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As the world’s second-largest rice exporter, Vietnam’s monitoring of land cover changes and carbon 
stock estimation is crucial for achieving its carbon neutrality goals amidst deforestation and industrial 
upgrading. This study developed a new land cover classification method based on the phenological 
characteristics of rice, using the Google Earth Engine (GEE). The method significantly improves the 
identification accuracy of farmland by extracting rice phenological bands from Sentinel-1 radar data 
and Sentinel-2 multispectral data. Carbon stock data from 2015 to 2023 were generated using the 
InVEST model, and their spatial-temporal variations were analyzed. Additionally, the driving factors 
behind the changes in carbon stocks in forests, grasslands, and croplands were quantitatively explored 
using the geographic detector(Geo-Detector). The results show that: (1) The classification method 
for land cover created in this research exhibits greater accuracy than the European Space Agency 
(ESA) global land cover map and the Japan Aerospace Exploration Agency (JAXA) forest/non-forest 
maps from Japan, achieving an overall classification accuracy that surpasses 90%. This method also 
addresses the issue of low identification accuracy of croplands in traditional methods. (2) From 2015 
to 2023, Vietnam’s LULC changes were mainly characterized by decreases in forests and croplands, 
and increases in grasslands, construction land, bare land, and water bodies. (3) Overall, natural factors 
have a greater influence on LULC distribution in Vietnam than human activities, with slope being 
the most influential factor, followed by altitude, temperature, and population. (4) The main factors 
affecting the reduction of forest and cropland areas were slope, altitude, and population, while the 
main factors influencing the changes in construction land area were population and the economy. (5) 
Vietnam’s average carbon stock from 2015 to 2023 was 2.312 billion tons, with an average annual 
change rate of – 0.63%. Accurate identification of land cover types is a prerequisite for precise carbon 
stock estimation, and accurate carbon stock estimates are crucial for advancing Vietnam’s carbon 
neutrality goals.

Effective strategies to combat rising global average temperatures include reducing carbon dioxide (CO₂) 
emissions and enhancing the efficiency of CO₂ uptake by terrestrial ecosystems1. Land ecosystems act as 
important carbon stores in the carbon cycle, contributing significantly to the mitigation of global climate change 
and the attainment of regional carbon neutrality objectives. Modifications in land use and land cover (LULC) 
represent a major way in which ecosystems have been transformed by human activities2. LULC are also major 
carriers that contribute to carbon emissions3. Studies have shown that tropical regions worldwide exhibit trends 
of cropland expansion, agricultural intensification, pasture expansion, tropical deforestation, and urban growth4. 
These trends are driven by factors such as climate, policies, and economic development. As a tropical country, 
Vietnam has experienced rapid economic development since joining the World Trade Organization, which has 
made these LULC changes even more pronounced. Moreover, LULC changes affect terrestrial ecosystem carbon 
storage by altering ecosystem structure. In terrestrial ecosystems, vegetation recovery, forest regeneration, 
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and wetland conservation have positive effects by increasing carbon storage, whereas deforestation, forest 
degradation, grassland conversion, and the expansion of bare land have negative effects by reducing carbon 
storage5. Therefore, in the context of gradual environmental changes in terrestrial ecosystems globally, Precise 
and logical observation of LULC changes, along with the assessment of carbon reserves in terrestrial ecosystems, 
is crucial for attaining carbon neutrality6. A number of initiatives have been implemented in countries around 
the globe to achieve the goal of carbon neutrality7. Where optimizing LULC is an important way to do this at 
the foundation level and is an important part of the natural foundation solution8,9. It is essential to analyze 
the changes in LULC associated with changes in carbon stocks, which can lead to the timely identification of 
problems in the past LULC development process and provide an important reference for LULC management2.

Recently, there has been considerable interest in research that investigates the effects of changes in LULC 
on carbon storage within terrestrial ecosystems10,11. Accurate LULC changes respond to human-environment 
interactions12. In the method of classifying LULC, the enhancement of classification outcomes is greatly affected 
by both spectral properties and textural features13 by integrating diverse datasets, which encompass optical and 
radar satellite images13,14. Prior research has sought to combine various forms of remote sensing data and leverage 
their distinct features for the production of precise LULC maps. The Sentinel-1 (S1) data provide complementary 
information to the optical Sentinel-2 (S2) data, so LULC classification can improve classification accuracy by 
integrating these two data sources. Phenological features can improve classification accuracy by capturing 
seasonal variations, reducing the mixed pixel problem, and providing additional discriminative features. In this 
experiment’s LULC classification task, we further enhanced the classification results by incorporating regional 
vegetation phenological features. The advancement of satellite remote sensing information14 the establishment 
of the GEE cloud computing system15 the implementation of methods based on time series16 and the utilization 
of machine learning techniques along with deep learning approaches13,17 have brought new perspectives to the 
field of large-scale LULC mapping. Random forests have been used on a large scale for remote sensing map 
classification because of their fast computing speed and high data processing efficiency15. Cloud computing 
platform, GEE, provides high computational power and easy access to dense time series18. GEE also provides a 
wealth of satellite data and remote sensing-derived products19. By utilizing the GEE platform, users can eliminate 
the need for local image storage and access enhanced computing resources for image analysis and processing20. 
The Geo-Detector method, as a quantitative approach for analyzing spatial distribution differences and their 
driving factors, is widely used to compare the relationships between various influencing factors and LULC21.

There are various methods for estimating carbon storage, with traditional methods including sample 
inventories22 field surveys, biomass methods, and ecosystem carbon flux monitoring23. Assessment models 
such as CASA24. Book keeping25 and Integrated Valuation of Ecosystem Services and Trade-offs(inVEST)26 are 
commonly used. Traditional estimation methods are labor-intensive and inefficient, making them suitable only 
for small-scale carbon storage studies. In contrast, the use of the InVEST model for carbon storage estimation 
based on LULC classification maps effectively illustrates the relationship between long-term time series data 
and significant carbon storage changes caused by natural events and human activities. Among many assessment 
models, the InVEST model is widely applied in carbon storage estimation across various countries and regions 
due to its small data requirements, fast computation speed, and ability to achieve spatiotemporal visualization27,28. 
In this study, the data required for carbon storage estimation is the LULC classification map. While this method 
can assess and visualize changes in carbon storage across different scales, it also has limitations, such as focusing 
on a single carbon pool with weak comprehensive analysis capabilities, relying on medium to low-resolution 
LULC data that struggles to accurately capture small-scale LULC changes, and only being able to assess the 
carbon storage distribution at a single point in time, without monitoring long-term dynamic changes in carbon 
storage29.

As the second largest rice exporter in the world30 there are still relatively few LULC studies on Vietnam. 
Vietnam has 7.66 million hectares of rice farmland, and this study fully integrates this geographical feature in 
LULC classification. Extracts the second season (summer and autumn) rice phenology characteristics among the 
three seasons of rice through several comparative experiments, and realizes a large area of Vietnam through the 
GEE cloud platform in combination with the S1 and S2 data while the classification accuracy is further improved 
to monitoring. Providing support for thereby realizing sustainable industrial development in Vietnam in the 
context of carbon neutrality. As a major rice-producing country, Vietnam has vast areas of irrigated rice fields. 
These rice fields exhibit distinct phenological characteristics during the rice-growing season. Extracting these 
phenological features can help improve the accuracy of LULC classification in the region31.

This study utilized 10-meter resolution Sentinel-1 (S1) and Sentinel-2 (S2) data to generate Vietnam’s 
LULC classification map, providing a foundation for subsequent analyses. Using the Geo-Detector model, 
we examined the influence of various natural and social factors on LULC. Additionally, LULC changes across 
different regions of Vietnam were encoded using the Raster Calculator, enabling a better understanding of LULC 
transitions, particularly the shift from mountainous forests to coastal plains. This analysis contributes to a deeper 
understanding of the relationship between LULC changes and carbon storage. In this study, data on LULC and 
carbon density are integrated to assess carbon stocks in Vietnam from 2015 to 2023 using the InVEST model, 
with the aim of creating a carbon stock map. A quantitative analysis is conducted to further investigate how 
natural and socio-economic factors influence changes in LULC and their effect on carbon stock. The results of 
the study contribute to the development of effective strategies for carbon management and methods for forest 
conservation that seek to enhance sustainable development in the region.

Methodology
Study area
Vietnam shares its northern border with China, is adjacent to Laos and Cambodia to the west, and confronts the 
South China Sea to the east and south, encompassing an area of 33.1 × 104km2( Fig. 1). The landscape varies 
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greatly, consisting of rugged mountains in the northern region and extensive river deltas towards the south. The 
north is mountainous, including the Himalayas. The central part of the country is hilly and low mountainous, 
an important agro-industrial base with a rich ecosystem. The southern Mekong River Delta is characterized 
by a tropical monsoon climate with high temperatures throughout the year and distinct dry and rainy seasons. 
The annual average rainfall ranges from 1500 to 2000 millimeters. The region features fertile soil and low-lying 
terrain, making it well-suited for agricultural production. The northern area of the country experiences four 
unique seasons, whereas the south-central region is subjected to a tropical monsoon climate, noted for its high 
temperatures and humidity throughout the year, averaging an annual temperature of 24 °C. With a population 
of 97.58 million individuals across 58 provinces and 5 municipalities, Vietnam boasts a diverse food production 
system, highlighted by its significant rice output, positioning the country as the world’s second-largest rice 
exporter. Since joining the World Trade Organization (WTO) in 2007, Vietnam has experienced rapid economic 
development, gradually transitioning from an agricultural country to a producer and exporter of electronic 
products in the global industrial supply chain. Studies have shown that economic growth is closely associated 
with increased carbon dioxide emissions. Consequently, Vietnam faces significant carbon emissions from its 
economic activities, while also holding substantial potential for reducing these emissions. This is critical for 
achieving carbon neutrality goals in Southeast Asia. Therefore, studying Vietnam’s carbon storage in recent years 
has become an urgent and pressing task.

Data sources and preprocessing
Tables 1 and 2 constitute the primary data sources for this study, including S1 and S2 satellite data, as well as 
natural and socio-economic factors that may influence land cover changes (Table 1). Among them, natural factors 
emphasize those unrelated to human activities. S1 provides synthetic aperture radar (SAR) imagery, which is 
primarily used to obtain structural and moisture information on the ground surface, whereas S2 imagery is 
capable of capturing more detailed information about surface vegetation and other features. Two types of image 
data are essential for accurately analyzing LULC classifications in Vietnam. To ensure the precision of LULC 
classification, a resolution of 10 m was determined at this phase. Based on previous studies32,33 we identified 
seven socio-economic and natural factor indicators as the main factors influencing LULC change.

In the first stage of processing S1 and S2 remote sensing data, a Class 1 ground probe scene was selected that 
includes the vertical-vertical (VV) and vertical-horizontal (VH) bands from the S1 dataset, which operates in 
an interferometric wide (IW) stripe mode in either an “ascending” or “descending” orbit. To effectively depict 
the backscatter from the surface, the SAR data requires pre-processing steps such as the removal of thermal 
noise, radiometric calibration, and terrain adjustment. This is essential for subsequent LULC classification34. To 
reduce the impact of speckle noise and shadows, we used the annual average values of VV and VH in subsequent 
calculations. For the S2 data, we performed an atmospheric correction to convert the top-of-atmosphere 
reflectance data to ground reflectance to minimize the effects of atmospheric scattering and absorption35. In the 
following research, we exclusively employed the blue, green, red, and near-infrared (NIR) bands with a spatial 
resolution of 10 m, alongside the narrow NIR, red-edge 1–3, and short-wave infrared (SWIR) 1–2 bands at a 
spatial resolution of 20 m. These bands are identified as B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12(Table 3), 
correspondingly. At the same time, considering that the abundant rainfall and cloud cover in Vietnam may lead 
to a data quality degradation, a cloud coverage screening algorithm was used in order to obtain images with 
low cloud coverage (< 40% cloud). In addition, we used the quality assessment (QA60) band to avoid cloud-
contaminated pixels. In order to maintain both temporal and spatial consistency in the data, we applied a median 
annual synthesis method to the images, which removes extreme values such as extremely bright or dark pixels 
due to the sensor during the imaging process by selecting the median reflectance of each pixel point over the 
course of the year36.

Three spectral indices were computed to improve the distinction between vegetation, developed areas, and 
water bodies within the main LULC categories in Vietnam: the Normalized Difference Vegetation Index (NDVI), 
the Normalized Difference Built-up Index (NDBI), and the Modified Normalized Difference Water bodies Index 
(MNDWI). The calculations for these indices are illustrated by Eqs. 1–3:

	
NDV I = NIR − Red

NIR + Red
� (1)

	
NDBI = SW IRI − NIR

SW IRI + NIR
� (2)

	
mNDV I = Green − SW IRI

Green + SW IRI
� (3)

.
In this study, we collected time series images of the VV and VH bands throughout the rice growing season 

from the S1 radar data to extract indicators reflecting the climatic characteristics of rice for each year. We 
computed five texture variables from the VV and VH images annually by employing a gray-scale covariance 
matrix. This matrix incorporates angular second-order moments (ASM), entropy (ENT), inverse differential 
moments (IDM), correlation (CORR), and the average summed value (SAVG). These variables effectively 
capture texture features related to LULC37. The extracted features were used alongside the annual composite 
optical and backscatter bands as inputs to the classifier (Table 2), The matrix calculation formula is as follows:
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Fig. 1.  Location of the study area. This figure is generated using ArcGIS Pro 3.0.1 (​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​z​h​-​​c​
n​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​p​r​o​/​o​v​e​r​v​i​e​w), with the base maps sourced from the World_Hillshade (​h​t​t​p​s​:​​/​/​g​o​t​o​​.​
a​r​c​g​i​​s​o​n​l​i​n​​e​.​c​o​m​​/​m​a​p​s​/​​E​l​e​v​a​t​​i​o​n​/​W​o​​r​l​d​_​H​i​l​l​s​h​a​d​e) and World Topographic Map (​h​t​t​p​s​:​​/​/​w​w​w​.​​a​r​c​g​i​s​​.​c​o​m​/​h​​
o​m​e​/​i​​t​e​m​.​h​t​​m​l​?​i​d​=​​7​d​c​6​c​e​​a​0​b​1​7​6​4​a​1​f​9​a​f​2​e​6​7​9​f​6​4​2​f​0​f​5). The country boundary is extracted from the GADM 
(https://gadm.org/).
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ASM =

N∑
i=1

N∑
j=1

P (i, j)2� (4)

	
ENT = −

N∑
i=1

N∑
j=1

P (i, j) · log (P (i, j))� (5)

	
IDM =

N∑
i=1

N∑
j=1

P (i, j)
1 + (i − j)2 � (6)

	
CORR =

N∑
i=1

N∑
j=1

(i − µ i)(j − µ j)P (i, j)
σ iσ j

� (7)

Name Pixel size (m) Wavelength range (nm) Description

B2 10 492.1–496.6 Blue

B3 10 559–560 Green

B4 10 664.5–665 Red

B5 20 703.8–703.9 Red Edge 1

B6 20 739.1–740.2 Red Edge 2

B7 20 779.7–782.5 Red Edge 3

B8 10 833–835.1 NIR

B8A 20 864–864.8 Red Edge 4

B11 20 1610.4–1613.7 SWIR 1

B12 20 2185.7–2202.4 SWIR 2

Table 3.  Sentinel 2 bands and description.

 

Data source Input features Dimension

S2 MSI
Spectral features: median composition of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 10

Normalized indices: NDVI, NDBI, MNDWI 3

S1 SAR

Backscattering features: annual mean of VV, VH time-series images 2

Phenological features: may average value of VV, VH band time series images 2

Temporal features: standard deviation of VH, VV 2

Textural features: ASM, ENT, IDM, CORR, SAVG of each annual mean of VV and VH 10

Table 2.  Sentinel 1 & 2 bands considered for the study.

 

Category Name Time Source Resolution

Natural factors

Elevation 2007 National Aeronautics and Space Administration Jet Propulsion Laboratory (https://
doi.org/10.1029/2005RG000183) 90 m

Slope 2007 National Aeronautics and Space Administration Jet Propulsion Laboratory (https://
doi.org/10.1029/2005RG000183) 90 m

Aspect 2007 National Aeronautics and Space Administration Jet Propulsion Laboratory (https://
doi.org/10.1029/2005RG000183) 90 m

Temperature 2015–2020 Climate Data Store(cds.climate.copernicus.eu) 31 km

Precipitation 2015–2020 Climate Hazards Center(https://chc.ucsb.edu) 5 km

Socioeconomic 
factors

Population 2015–2020 WorldPop(www.worldpop.org) 100 m

GDP 2015–2020 (https://doi.org/10.6084/m9.figshare.17004523.v1 ) 1 km

Boundary – – https://gadm.org/ –

Basemap
World_Hillshade – ​h​t​t​p​s​:​​/​/​g​o​t​o​​.​a​r​c​g​i​​s​o​n​l​i​n​​e​.​c​o​m​​/​m​a​p​s​/​​E​l​e​v​a​t​​i​o​n​/​W​o​​r​l​d​_​H​i​l​l​s​h​a​d​e –

World 
TopographicMap – ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​a​r​c​g​i​​s​.​c​​o​m​​/​h​o​​m​e​​/​i​​t​e​m​.​​h​​t​m​​l​?​​i​d​=​7​d​​c​6​c​e​a​0​b​1​7​6​4​a​1​f​9​a​f​2​e​6​7​9​f​6​4​2​f​0​f​5 –

Table 1.  Data sources.
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SAVG =

2N∑
i=2

i · Px (i)� (8)

.
Where: N  is the total number of gray levels; i, j are the gray values, and P (i, j) is the normalized value of the 

gray-level co-occurrence matrix (GLCM); µ i is the mean of gray level i, calculated as: µ i =
∑

N
i=1i · P (i, j); 

σ i is the standard deviation of gray level i, calculated as σ i =
√∑

N
i=1(i − µ i)

2 · P (i, j); Px (i)is the 
joint probability distribution function of the gray-level co-occurrence matrix.

The carbon storage density data presented in this study originates from the Vu Gia Thu Bon River Basin in 
central Vietnam. It was calculated by Valerio Avitabile and his colleagues using a stratified random sampling 
design. The data was derived from field measurements of forest inventory plots to estimate the carbon storage 
density of aboveground biomass. Meanwhile, the estimation for the carbon stock density of below-ground 
biomass was informed by the average root-crown ratio (R) recommended by the IPCC29. The assessment was 
conducted within the specified study area. Relevant data are shown in Table  4. Due to the large geographic 
span and diverse forest types across Vietnam, it is difficult to accurately estimate the carbon storage of forests 
with varying densities and tree species. However, in a forest, the density tends to gradually increase from the 
forest edge to the forest center. Therefore, in this study, the calculation of all forest carbon storage was based on 
biomass data from forests with medium density.

Random forest classification based on sentinel images
In this research, the random forest algorithm serves as the machine learning technique employed for predicting 
LULC. This approach is a form of integrated learning that enhances classification accuracy and stability by 
building several decision trees and combining their outcomes38. Here, we examined time series data from S1 
and S2 through the random forest method to discern and categorize the primary LULC types in Vietnam, which 
encompass forests, grasslands, agricultural areas, developed lands, barren land, and water bodies, utilizing 
the overall accuracy (OA) as a measure of classification performance. In this study, we found that S1 imagery 
collection began on June 27, 2015, resulting in less than a full year of S2 imagery coverage for Vietnam in 2015. 
More importantly, due to climatic conditions, it was challenging to find low-cloud-cover imagery for Vietnam 
in 2015. To enhance the reliability of the experiment, we used only S1 imagery to extract the LULC classification 
map for 2015.A similar situation occurred in 2016 for six provinces in northern Vietnam: Yen Bai, Lao Cai, 
Ha Giang, Tuyen Quang, Son La, and Phu Tho. These provinces experienced persistent cloud cover, making it 
difficult to obtain low-cloud-cover imagery. Consequently, we adopted a similar approach to extract the LULC 
maps for these regions in 2016.

To train the Random Forest model, we first randomly selected 6000 sample points within Vietnam using a 
random sampling method. We extracted the LULC types of these sample points from existing LULC classification 
datasets, which include: (1) The ESA World Cover 2020 (resolution: 10  m, time: 2020); (2) The ESA World 
Cover 2021 (resolution: 10 m, time: 2021); (3) The Global Forest/Non-Forest Map (FNF) (resolution: 25 m, 
time: 2017–2021); (4) The Copernicus Global Land Service Dynamic LULC map (CGLS-LC100) (resolution: 
100 m, time: 2015–2019); (5) GHSL: Global Settlement Characteristics (GHSL) (resolution: 10 m, time: 2018). 
We retained sample points with the same LULC type and removed those with differing types, resulting in 5000 
multi-year stable sample points. Subsequently, we randomly selected an additional 1000 sample points within 
Vietnam and annotated their LULC types for each year using a visual interpretation method to supplement the 
stable sample points.

In GEE, the model training was configured with 500 decision trees, optimizing efficiency and classification 
accuracy by using the square root of the number of variables required for splitting each tree node. For input 
features, we included basic spectral bands, spectral index bands, radar bands, texture variable bands, and 
synthesized phenological feature bands extracted during the rice-growing season. This combination of features 
enhanced the classification accuracy in the LULC task. A 3 × 3 median filter was applied to the classification 
results to reduce potential salt-and-pepper noise and ensure more accurate and reliable LULC change results.

The integration of spectral, texture, and phenological features not only improved LULC classification accuracy 
but also laid a solid foundation for future carbon storage assessments. During the Random Forest classification 
process, we calculated the contribution rates of different bands and selected bands with contribution rates 
between 415 and 655 as reference bands for classification. The relevant data are summarized in Table 5.

Land cover class

Carbon stock (Mg C/ha)

SourceAGB BGB AGB + BGB

Forest rich 166.8 39.2 206 Field data

Forest medium 83 19.5 102.5 Field data

Forest poor 44.5 9.1 53.6 Field data

Grassland 6.5 1.3 7.9 Field data

Cropland 4 1 5 IPCC tier 1

Table 4.  Carbon density data.
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Mapping of LULC changes
LULC mapping can track in detail the process of LULC type transformation from one state to another in a 
specific area, such as the transformation to farmland after deforestation or the reduction of forest due to urban 
expansion. This study employs a raster calculator to analyze high-resolution LULC data from 2015, 2019, and 
2023. LULC types are encoded with corresponding numerical values, which are weighted and summed to 
generate LULC maps for 2015–2019 and 2019–2023. Through numerical analysis of these maps, the spatial 
distribution and quantity of mutual transformations between different LULC types during these periods can be 
determined. The specific steps are as follows: (1). Assign numerical codes (1, 2, 3, …, 6) to six LULC types: forest, 
grassland, farmland, built-up land, bare land, and water bodies, respectively. (2). Weight the numerical codes 
of the starting date by a factor of 10. (3). Add the weighted numerical codes of the starting date directly to the 
numerical codes of the ending date to create LULC maps. The formula is expressed as shown in Eq. 9:

	 L = (Y1) × 10 + (Y2)� (9)

Where L represents the synthesized LULC code, Y1 denotes the LULC code at the starting date, and Y2 
denotes the LULC code at the ending date. The mapping codes are progressively aggregated over the relevant 
period to generate a LULC change map and a spatiotemporal evolution map, illustrating the patterns of LULC 
transformation during this period.

InVEST model
The InVEST model is an open-source software tool for assessing and quantifying ecosystem services. This 
model supports carbon storage estimation services. Through this model, we can achieve the conversion from 
aboveground and belowground biomass to carbon storage. The calculation principle is shown in Eq. 10:

	 Ci = Ai × (Cagb + Cbgb + Csoc + Cdom)� (10)

Where: Ci represents the total carbon storage of LULC type i; Ai represents the area of LULC type i; Cagb 
represents the aboveground biomass carbon pool, typically referring to the carbon stored in the aboveground 
parts of plants such as trees, grasslands, and crops; Cbgb represents the belowground biomass carbon pool, 
usually referring to the carbon stored in plant root systems; Csoc represents the soil organic carbon pool, 
typically referring to the organic carbon storage in the soil, which varies with LULC types and soil depth; Cdom 
represents the litter carbon pool, generally referring to the carbon stored in fallen leaves, deadwood, and other 
detritus within a region.

In this study, we used LULC classification map data for Vietnam obtained through GEE and the measured 
carbon storage data from the Vu Gia Thu Bon River Basin in central Vietnam (Table 4) as input data. Using the 
InVEST model, we calculated the annual carbon storage summary tables and carbon storage raster maps for 
each year.

Geo-detector model
The Geo-detector method is a statistical technique used to explore influencing factors. It detects spatial 
dissimilarity by considering and quantifying the non-linear relationships, scale effects and interactions 
between spatial factors, and combines q-statistical theories with objective and quantitative hierarchical analyses 
of geographic features, which are more widely used in revealing the intrinsic laws and mechanisms behind 
geographic phenomena, with the model principles as follows. The Geo-detector was implemented using the 
Excel Geo-Detector software created by Wang et al.39which is available for free at the website ​(​​​h​t​t​p​:​/​/​w​w​w​.​g​e​

Name Contribution rate Name Contribution rate

NDVI 652 VV_ent 535

B4 647 Y_VH 531

MNDWI 640 VV_savg 521

B5 627 B11 519

B3 607 VH_idm 518

VH_savg 607 VV_asm 514

VH_Phenological characteristics 595 B6 480

B12 580 B7 471

NDBI 577 B8A 470

B2 549 VH_asm 470

VV_idm 548 B8 456

VV_Phenological characteristics 546 VH_corr 456

VH_stdDev 542 VH_ent 428

VV_stdDev 541 VV_corr 419

VV 535

Table 5.  Parameter’s contribution rate as observed in random forest classification.
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o​d​e​t​e​c​t​o​r​.​c​n​​​​​)​. This factor detector assesses how much each factor explains the spatial variability in vegetation 
phenology. A higher q value indicates greater explanatory strength of the factor regarding climate, as quantified 
by the q value, with its formulation presented in Eqs. 11 and 12:

	
q = 1 −

∑
L
h=1Nhσ 2

h

Nσ 2 = 1 − SSW

SST
� (11)

where: SSW =
∑

L
h−1Nhσ 2

h( sum of squares within groups); (total sum of squares); Nh is the number 
of samples in group h; σ 2

h is the variance of group h; N  is the total number of samples, and σ 2 is the total 
variance.

The interaction detector identified the interactions between environmental factors and evaluated how 
strongly these interactions explained variations in the dependent variable Y. By analyzing the q-value of an 
individual factor alongside the combined q-values of two factors and the q-value resulting from their interaction, 
the study assessed whether the interactions between factors had a strengthening or diminishing effect on 
vegetation phenology39.

Results
Comparison of accuracy of LULC classification datasets
Upon completing the classification process, we compared the accuracy of the classification outcomes from the 
land classification model developed in this research with the global Class 4 PALSAR-2/PALSAR forest/non-forest 
maps produced by the JAXA (25 m resolution) and the World Cover 10 m v100 maps generated by ESA (10 m 
resolution). The results of this comparison are presented in Table 6. For the evaluation, this study selected 100 
sample points for each LULC type using a visual interpretation method, covering the six land classes identified 
in this research. The land classes corresponding to these sample points were then extracted from the forest/non-
forest maps, the ESA global LULC maps, and the classification result maps generated in this study using GEE.

In this study, the combination of rice growth cycle climate information effectively improves the accuracy 
of cropland extraction, and at the same time, the regional sample points used in this paper have better results 
in LULC classification in Vietnam compared to the global sample points. The accuracies of farmland, build-up 
land, bare land, and water bodies classification as well as the overall classification results are higher than those of 
ESA global LULC maps and JAXA forest/non-forest maps, and the overall accuracy is as high as 86.7%, in which 
forests and water bodies have the highest classification accuracies, followed by constructed land, farmland, and 
grassland.

Spatial and temporal changes in LULC
(1) Temporal changes in LULC

The statistics pertaining to different LULC categories in Vietnam are presented in Table 7. The data for various 
land area types in Vietnam for the year 2023 reveals that the predominant LULC categories include forests, 
which encompass a total area of 22.01 × 1010m2, representing 66.81% of the overall area. This is followed by 
farmland, covering 4.74 × 1010m2( 14.38%), and grasslands at 3.43 × 1010m2( 10.41%). Other categories 
include construction land at 1.37 × 1010m2( 4.15%), water bodies occupying 1.11 × 1010m2( 3.36%), and 
bare land, which spans 0.28 × 1010m2( 0.85%).

Figure 2 presents the LULC map of Vietnam, illustrating a notable rise in the extent of built-up regions and 
grasslands, along with a reduction in forested and barren areas. Additionally, there has been a steady rise in 
the area covered by water bodies nationwide from 2015 to 2023, while the area designated for farmland shows 
slight fluctuations but leans towards stabilization. The area of built-up land changes significantly from 2015 to 
2023, growing from 0.77 × 1010m2 in 2015 to 1.37 × 1010m2grassland area increased overall between 2015 
and 2020, growing from 2.74 × 1010m2 to 4.32 × 1010m2, and then declined, falling to 3.34 × 1010m2 
in 2023. forested land area declined from 23.43 × 1010m2 to 21.51 × 1010m2and then fluctuated to 
22.01 × 1010m2 in 2023. Bare land area gradually decreased from 0.56 × 1010m2in 2015 to 0.28 × 1010m2

in 2023. The extent of aquatic regions exhibited a pattern of first rising and then falling, with measurements of 
0.84 × 1010m2 in 2015, reaching 1.53 × 1010m2 in 2018, and subsequently dropping to 1.11 × 1010m2. 

farmland fluctuated less, from 4.61 × 1010m2 in 2015 to 4.74 × 1010m2 in 2023.
(2) Spatial changes in LULC.

This study ESA JAXA

Index OA OA OA

Forest 1.00 1.00 0.94

Grass 0.65 0.74

0.86
Farm 0.83 0.78

Build-up 0.93 0.88

Bare land 0.79 0.70

Water bodies 1.00 0.96 0.84

Total 0.87 0.84 0.73

Table 6.  Dataset accuracy comparison.
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The allocation of different LULC categories throughout Vietnam is depicted in Fig. 2. In general, the extent of 
land utilization within the nation shows considerable spatial variation. Forests are mainly found in the northern 
and central parts, as well as in the mountainous regions of the south. Conversely, farmland is predominantly 
found in the lower elevation zones, particularly in the northern Red River Delta and the Mekong Delta. Urban 
development is primarily focused in cities, with Hanoi and Ho Chi Minh City displaying a notable concentration 
of built-up land. Areas of bare land are dispersed, chiefly in some developed regions or those experiencing land 
degradation. The main water bodies include the Red and Mekong Rivers, with extensive aquaculture activities 
observed in the Mekong Delta located in the south. These features highlight the variations in the natural 
environment and human activities across different regions of Vietnam.

This research conducts an analysis of LULC changes in Vietnam, examining spatial and temporal aspects 
every four years (Figs. 3 and 4). Its statistical results (Tables 8 and 9) show that the continuous decrease in forest 
area is one of the most significant changes in LULC in Vietnam, and this decrease is mainly transformed into 
grassland, farmland, and land for construction. The decrease in forests is particularly noticeable from 2015 to 
2019, while this trend slows down from 2019 to 2023. The primary reason for the expansion of grassland areas 
is largely due to the transformation of forests and agricultural land, particularly the shift from farmland to 
grasslands. Conversely, the extent of arable land demonstrates an upward trend followed by a decline, indicating 
the variable transformations in agricultural land across various phases. Between 2015 and 2019, there was 
a significant rise in the amount of LULC for farmland; however, the reduction observed from 2019 to 2023 
indicates a slow transition of farmland into grassland and other purposes. The continued expansion of built-up 
land reflects the accelerated urbanization of Vietnam, with particularly significant growth in urban land between 
2019 and 2023. The area of bare land increases significantly between 2015 and 2019, but decreases between 
2019 and 2023, which may be due to a portion of bare land being repurposed for other land uses or affected 
by ecological restoration measures. The area of water bodies, on the other hand, is mainly characterized by a 
transformation with farmland, and between grassland use types.

During the period 2015–2019, the continuous decrease in the area of forests in Vietnam is one of the most 
significant changes in LULC in Vietnam, and this decrease is mainly transformed into grassland, farmland and 
build-up land, with 85.03% of forests remaining intact, and the rest being transformed into other land-use types, 
of which 8.12% is transformed into grassland, 3.79% is transformed into farmland, and 1.56% is transformed 
into build-up land. By 2019–2023, the area of forests remaining intact has slightly increased to 90.37%. The 
area of forest converted to grassland and farmland also decreased, to 4.66% and 2.99% respectively. The change 
in grassland was more significant. During the period 2015–2019, 55.84% of grassland remained intact while 
29.45% was converted to forest. The conversion of grassland into farmland, built-up land, bare land and water 
bodies was 10.57%, 3.42%, 0.3% and 0.39% respectively. By 2019–2023, the area of grassland remaining intact 
decreases to 46.56%, while the area converted to forest increases significantly to 38.44%. The area of grassland 
converted to bare land also increases to 1.39%. Farmland showed significant changes in both time periods. 
During 2015–2019, 68.3% of farmland remained intact while 16.16% was converted to forest and 10.86% to 
grassland. By 2019–2023, the area of farmland remaining intact increases to 73.74% ha, but the area converted 
to forest and grassland decreases, to 13.01% and 8.39%. Changes in build-up land are also more significant. 
Between 2015 and 2019, 63.7% of build-up land remained intact, while 9.32% was converted to forest and 
2.91% to grassland. By 2019–2023, there is a significant increase in the area of built-up land remaining in its 
original state to 80.58%, but there is a decrease in the area converted to forest and grassland, down to 3% and 
0.83%, respectively. There is an increase in the area of built-up land converted to bare land, to 2.66%. Bare land 
remained in its original state during 2015–2019, while 8.89% of bare land was converted to forest and 41.98% 
to grassland. The transformation of un-farmland into farmland, build-up land, and water bodies accounted 
for 3.24%, 5.36%, and 4.69%, respectively. By 2019–2023, the area of bare land remaining in its original state 
decreases to 35.11 and the area converted to forest, farmland and build-up land increases, to 10.91, 15.1 and 
13.84%, respectively. Additionally, the portion of bare land transitioned into grassland also saw a decrease, 
reaching 18.38%. Watersheds showed relatively little change between the two time periods, mainly in terms of 
conversion to water bodies. Between 2015 and 2019, 92.24% of watersheds remained intact, while 4.4% were 
converted to farmland. By 2019–2023, the area of waters remaining intact decreases to 73.04% and the area 
converted to farmland increases to 21.99%.

Type(×1010m2) 2015 2016 2017 2018 2019 2020 2021 2022 2023

Forest 23.43 22.57 22.19 21.51 21.91 21.5 23.72 22.19 22.01

Grass 2.74 3.88 3.3 4.4 4.19 4.32 3.66 3.44 3.43

Farm 4.61 4.59 5.02 4.38 4.28 4.54 3.67 5.25 4.74

Build-up 0.77 0.65 0.97 0.85 0.87 0.94 0.78 0.91 1.37

Bare land 0.56 0.27 0.35 0.27 0.35 0.32 0.3 0.31 0.28

Water bodies 0.84 0.97 1.12 1.53 1.35 1.32 0.81 0.84 1.11

Total 32.94 32.94 32.94 32.94 32.94 32.94 32.94 32.94 32.94

Table 7.  LULC area statistics.
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Mechanisms driving LULC change
The interaction heatmap of driving factors based on geographic detection results (Fig. 5) shows that the main 
influencing factors of forest cover change are slope, elevation, temperature, and population. Among them, slope 
(0.1819), elevation (0.1707), temperature (0.1245), and population (0.1205) have more significant effects on 
forest distribution. This indicates that the distribution and changes in forests are influenced by a combination of 

Fig. 2.  Multi-year LULC maps. This figure is generated using ArcGIS Pro 3.0.1 (​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​z​h​-​​c​n​/​a​
r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​p​r​o​/​o​v​e​r​v​i​e​w) while the country boundary is extracted from the GADM ​(​​​h​t​t​p​s​:​/​/​g​a​d​m​.​o​
r​g​/​​​​​)​.​​​​
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topographic conditions as well as climatic factors. In areas with steep slopes, rugged terrain naturally restricts 
human activities such as agriculture and construction, providing a natural barrier for forest preservation. 
Meanwhile, regions with moderate altitude and temperature are less likely to be developed by humans and are 
not constrained by climatic conditions for forest growth, often resulting in higher forest coverage. Influences 
on grassland distribution are more diffuse, with the effects of elevation (0.0171), slope (0.0177), precipitation 
(0.0056), temperature (0.0127), and population (0.0037), although less pronounced than those of forests, 
contributing to the formation of, and changes in, grasslands. Changes in farmland were most influenced by 
elevation (0.2097), slope (0.1690), temperature (0.1031) and population (0.1287). Due to the low altitude, gentle 
slopes, abundant water resources, and suitable temperatures in the Red River Delta and Mekong River Delta 
regions of Vietnam, there has been an expansion of arable land. With the increase in the agricultural population 
in these areas, the demand for agricultural land has also risen, leading to the conversion of more land into 
cropland. Changes in built-up land were mainly influenced by population (0.2104) and GDP (0.1048), indicating 
that construction activities were mainly concentrated in areas with high population density and economic 
activity. In addition, elevation (0.0350) and slope (0.0209) also have a constraining effect on the distribution 
of built-up land, as flat and low elevation areas are more suitable for construction and development. The main 
factors influencing the change of bare land include precipitation (0.0209) and temperature (0.0020), which are 
climatic factors that have a more significant effect on the distribution of bare land. GDP and population (0.0009) 
have relatively less influence on bare land, indicating that bare land is more due to natural conditions than 
human activities. The distribution of water bodies is mainly influenced by elevation (0.0662), slope (0.0368) 
and temperature (0.0298), which are natural factors that determine the formation and stability of water bodies.

Characterization of spatial and temporal variations in carbon stocks
In this study, we mapped Vietnam’s carbon stock based on the InVEST model (Fig.  7), and combined with 
the carbon stock statistics (Table 10) and the statistical map of carbon stock changes (Fig. 6), we analyzed the 
temporal and spatial changes in Vietnam’s carbon stock from 2015 to 2023. Overall, as of 2023, Vietnam has 
230.68 × 107Mg of carbon stock. Temporally, the overall carbon stock declines from 244.59 × 107Mg  in 

2015 to a low of 226.04 × 107Mg in 2020, and then gradually rebounds to 230.68 × 107Mg  in 2023. This 
indicates that between 2015 and 2020 This indicates a decreasing trend in carbon stocks between 2015 and 2020, 
and a recovery after 2021, with spatially higher carbon stocks in the northern mountainous areas and the central 
highlands.

In terms of time, forest carbon stocks accounted for the largest share and showed an overall decreasing trend, 
decreasing from 240.15 × 107Mg  in 2015 to 220.4 × 107Mg in 2020. it recovered after 2021 and reached 
225.63 × 107Mg in 2023, and the decrease in forest area was one of the main reasons for the decrease in carbon 

stocks. The overall fluctuation of carbon stock in grassland is larger, increasing from 2.14 × 107Mg  in 2015 
to 3.73 × 107Mg  in 2020, and then decreasing, reaching 2.67 × 107Mg  in 2023. The overall fluctuation of 
carbon stock in farmland has less change, and basically maintains in a more stable range from 2.3 × 107Mg in 
2015, and after 2021 there is a small increase, and in 2023 it is 2.37 × 107Mg.

Spatially, the distribution of high and low carbon stocks shows clear geographical differences. Mountainous 
areas in the north of Vietnam (e.g. Ha Giang, Xuan Quang, etc.) show high carbon stocks, the central highlands 
(e.g. Deloitte, Gia Lai, etc.) also show high carbon stocks, and the Mekong River delta as well as the plains in 
the south have low carbon stocks. Cities and coastal areas such as Ho Chi Minh City, Da Nang, and Hai Phong 
generally have low carbon stocks. Coastal areas have low carbon stocks due to high exploitation and reduced 
vegetation cover (Fig. 7).

Fig. 3.  LULC transfer statistics.
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2015 2019

Unit: (106m2) Forest Grassland Farm Build-up land Bare land Water bodies

Forest 1992.25 190.26 88.8 36.75 1.79 33.08

Grassland 80.72 153.03 28.98 9.38 0.84 1.1

Farm 74.5 50.1 314.83 3.03 0.59 17.87

Build-up land 17.8 7.14 2.23 48.75 0.25 0.36

Bare land 4.96 23.4 18.1 2.99 2.62 3.67

Water bodies 0.99 1.54 3.7 0.06 0.23 77.57

Table 8.  Statistics on LULC changes from 2015 to 2019.

 

Fig. 4.  LULC shift maps. This figure is generated using ArcGIS Pro 3.0.1 (​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​z​h​-​​c​n​/​a​r​​c​g​i​s​/​p​​
r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​p​r​o​/​o​v​e​r​v​i​e​w) while the country boundary is extracted from the GADM (https://gadm.org/).
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Discussion
Innovations and shortcomings of the classification method
In this research, we employed the GEE platform alongside the random forest technique, analyzing the climatic 
features and growth patterns of rice. LULC and cover were comprehensively mapped across the entire territory of 
Vietnam with notable accuracy. Nevertheless, the approach of “classifying initially and comparing subsequently” 
that we chose might have missed the temporal continuity of LULC and cover types. This oversight could result 
in abrupt and substantial shifts in LULC types at varying times40–42potentially compromising the precision and 
reliability of the analysis concerning LULC change patterns in the area of study. Moreover, due to the time 
limitations of S2 imagery and the persistent cloud cover in northern Vietnam, the classification accuracy for 2015 
and 2016 might be slightly lower; due to the limitations inherent in RF classification accuracy, this research did 
not differentiate between the types of forest land, such as natural, shrub, and economic forests; nor did it make 
distinctions among open water bodies and fisheries within aquatic categories, or between drylands and farmland 
in the agricultural classifications. This may render the land mapping findings of this study somewhat coarse and 
insufficiently detailed regarding the land classification system. Notably, this research enhanced the classification 
accuracy for various vegetation types and farmland within the region by incorporating regional sample points 
alongside the phenological characteristics of local vegetation. This indicates that integrating regional sample data 
and climatic factors into LULC classification proves effective and viable in enhancing classification accuracy.

Causes, impacts, and driving mechanisms of LULC changes
In this study, from 2015 to 2023, the area of forests and bare land in Vietnam decreased, and the area of 
constructed land, grassland, farmland, and water bodies increased to varying degrees. This finding is consistent 
with the findings of BB Thien et al. in Phu Tho Province, Vietnam43 and Thi-Thu Vu et al. in Dong Dau District, 
Vietnam44who showed that land-use changes in Vietnam were mainly characterized by a decrease in the area 
of vegetation and bare land and an increase in the area of constructed land, grassland, farmland and water 
bodies. In the first five years, 8.12% of forests were converted to grassland and 3.79% to cropland. The large-
scale conversion of forests to grassland may be attributed to the continuous expansion of human activity areas, 
which affected the forest ecosystem, leading to the degradation of primary forests into shrubland and grassland. 
Subsequently, some grassland suitable for agricultural production was further developed into cropland, resulting 
in the large-scale conversion of forests into grassland and cropland LULC types. In the following five years, 
the conversion areas decreased to 4.66% and 2.99%, respectively. This could be due to the implementation of 
Vietnam’s forest protection policies, which slowed the rate of forest area conversion. Meanwhile, the area of 
grassland converted to forests continued to increase, likely benefiting from the rapid development of the artificial 
forest economy supported by Vietnam’s policies, with large areas of grassland being converted into artificial 
forests.

Over the past decade, this paper highlights that a significant portion of forests in Vietnam has been converted 
to grasslands, while a considerable amount of grasslands has been transformed into forested areas. Additionally, 
a majority of farmland and bare land has shifted into both forests and grasslands. These phenomena indicate 
that Vietnam’s forest conservation policies are beginning to bear fruit45and that Vietnam is one of the few 
“models of successful forest restoration” that have significantly increased forest cover as a result of government-
led forest policies or initiatives46. Therefore, the Vietnamese government should advocate for the development 
of agricultural intensification to enhance food productivity without expanding farmland areas, continue to 
maintain existing land planning and management measures, further promote local sustainable development, 
and contribute to achieving regional carbon neutrality goals47.

This research indicates that LULC in Vietnam are impacted by a mix of socio-economic and climatic-
environmental elements, particularly the significant factors of slope, elevation, temperature, and population. 
These findings align with earlier research conducted in the central region48 as well as in the southern delta49 
of Vietnam. Additionally, the influence of precipitation on changes in LULC within Vietnam was found to 
be minimal, largely due to the country’s position within a tropical monsoon climate, where precipitation has 
historically not been a primary factor affecting the alterations in land surface ecosystems.

Carbon stock changes and analysis
Between 2015 and 2023, Vietnam’s total carbon storage showed a trend of continuous decline initially, followed 
by a fluctuating increase. However, it did not reach the carbon storage levels of 2015. Forest carbon stock 
generally declined during this period, which is related to the reduction of forest area due to land development 

2019 2023

Unit: (106m2) Forest Grassland Farm Build-up land Bare land Water bodies

Forest 1962.33 101.34 65.12 35.09 3.62 3.73

Grassland 163.57 198.11 41.11 13.95 5.95 2.76

Farm 59.43 38.34 336.75 5.18 10.36 6.58

Build-up land 12.66 3.03 0.84 81.35 2.69 0.37

Bare land 0.69 1.16 0.95 0.87 2.21 0.42

Water bodies 2.62 0.74 29.4 0.53 2.73 97.63

Table 9.  Statistics on LULC changes from 2019 to 2023.
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and deforestation. The carbon storage in grasslands and croplands fluctuated, but their impact on total carbon 
storage was relatively small. The areas with significant differences in carbon storage distribution are primarily 
located at the boundaries between forests and agricultural or urban land, as well as at the interfaces between 
mountainous and plain terrains. These variations are mainly influenced by a combination of human activities 
and topographical factors. In the future, forest protection and ecological restoration need to be strengthened in 
order to effectively increase carbon stocks and achieve sustainable development.

Fig. 5.  Heat map of driving factor interaction effects. Asp, Ele, Slo, Pre, Tem, Pop division representative 
aspect, elevation, slope, precipitation, temperature and population.
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Conclusion
Being the second largest exporter of rice globally and a significant recipient of industrial transfers from China, 
Vietnam faces challenges such as the unavailability of high-precision, automated LULC classification data on a 
national scale, a dearth of research focused on technologies driven by LULC changes, and insufficient statistics 
for assessing the national carbon stock of Vietnam. This research utilizes the GEE platform, leveraging data from 
both S1 and S2 satellites. We employed the “Multi-source Consistency,” “Time Series Stability,” and Random 
Forest methodologies to produce high-precision LULC datasets for Vietnam covering the years 2015–2020. 
The technical strategies and modeling techniques implemented in this paper have markedly enhanced the 
classification accuracy of different LULC categories, as well as the precision in identifying farmland, providing 
valuable reference data for comparable studies in other regions in the future. The findings indicate that in 
Vietnam, forested areas are the predominant LULC type, with a notable reduction in forested regions since 2015. 
Additionally, grasslands and water bodies exhibited variability, while there has been a steady increase in the 
extent of urbanized land, no substantial change in farmland areas, and a gradual decline in bare land. Through 
Geo-Detector, we found that the change of area of forest and farmland is mainly affected by slope, elevation and 
population, the area of construction land is mainly affected by population and GDP, and the influencing factors 
of grassland, bare land and water bodies do not obviously manifest themselves in a specific category. Through 
the analysis we found that agricultural expansion and urbanization are the main reasons for the disappearance 
of forests. Whereas the increase in grassland area is mainly attributed to the conversion of forests and farmland, 
especially the high percentage of conversion from farmland to grassland, while the area of farmland shows a 
trend of increasing and then decreasing. As of 2023, Vietnam’s carbon stock has 230.68 × 107 Mg C. the overall 
carbon stock shows a slow downward trend from 244.59 × 107 Mg C in 2015 to a low of 226.04 × 107 Mg C in 
2020, and then gradually rebounds to 230.68 × 107 Mg C in 2023. among them, forests account for the largest 
share of the carbon stock and the overall trend is decreasing and the distribution of carbon stocks shows obvious 
geographical differences. The carbon stock is high in the north and center of Vietnam, and low in the Mekong 
and Red River deltas. In the future, it is necessary to maintain and strengthen ecological protection in order to 
effectively increase carbon stocks and achieve the goal of carbon neutrality in the region.

Fig. 6.  Vietnam continuous carbon storage change maps.

 

LULC type(×107Mg C) 2015 2016 2017 2018 2019 2020 2021 2022 2023

Forest carbon storage 240.15 230.58 227.42 221.03 222.55 220.4 220.59 224.75 225.63

Grassland carbon storage 2.14 3.05 2.58 3.31 3.32 3.37 3.33 2.81 2.67

Farmland carbon storage 2.3 2.35 2.51 2.38 2.28 2.27 2.36 2.75 2.37

Total carbon storage 244.59 235.98 232.5 226.72 228.15 226.04 226.28 230.31 230.68

Table 10.  Vietnam’s annual carbon storage statistics.
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Fig. 7.  Multi-year carbon storage maps. This figure is generated using ArcGIS Pro 3.0.1 (​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​
/​z​h​-​​c​n​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​p​r​o​/​o​v​e​r​v​i​e​w) while the country boundary is extracted from the GADM ​(​​​h​t​t​p​s​:​
/​/​g​a​d​m​.​o​r​g​/​​​​​)​.​​​​
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Data availability
The datasets used and or analyzed in this study are available from the corresponding author on reasonable re-
quest.
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