Table 1 Description of a key exchange Procedure.

From: Secure data transmission through fractal-based cryptosystem: a Noor iteration approach

Description

Sender

Receiver

Function

\(f(x_{n + 1} )\)

\(f(x_{n + 1} )\)

Calculate a public key \((Pk)\)

− 0.1458 + 0.1968i

-0.1458 + 0.1968i

Calculate the private key \((Pk^{\prime})\)

− 0.2216 − 0.3535i

-0.2216 − 0.3535i

Encrypt the message \(f(x_{n + 1} ) = Z(msg)\,OR\,(Pk^{\prime}).\)

\(f(x_{n + 1} ) = f(msg)\,\) − 0.2216 − 0.3535i

\(f(x_{n + 1} ) = f(msg)\)-0.2216—0.3535i

Output

1.0e + 002 *0.7778 − 0.0035i 0.9678 − 0.0035i 1.1578 − 0.0035i 1.1678 − 0.0035i1.1378 − 0.0035i 1.0078 − 0.0035i 0.3178 − 0.0035i 1.0078 − 0.0035i1.0978 − 0.0035i 0.9878 − 0.0035i 1.1078 − 0.0035i 1.0878 − 0.0035i1.1178 − 0.0035i 0.9678 − 0.0035i 1.1478 − 0.0035i 1.1478 − 0.0035i

1.0e + 002 *0.7778 − 0.0035i 0.9678 − 0.0035i 1.1578 − 0.0035i 1.1678 − 0.0035i1.1378 − 0.0035i 1.0078 − 0.0035i 0.3178 − 0.0035i 1.0078 − 0.0035i1.0978 − 0.0035i 0.9878 − 0.0035i 1.1078 − 0.0035i 1.0878 − 0.0035i1.1178 − 0.0035i 0.9678 − 0.0035i 1.1478 − 0.0035i 1.1478 − 0.0035i

Output

Collection of Encrypted Message Special Characters

Collection of Decrypted message special characters