Table 2 The prediction performance of each model.
Model | AUC | Accuracy | Sensitivity | Specificity | Precision | F1 score | Brier score | C index |
---|---|---|---|---|---|---|---|---|
Train set | ||||||||
LR | 0.784 | 0.727 | 0.828 | 0.625 | 0.688 | 0.752 | 0.187 | 0.784 |
SVM | 0.782 | 0.766 | 0.797 | 0.734 | 0.750 | 0.773 | 0.186 | 0.782 |
GBM | 0.865 | 0.789 | 0.844 | 0.734 | 0.761 | 0.800 | 0.146 | 0.865 |
NeuralNetwork | 0.851 | 0.789 | 0.844 | 0.734 | 0.761 | 0.800 | 0.156 | 0.851 |
RandomForest | 0.789 | 0.789 | 0.844 | 0.734 | 0.761 | 0.800 | 0.211 | 0.789 |
Xgboost | 0.816 | 0.750 | 0.875 | 0.625 | 0.700 | 0.778 | 0.171 | 0.816 |
KNN | 0.750 | 0.742 | 0.531 | 0.953 | 0.919 | 0.673 | 0.304 | 0.750 |
Adaboost | 0.863 | 0.789 | 0.844 | 0.734 | 0.761 | 0.800 | 0.155 | 0.863 |
LightGBM | 0.853 | 0.773 | 0.812 | 0.734 | 0.754 | 0.782 | 0.155 | 0.853 |
CatBoost | 0.843 | 0.766 | 0.797 | 0.734 | 0.750 | 0.773 | 0.264 | 0.843 |
Test set | ||||||||
LR | 0.661 | 0.679 | 0.643 | 0.714 | 0.692 | 0.667 | 0.238 | 0.661 |
SVM | 0.773 | 0.750 | 0.786 | 0.714 | 0.733 | 0.759 | 0.196 | 0.773 |
GBM | 0.778 | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | 0.184 | 0.778 |
NeuralNetwork | 0.747 | 0.750 | 0.714 | 0.786 | 0.769 | 0.741 | 0.199 | 0.747 |
RandomForest | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | 0.214 | 0.786 |
Xgboost | 0.732 | 0.750 | 0.786 | 0.714 | 0.733 | 0.759 | 0.204 | 0.732 |
KNN | 0.633 | 0.679 | 0.357 | 1. 000 | 1.000 | 0.526 | 0.410 | 0.633 |
Adaboost | 0.763 | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | 0.197 | 0.763 |
LightGBM | 0.778 | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | 0.180 | 0.778 |
CatBoost | 0.778 | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | 0.264 | 0.778 |