Table 4 Comparison of quantum resources.

From: Optimized quantum folding Barrett reduction for quantum modular multipliers

Algorithm

#Qubit

#NOT

#CNOT

T-count

T-depth

General Barrett

Reduction

\(6n+6\)

\(12n+15-9y(N)\)

\((2n+1)w(\mu )+(2n+1)w(N)\)

\(+12n^2+9n+8-6y(N)\)

\(8n^2+32n\)

\(2n^2+8n\)

Folding Barrett

Reduction

\(6n+9\)

\(15n+19-12y(N)\)

\((n-1)w(N')+(n+1)w(\mu )\)

\(+(n+3)w(N)+\frac{15}{2}n^2+21n+6-8y(N)\)

\(5n^2+44n\)

\(\frac{5}{4}n^2+11n\)

Optimized Folding Barrett

Reduction

\(6n+12\)

\(9n+11-6y(N)\)

\((n-1)w(N')+(n+5)w(\mu )\)

\(+(n+3)w(N)+\frac{15}{2}n^2+30n+34-4y(N)\)

\(5n^2+38n+32\)

\(\frac{5}{4}n^2+\frac{19}{2}n+8\)

  1. Let w(n) denote the numbers of ones in the binary expansion of n and y(n) denote the numbers of zeros in the binary expansion of n