Table 1 Description of a key exchange Procedure.
From: Secure data transmission through fractal-based cryptosystem: a Noor iteration approach
Description | Sender | Receiver |
---|---|---|
Function | \(f(x_{n + 1} )\) | \(f(x_{n + 1} )\) |
Calculate a public key \((Pk)\) | − 0.1458 + 0.1968i | -0.1458 + 0.1968i |
Calculate the private key \((Pk^{\prime})\) | − 0.2216 − 0.3535i | -0.2216 − 0.3535i |
Encrypt the message \(f(x_{n + 1} ) = Z(msg)\,OR\,(Pk^{\prime}).\) | \(f(x_{n + 1} ) = f(msg)\,\) − 0.2216 − 0.3535i | \(f(x_{n + 1} ) = f(msg)\)-0.2216—0.3535i |
Output | 1.0e + 002 *0.7778 − 0.0035i 0.9678 − 0.0035i 1.1578 − 0.0035i 1.1678 − 0.0035i1.1378 − 0.0035i 1.0078 − 0.0035i 0.3178 − 0.0035i 1.0078 − 0.0035i1.0978 − 0.0035i 0.9878 − 0.0035i 1.1078 − 0.0035i 1.0878 − 0.0035i1.1178 − 0.0035i 0.9678 − 0.0035i 1.1478 − 0.0035i 1.1478 − 0.0035i | 1.0e + 002 *0.7778 − 0.0035i 0.9678 − 0.0035i 1.1578 − 0.0035i 1.1678 − 0.0035i1.1378 − 0.0035i 1.0078 − 0.0035i 0.3178 − 0.0035i 1.0078 − 0.0035i1.0978 − 0.0035i 0.9878 − 0.0035i 1.1078 − 0.0035i 1.0878 − 0.0035i1.1178 − 0.0035i 0.9678 − 0.0035i 1.1478 − 0.0035i 1.1478 − 0.0035i |
Output | Collection of Encrypted Message Special Characters | Collection of Decrypted message special characters |