Table 2 The prediction performance of each model.

From: Development of a machine learning-based model to predict urethral recurrence following radical cystectomy: a multicentre retrospective study and updated meta-analysis

Model

AUC

Accuracy

Sensitivity

Specificity

Precision

F1 score

Brier score

C index

Train set

LR

0.784

0.727

0.828

0.625

0.688

0.752

0.187

0.784

SVM

0.782

0.766

0.797

0.734

0.750

0.773

0.186

0.782

GBM

0.865

0.789

0.844

0.734

0.761

0.800

0.146

0.865

NeuralNetwork

0.851

0.789

0.844

0.734

0.761

0.800

0.156

0.851

RandomForest

0.789

0.789

0.844

0.734

0.761

0.800

0.211

0.789

Xgboost

0.816

0.750

0.875

0.625

0.700

0.778

0.171

0.816

KNN

0.750

0.742

0.531

0.953

0.919

0.673

0.304

0.750

Adaboost

0.863

0.789

0.844

0.734

0.761

0.800

0.155

0.863

LightGBM

0.853

0.773

0.812

0.734

0.754

0.782

0.155

0.853

CatBoost

0.843

0.766

0.797

0.734

0.750

0.773

0.264

0.843

Test set

LR

0.661

0.679

0.643

0.714

0.692

0.667

0.238

0.661

SVM

0.773

0.750

0.786

0.714

0.733

0.759

0.196

0.773

GBM

0.778

0.786

0.786

0.786

0.786

0.786

0.184

0.778

NeuralNetwork

0.747

0.750

0.714

0.786

0.769

0.741

0.199

0.747

RandomForest

0.786

0.786

0.786

0.786

0.786

0.786

0.214

0.786

Xgboost

0.732

0.750

0.786

0.714

0.733

0.759

0.204

0.732

KNN

0.633

0.679

0.357

1. 000

1.000

0.526

0.410

0.633

Adaboost

0.763

0.786

0.786

0.786

0.786

0.786

0.197

0.763

LightGBM

0.778

0.786

0.786

0.786

0.786

0.786

0.180

0.778

CatBoost

0.778

0.786

0.786

0.786

0.786

0.786

0.264

0.778

  1. LR, logistic regression; SVM, support vector machine; GBM, gradient boosting machine; Xgboost, eXtreme gradient boosting; KNN, k-nearest neighbors; AdaBoost, adaptive boosting; CatBoost, categorical boosting.