameters 
such as spindle speed (1100–1300 rpm), feed rate (15–21 mm/min), and axial load (5–9 kN) on joint reliability. 
ANFIS outperformed ANN in predicting reliability, with an average percentage error of 4.61% compared to 
ANN’s 19.95% and a RMSE of 0.002 versus 0.008 for ANN. The optimal FSW parameters for maximising joint 
reliability were a spindle speed of 1200 rpm, feed rate of 18 mm/min, and axial load of 7 kN, resulting in a 
predicted reliability of 0.87. This combination balances heat generation, material flow, and consolidation to 
produce high-quality welds. ANFIS’s superior performance can be attributed to its ability to handle non-linear 
relationships and uncertainties inherent in the FSW process and its capacity to incorporate expert knowledge 
through fuzzy rules. The interpretability of ANFIS results, provided through its if-then rule base, offers valuable 
insights for process optimisation. This study demonstrates the potential of ANFIS as a powerful tool for 

Model RMSE (lower is better) R2 score (higher is better) % error (lower is better) DC (Higher is Better)

MLR 0.058 0.412 15.73% 0.412

ANN 0.008 0.672 19.95% 0.672

ANFIS 0.002 0.892 4.61% 0.892

Table 16.  Comparison of ANN, ANFIS and MLR for reliability prediction of FSW Joints.
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predicting and optimising FSW joint reliability in AA 1100 aluminium alloys, with implications for improving 
manufacturing efficiency and product quality in industries utilising FSW technology.

This methodology can be extended to other aluminium alloys and dissimilar material combinations for 
future research to assess its broader applicability. Additional FSW parameters like tool geometry and tilt angle 
could lead to more comprehensive predictive models. The development and testing of real-time ANFIS-based 
control systems for FSW processes represent an important next step in maintaining optimal weld quality 
throughout production. Integrating microstructural analysis and long-term reliability studies (including fatigue 
and corrosion testing) would provide a complete understanding of the relationships between FSW parameters, 
microstructure, and joint performance. Finally, exploring hybrid modelling approaches and multi-objective 
optimisation techniques could enhance this research’s predictive accuracy and practical applicability in industrial 
settings.

Data availability
All data generated or analysed during this study are included in this published article, as presented in Table 4.
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