Table 4 Comparison of quantum resources.
From: Optimized quantum folding Barrett reduction for quantum modular multipliers
Algorithm | #Qubit | #NOT | #CNOT | T-count | T-depth |
---|---|---|---|---|---|
General Barrett Reduction | \(6n+6\) | \(12n+15-9y(N)\) | \((2n+1)w(\mu )+(2n+1)w(N)\) \(+12n^2+9n+8-6y(N)\) | \(8n^2+32n\) | \(2n^2+8n\) |
Folding Barrett Reduction | \(6n+9\) | \(15n+19-12y(N)\) | \((n-1)w(N')+(n+1)w(\mu )\) \(+(n+3)w(N)+\frac{15}{2}n^2+21n+6-8y(N)\) | \(5n^2+44n\) | \(\frac{5}{4}n^2+11n\) |
Optimized Folding Barrett Reduction | \(6n+12\) | \(9n+11-6y(N)\) | \((n-1)w(N')+(n+5)w(\mu )\) \(+(n+3)w(N)+\frac{15}{2}n^2+30n+34-4y(N)\) | \(5n^2+38n+32\) | \(\frac{5}{4}n^2+\frac{19}{2}n+8\) |