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Inorganic scale formation is one of the major flow assurance issues in geothermal energy, oil, and 
water production due to its damaging effects on formation rock, wells, and transportation facilities. 
Owing to the intricate nature of scale formation, developing a closed-form mathematical formulation 
for its prediction is difficult. Thereby, the ability of six machine learning algorithms and a Power Law 
Ensemble Model (PLEM) to predict inorganic scale formation in carbonate formations is examined in 
this study. A new dataset of scale formation from realistic wells in Oman, which included temperature, 
pressure, artificial lift, ionic composition, pH, total dissolved solids, and scale formation tendency 
of each well, was collected from two reservoirs (Natih and Shuaiba). The machine learning models 
are Naive Bayes (NA), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), 
K-Nearest Neighbors (KNN), and Decision Tree (DT). The results revealed that the RF, KNN and DT 
provided the best predictions among the individual experts with a F1-scores of 78.6%, 75.9%, and 
71.0%, respectively. By integrating the predictions of the individual experts using the PLEM method, 
the F1-score increased to 90.3% on the test subset. Moreover, a study was conducted to find out some 
rules of thumb for each input that cause scale formation, but the results showed that there was no 
explicit condition, indicating that scale formation is a complicated phenomenon requiring advanced 
modeling approaches. Finally, a new water analysis report was given to the PLEM (as the best model) 
to predict scale formation in a well that demonstrated a match between the predicted class and the 
report outcome.
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Scale formation is a major problem in petroleum and geothermal energy production. It occurs when seawater is 
injected into the formation (for pressure maintenance or geothermal energy production) or when two brines mix 
and the chemical stability is violated. This can lead to the creation of insoluble solids, which may block pipelines 
and equipment, reduce production rates, and increase operational costs1. Scale formation can also have negative 
environmental impacts, as hazardous chemicals are often used to prevent it. Most of the reservoirs in Oman are 
composed of limestone, which is prone to scale formation. The usual completion type is an open hole with long 
horizontal legs. The majority of the wells are equipped with artificial lift systems—including gas lift, sucker rod 
pumps, and Electrical Submersible Pumps (ESP)—to facilitate the lifting of produced fluid from bottom hole to 
the surface. Due to the carbonate nature of the reservoirs in Oman and the use of water injection for pressure 
maintenance, scale formation is one of the primary challenges that appears on casing walls, production tubing, 
and downhole pumps. Frequent pump failures and the need for well interventions to replace pumps have caused 
many challenges, such as financial losses and unscheduled well shut-ins. Therefore, it is of great importance to 
predict scale formation at early stages to enable timely and appropriate preventive actions.

The main reason for scale formation is the incompatibility in ionic compositions, not abnormalities in ionic 
concentration, pH, pressure, or temperature. Consequently, developing simple rules or closed-form mathematical 
models to predict scale formation is not easy. The conventional way to determine whether scale formation occurs 
is through experimental laboratory tests. Nonetheless, The high cost and lengthy procedures of these tests limit 
their application. Consequently, alternative methods, such as data-driven methods, are often preferred over 
experimental methods2. Machine learning models have been widely used to solve various problems in the oil 
and gas industry, including production prediction3, well log data generation4, anomaly detection in well log 
data5, reservoir property estimation6, Pressure Volume Temperature (PVT) property prediction7, reservoir 
characterization and numerical modeling8, estimation of minimum miscibility pressure9, and fracturing design 
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optimization10,11. In the context of scale formation prediction, Moghadasi et al.12 developed an intelligent 
model for the prediction of scale formation as a function of the ionic composition of brines, temperature, 
and pressure. Hajirezaie et al.13 used two models to estimate the reduction in permeability as a function of 
barium concentration. Their results showed that the models could estimate the permeability reduction due to 
scale formation with an average relative error of only 1%. Al-Hajri et al.14 employed several intelligent models, 
including KNN, gradient boosting, decision tree, and support vector machine to predict calcium carbonate scale 
formation as a function of pH and ionic composition. Ahmadi and Chen15 used two models, an Artificial Neural 
Network (ANN) and a Least Squares – Support Vector Machine coupled with Genetic Algorithm (LSSVM-GA) 
to estimate formation damage due to deposition of scale during water injection. According to their results, the 
LSSVM-GA performed better than the ANN. Xu et al.16 developed five intelligent models, including Multi Linear 
Regression, KNN, Support Vector Regression, Random Forest (RF), and Gradient Boosting Regression, using 
702 experimental samples to predict hydrate formation temperature in the presence of salty water. Yousefzadeh 
et al.17 compared the performance of ten machine learning algorithm in predicting scale formation under harsh 
conditions. However, their study did not include artificial lift type, pressure, and temperature as inputs despite 
their outstanding influence on scale formation.

To wrap up, although many works have studied scale formation prediction using data-driven models, they 
have not considered some operational factors, such as artificial lift type, pressure, and temperature at pump depth. 
Moreover, previous studies have not examined the ability of the PLEM method to predict the inorganic scale 
formation by integrating the predictions of individual machine learning models. The benefit of using the PLEM 
method is taking advantage of different types of learning algorithms to strengthen the reliability of predictions 
and reduce the bias toward a specific method. In this study, six data-driven models, such as Random Forest (RF), 
Decision Tree (DT), K-nearest Neighbors (KNN), Logistic Regression (LR), Support Vector Machine (SVM), 
and Naïve Bayes (MB), are adopted as six experts to predict inorganic scale formation as a function of ionic 
concentrations (Na+ (ppm), Ca2+ (ppm), Mg2+ (ppm), SO4

2- (ppm), HCO3
- (ppm)), artificial lift type (AL Type), 

Total Dissolved Solids (TDS), temperature at pump depth, pressure at pump depth, and pH, collected from 
two reservoirs (Natih and Shuaiba) in Oman. Then, the outputs of the individual experts were integrated using 
the PLEM method coupled with Particle Swarm Optimization (PSO). The contribution of this investigation is 
demonstrating the ability of individual experts and the potential of the PLEM method to achieve reliable scale 
formation predictions.

Field description
Shuaiba and Natih oil reservoirs are two of the biggest carbonate reservoirs in the northwest of Oman that 
originate from the Cretaceous period18. The Shuaiba formation is 130 m thick, while the Natih formation reaches 
up to 419 m. Production takes place through a multitude of horizontal wells completed as open hole19. Three 
types of artificial lift methods are used to lift produced fluids from downhole to the wellhead, including gas lift, 
ESP, and sucker rod pumps. Over the past decade, the number of wells with scale buildup has shown a substantial 
increase in this field, damaging subsurface and surface (e.g. flow lines) equipment. The consequences encompass 
a variety of damages to the field, such as decreased production due to blocked flow paths, pump failures, and 
increased acid back flushing and CTU/hoist interventions.

Methods and materials
Figure 1 shows the overall workflow of the study. The first step is gathering the dataset. Then, the dataset is 
undergone a comprehensive statistical analysis to analyze the correlation between the input parameters, inspect 
the range of each parameter, asses the distribution of the parameters, and preprocess the data to make it ready 
for modeling. Next, individual data-driven experts are trained and validated. This step includes tuning the 
hyperparameters of the experts and analyzing their generalization on unseen data based on several evaluation 
metrics. Finally, the outputs of the individual experts are integrated using the proposed PLEM model. These 
steps and the utilized tools and models are described in more details in the following subsections.

Dataset
The utilized dataset consisted of 240 samples gathered from 240 wells from the two Omani reservoirs (Natih and 
Shuaiba). Each sample included 15 features, such as the well name, well type (producer or injector), artificial 
lift type (AL Type), target formation and reservoir, collection date, temperature and pressure at pump depth, 
ionic concentrations (Na+ (ppm), Ca2+ (ppm), Mg2+ (ppm), SO4

2- (ppm), HCO3
- (ppm)), TDS (ppm), and pH. 

Previous studies did not include AL Type in their inputs and most of them excluded pressure and temperature 
from the list of inputs. The target of each sample was either 0 (no-scale) or 1 (scale).

The dataset was gathered from multiple sources, including water analysis, X-RD (X-ray diffraction) 
analysis20, coiled tubing intervention, workover intervention, and downhole pumps’ sensor data. By removing 
incorrect values and missing data, the total number of samples was decreased to 224. Moreover, five out of fifteen 
features were excluded from the features list since they were not useful for developing the predictive models. The 
excluded features were well name, well type, collection data, target formation, and target reservoir. Thereby, the 
inputs included ten features.

Since most of machine learning algorithms expect inputs as digits, we must convert categorical variables into 
digits. In this regard, AL Type was encoded to digits as follows: ESP (0), rod pump (1), and gas lift (2).

Before moving on to developing the data-driven models, statistical analysis and preprocessing of the variables 
is of great importance. A typical statistical analysis is studying the correlation between the input variables to 
discover highly correlated ones. Pearson’s correlation and Spearman’s correlation21 are two of the commonly 
used methods to compute the correlation between two variables. In this regard, the pairwise correlation between 
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variables is checked using Pearson’s correlation and one of two variables with a mutual correlation higher than 
0.9 is excluded from the inputs. Figure 2 shows the correlation between the variables. As can be seen, there is no 
correlation higher than 0.9 and all variables are used for model development. To evaluate the significance of the 
observed correlations and address the null hypothesis, P-values are shown in Fig. 3. By comparing Figs. 2 and 3, 
it is evident that the P-value is low for high correlation coefficients, whereas it gets larger for weaker correlations. 
This is because the P-values indicate the statistical significance of the correlations under the null hypothesis of 
no association. In other words, if P-value < 0.05, it indicates a strong evidence against the null hypothesis that is 

Fig. 2.  Correlation matrix between the variables.

 

Fig. 1.  Flowchart of the study.
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no relation between two variables. In contrast, P-value > 0.05 indicates there is not enough evidence to reject the 
null hypothesis, which means that the low correlation between two variables is confirmed.

Another statistical analysis performed on the utilized dataset involves analyzing its statistical moments, 
such as mean, standard deviation, minimum, maximum, etc. to find out the diversity of the data. The results 
of this analysis are reported in Table 1. As shown in Table 1, the collected data points cover a wide range of 
operational conditions, making them suitable for developing and testing the data-driven models. Moreover, 
as shown in Table 1, the range of the variables differs significantly. For example, pH values are below 10, while 
Na+ concentrations are on the order of ten thousands. Thereby, rescaling the variables to similar intervals is 
paramount. To achieve this, first, the dataset was divided into training and testing subsets using an 80:20 ratio. 
T﻿hen, the samples were standardized to make training more efficient, as shown in Eq. 1.

	
Xs = X − X

σ
,� (1)

where Xs is the standardized input, X  denotes the mean, and σ denotes the standard deviation of inputs over 
the samples in the training subset.

Finally, the distribution of the ten input variables (along with the target formation) and the output is depicted 
in Fig. 4. Based on this figure:

A/L type

Temperature 
@ pump depth 
(◦C)

Pressure @ 
pump depth 
(psi) Na (ppm) Ca (ppm) Mg (ppm) SO4 (ppm)

HCO3 
(ppm) TDS (ppm) pH Scale

Count 224 224 224 224 224 224 224 224 224 224 224

Mean 0.91 80.57 637.58 33,703.99 8469.36 1408.71 230.25 148.56 128,402.30 6.15 0.35

Std 0.98 9.284 309.28 17,260.86 4436.41 662.58 357.11 54.02 60,809.63 0.48 0.47

Min 0 56 80 1836 1300 425.20 0 1 596 4.75 0

25% 0 76 426.75 18,305 4710.25 848.25 104.75 117.97 77,522.50 5.87 0

50% 0 83 614 28,960 7363.65 1261.70 167.50 146.85 113,425 6.06 0

75% 2 87 813 51,431.25 11,855 1837.50 241.25 176.50 190,045 6.42 1

Max 2 113 2363 66,890 23,200 3050 3370 336 263,000 7.96 1

Skewness 0.19 −0.29 1.28 0.27 0.45 0.59 6.46 0.42 0.177 0.57 0.64

Table 1.  Statistical analysis of the utilized dataset.

 

Fig. 3.   P-values calculated from t-distribution for correlation coefficients.
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•	 ESP is the AL Type for 119 samples, sucker rod pump is seen in 98 samples, and gas lift appears in only 9 
samples.

•	 Most of the inputs (Pressure, Ca, Mg, SO4, HCO3, and pH) have a skewed and nearly Gaussian distribution, 
which is favorable for classification algorithms that rely on the Gaussian assumption for input variables, while 
the others have a bi-modal or Bernoulli distribution.

•	 The non-Gaussian distribution of some variables make it hard for Gaussian-based classification algorithms, 
such as the LR and NB, to model scale formation.

•	 The last plot (bottom-right) indicates that almost 2/3 of the samples show no scale (0), while 1/3 of them show 
scale formation. Thereby, the dataset is imbalanced, which necessitates the use of classification metrics other 
than accuracy for evaluating the predictive models.

The machine learning models were trained using 80% of the data and tested on the remaining 20%. To tune the 
hyperparameters of the models, grid search with fivefold cross validation was used. 

Naïve bayes
Naïve Bayes (NB) classifier is a probabilistic learning algorithm that leverages statistical principles to learn 
from data17. NB can be employed to solve classification problems, such as predicting scale formation. The 
fundamental rule of this algorithm is Bayes’ theorem, as shown in Eq.  2. According to Bayes’ theorem, the 
probability of a sample belonging to class Cm given X  is denoted by p (Cm|X), where X is the vector of input 
features (x1,x2,…xn)T and Cm is the m-th class. Note that, in Bayes’ theorem, the variables are assumed to be 
conditionally independent. Based on this assumption, Eq. 2 can be rearranged to Eq. 322.

	
p (Cm|X) = p (Cm) p(X|Cm)

p (X) ,� (2)

	
p (Cm|X) = 1

p (X) .p (Cm)
n∏

i=1

p(xi|Cm)� (3)

Based on Eq. 3, the probability of scale formation (Cm = 1) given the input variables is equal to the product of 
the probability of xi given Cm = 1, multiplied by the prior probability of scale formation (calculated as the ratio 
of sacle samples to all samples), and divided by the probability of observing the given inputs, p (X). Since p (X) 
is intractable, it is omitted from Eq. 3, which leads to Eq. 4.

	
p (Cm|X) ∝ p (Cm)

n∏
i=1

p(xi|Cm)� (4)

Fig. 4.  Distribution of the inputs and the output.
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which is known as the maximum likelihood. Thereby, by calculating the likelihood for each class, the class with 
the maximum likelihood is chosen as the most probable class.

Logistic regression
Logistic regression (LR) is a machine learning technique rooted in statistics23. LR computes the probability that a 
sample belongs to a specific class. This algorithm resembles a regression algorithm but with a categorical output 
due to applying the logistic function to the linear combination of the inputs, as shown in Fig. 5. In this figure, b 
denotes the bias term, and σ is the sigmoid/logistic function.

The logistic function produces outputs between 0 and 1. Moreover, it has a different learning process, which 
is based on the assumption of conditional independence among the variables and a Gaussian distribution of the 
inputs. At first, LR was able to solve problems with only two classes, but later on it was extended to multi-class 
problems24.

Assuming that there are only two classes (0 and 1), the probability that a sample belongs to class 1 is given as 
follows, which is based on Bayes’ theorem:

	
P (Y = 1|X) = P (Y = 1)P (X|Y = 1)

P (Y = 1) P (X|Y = 1) + P (Y = 0) P (X|Y = 0) � (5)

After dividing the nominator and denominator by the nominator, we will have:

	
P (Y = 1|X) = 1

1 + P (Y =0)P (X|Y =0)
P (Y =1)P (X|Y =1)

� (6)

It is equivalent to:

	

P (Y = 1|X) = 1

1 + exp
(
ln P (Y =0)P (X|Y =0)

P (Y =1)P (X|Y =1)

) � (7)

Since the features are assumed to be conditionally independent:

	

P (Y = 1|X) = 1

1 + exp
(
ln P (Y =0)

P (Y =1) +
∑

i
ln P (Xi|Y =0)

P (Xi|Y =1)

) = 1

1 + exp
(
ln 1−π

π
+

∑
i
ln P (Xi|Y =0)

P (Xi|Y =1)

) � (8)

For the summation term, assuming that P (X|Y = y) is Gaussian:

	

∑
i

ln
P (Xi|Y = 0)
P (Xi|Y = 1) =

∑
i

ln

1√
2πσ2

i

exp
(

−(Xi−µi0)2

2σ2
i

)

1√
2πσ2

i

exp
(

−(Xi−µi1)2

2σ2
i

) =
∑

i

(
µi0 − µi1

σi2
Xi + µ2

i1 − µ2
i0

2σ2
i

)
� (9)

Substituting this into Eq. 6 gives:

Fig. 5.  Schematic diagram of logistic regression.
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P (Y = 1|X) = 1

1 + exp
(

ln 1−π
π

+
∑

i

(
µi0−µi1

σ
i2

Xi + µ2
i1−µ2

i0
2σ2

i

)) ,� (10)

which is equivalent to:

	
P (Y = 1|X) = 1

1 + exp
(
w0 +

∑
i
wiXi

) � (11)

Equation 11 is optimized, which is equivalent to maximizing the likelihood of assigning a sample to class 1 using 
optimization methods such as gradient ascent.

K-nearest neighbors
K-Nearest Neighbors (KNN) is a non-parametric learning algorithm introduced by Evelyn Fix and later 
upgraded by Thomas Cover25,26. KNN can be used for both classification and regression. The overall principle 
is that the label of a sample is determined based on the label(s) of its surrounding neighbor(s) in the database. 
For classification, majority voting is usually used to determine the output, and for regression, arithmetic or 
distance-based averaging can be used. K determines the number of nearest neighbors to do majority voting or 
averaging. K = 1 means that the closest neighbor is only used. As the name of the method implies, the nearest 
neighbors must be found to estimate the output of a sample, which requires calculating the distance between the 
query sample and all other samples in the training dataset. If the scale of the input features differs substantially, 
standardization of the samples is vital to have a fair distance calculation27,28. The final class of a query sample 
(xq) can be determined by means of Eq. 12.

	
f̂ (xq) ← arg max

c∈C

K∑
i=1

δ (c, f (xi)) , δ (a, b) = 1ifa = b,� (12)

where xq  denotes the query sample, and xi is the i-th neighbor of the query sample, K  is the number of nearest 
neighbors, δ (a, b) is the Kronecker delta which is 1 if a = b and 0 otherwise, and f  determines the label of xi 
among C  classes. Figure 6 shows the schematic diagram of KNN with four classes. The circle shows the five (K 
= 5) nearest neighbors of the query sample (xq).

In distance-weighted version of the KNN, the inverse of the distance between the query sample and adjacent 
samples is used as the weight of that sample. In this manner, the label of the query sample is determined as 
follows:

	
f̂ (xq) ← arg max

c∈C

K∑
i=1

wiδ (c, f (xi)) , δ (a, b) = 1ifa = b,� (13)

Fig. 6.  Schematic diagram of KNN with four classes and K = 5.
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where wi is the weight of sample i. Accordingly, as a sample gets closer to the query sample, it will have a 
stronger impact on the final label of the query sample.

Decision tree
A decision tree is a supervised machine learning algorithm applicable to both classification and regression tasks. 
It is a flowchart-like structure that consists of a root node, branches, internal nodes, and leaf nodes, as shown 
in Fig. 7.

The root node represents the starting point of the tree, and the leaf nodes represent the final predictions. The 
branches represent the possible outcomes of a decision, and the internal nodes represent the tests that are used to 
make decisions29. The complicated process of decision making is broken into multiple processes that are simpler 
than the original problem30. Decision trees are trained using a top-down, greedy approach. This means that 
the algorithm starts at the root node and recursively splits the dataset into increasingly homogeneous subsets. 
The splitting is done by finding the attribute that separates the data into two groups in an optimal manner. The 
attribute that is selected is the one that has the highest information gain or Gini index, which indicates how well 
the attribute separates the data into two groups. In this study, the Gini index is used to select the nodes. The Gini 
index is calculated by means of Eq. 14.

	
Gini = 1 −

C∑
i=1

(pi)2 ,� (14)

where C  is the number of classes (2 in this study), and pi is the probability of the i th class. The Gini index is 
calculated for each split, and the larger and easy to implement splits are preferred to smaller splits with distinctive 
values.

Random forest
Random forest (RF) is an ensemble learning method composed of multiple decision trees. These trees are trained 
independently using random subsets from the training dataset with randomly selected features31. Random 
selection of samples and features assures diversity in the tree building process, which reduces the chance of 
overfitting. The number of selected features is limited by the maximum number of features, which should be 
tuned by trial and error. The intuition of the random forest tree-building approach is to use several decision 
trees, instead of only a single tree. The ultimate output is determined through averaging or majority voting, 
depending on the nature of the problem (regression or classification). In classification tasks, majority voting is 
used to determine the final label of the sample. An advantage of RF over conventional decision trees is its better 
stability32. As stated, several trees are constructed to build a random forest. These trees should have a decent 
performance. Thereby, an out-of-bag (OOB) subset is separated from each random subset of samples to calculate 
the prediction error as the approximation of the overall error. The schematic diagram of an RF is shown in Fig. 8.

Support vector machine
Support vector machines (SVMs) were introduced by Cortes and Vapnik33. One of the great advantages of SVMs 
is their ability to solve non-linear problems via the kernel trick. By means of the kernel trick, the original data 
is transformed from the original space, where it is not linearly separable, to a higher-dimensional space, where 

Fig. 7.  Schematic representation of a decision tree.
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data is linearly separable. The classification principle in SVMs relies on maximizing the margin between the 
classes. The margin between the classes is defined as the distance between the support vectors from which two 
hyperplanes are drawn, one for each class. The support vectors are found in a way to maximize the margin 
between the hyperplanes34–36. The decision boundary that separates the classes is drawn from the middle of 
the hyperplanes. Assuming that X =

[
xT

1 , xT
2 , . . . , xT

M

]
 is the matrix of inputs with M  samples, and ∅ is the 

mapping function to transform the original data to a higher-dimensional space, the classification boundary is 
given by Eq. 15.

	 W T ∅ (X) + b = 0,� (15)

where W  is the vector of weights and b is the bias term. The margin is calculated as the line that separates the 
support vectors with the shortest perpendicular distance. This distance is two times the distance between the 
decision boundary and the hyperplanes. If the distance between the two hyperplanes is ρ and we scale the 
weights and bias by ρ/2, for each sample we will have:

	 yi

[
W T ∅ (xi) + b

]
≥ 1, i = {1, 2, . . . , M}� (16)

Each support vector (xs, ys) lies on a hyperplane, which means that the inequality becomes an equality. Now, we 
can calculate the distance from the support vectors to the decision boundary (d) as:

	
d =

ys

(
W T xs + b

)
W

= 1
W

,� (17)

in which ∥W ∥ is norm 2 of the weight vector. Since the distance between the support vectors and the classification 
boundary was half the margin between the hyperplanes, the margin will be 2

∥W ∥ . Now, the purpose is maximizing 
2

∥W ∥ , where we can minimize 1
2 W T W , instead. Thereby, we should solve the following minimization problem:

	

arg min
W,b

1
2W T W

s.t.yi

[
W T ∅ (xi) + b

]
≥ 1, for i = 1, . . . , M

� (18)

Hyperplanes with the maximum margin give the highest generalization on unseen data. To further improve the 
generalization of the model, slack variables (ξ) are introduced, which convert the hard-margin policy to the soft-
margin policy. Slack variables are defined as the distance between misclassified samples from their class-specific 

Fig. 8.  Schematic diagram of a random forest.
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hyperplane, as shown in Fig. 9 for a bi-variate example. In this manner, we ignore the strict rule of correctly 
classifying all training examples, and let the model make some mistakes in the training phase with the benefit of 
improved generalization. By considering the slack variables, the problem in Eq. 18 becomes:

	 yi

[
W T ∅ (xi) + b

]
≥ 1 − ξi,� (19)

where ξi is the slack variable for the i th sample. Now, the minimization problem can be re-written as:

	

arg min
W,b

(1
2W T W + c

∑
i

ξi),

s.t.yi

[
W T ∅ (xi) + b

]
≥ 1 − ξi, for i = 1, . . . , M

� (20)

where c is the regularization coefficient, which specifies the importance of the slack variables. The problem 
above is a dual optimization problem for which the Lagrange approach is adopted to solve. This approach 
incorporates the inequality and equality constraints to the dual-optimization problem and transforms it to a 
single-optimization problem.

	

L (W, b, α) = 1
2W T W −

M∑
i=1

αi

[
yi

(
W T ∅ (xi) + b

)
− 1

]

s.t.0 ≤ αi ≤ c, i = 1, . . . , M

� (21)

where αi s are known as the Lagrange multipliers. To optimize the above problem (Eq. 21), the derivative of 
the loss function, L, w.r.t to W  and b should be set to zero. The Karush–Kuhn–Tucker (KKT) conditions yield: 
W =

∑M

i=1αiyi∅ (xi) and 
∑M

i=1αiyi = 0. Plugging these back into Eq. 21, the dual formulation is obtained.

Fig. 9.  Schematic of the SVM.

 

Scientific Reports |        (2025) 15:21277 10| https://doi.org/10.1038/s41598-025-05003-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

arg max
α

−1
2

M∑
i,j=1

αiαjyiyj∅ (xi) ∅ (xj) +
M∑

i=1

αi,

s.t.

M∑
i=1

αiyi = 0, 0 ≤ αi ≤ c, i = 1, . . . , M

� (22)

To solve Eq. 22, Quadratic Programming is used, which gives the Lagrange multipliers. Only the support vectors 
have non-zero Lagrange multipliers. Since the bias term (b) stays out of the dual formulation, we have to obtain it 
by implementing the initial constraints. According to Mercer’s theorem37, we can avoid computing ∅ (xi)∅ (xj) 
since it is computationally demanding. Instead, we can use the kernel trick38,39, in which ∅ (xi)∅ (xj) is replaced 
with a kernel function K

(
xi, xj

)
. A kernel function is, in fact, the mathematical result of ∅ (xi)∅ (xj) in a 

symbolic form, which should be found by trial and error. During the inference time, the model’s output given a 
new sample z can be obtained as follows:

	
y = sign

(
M∑

i=1

αiyiK (xi,z) + b

)
� (23)

Power law ensemble model
Ensemble learning is a learning paradigm that solves a problem by integrating the outputs of individual predictive 
models. This approach allows us to benefit from the strengths of different kinds of learning algorithms, rather 
than relying on a single method. We can merge the outputs of the ensemble models using linear or non-linear 
combinations. The former is known as the static strategy, and the latter is known as the dynamic strategy. The 
static strategy is easier to implement but tends to produce sub-optimal results. The dynamic strategy requires 
optimizing the coefficients of the non-linear combination and yields decent results. One of the dynamic strategies 
is the PLEM method, in which a power law model is used to combine the outputs of the individual experts in 
the ensemble, as shown in Eq. 24.

	
y =

S∑
i=1

αiy
βi
i ,� (24)

where S is the size of the ensemble (6 in this study), αi is the coefficient of the i th experts, and βi is the exponent 
of the i th expert. The coefficients and exponents need to be optimized by an optimizer to achieve the best results 
from PLEM. We have adopted the Particle Swam Optimization algorithm (PSO) to perform this optimization.

The choice of PLEM with PSO was motivated by both its flexibility and capacity to capture non-linear 
relationships among the outputs of individual experts. Unlike conventional ensemble learning strategies such as 
stacking or weighted voting, which typically rely on linear or fixed-weight aggregations, PLEM offers non-linear 
integration that can better reflect varying confidence levels or predictive performance of individual models 
across different prediction intervals. Furthermore, using PSO for optimizing the coefficients of PLEM enables 
efficient global search effectively in complex, non-convex solution spaces—a great advantage when ensemble 
outputs are noisy or moderately correlated.

Evaluation metrics
As a classification task, the ability of the individual experts and the PLEM method to predict scale formation 
is evaluated using both quantitative and visual metrics. These include the Receiver Operating Characteristic 
(ROC) curve, confusion matrix, and classification metrics, such as accuracy, precision, recall, and F1-score. 
Before moving on to the definition of these metrics, some common terms should be defined.

True positive (TP): TP is attributed to a sample that its predicted and actual label is positive.
False positive (FP): FP refers to a sample that it is predicted as positive, but its actual label is negative.
True negative (TN): TN refers to a sample that its predicted and actual label is negative.
False negative (FN): FN is attributed to a sample that it is predicted as negative, but its actual label is positive.
Now, the classification metrics are defined as follows.
Accuracy is defined as the portion of all correctly classified samples, as given in Eq. 25. Precision is defined 

as the intersection of positive predictions with the actual predictions, indicating that how accurate the positive 
predictions are, which is defined in Eq. 26. Recall determines how accurate the model acts on positive samples. 
In other words, it measures the portion of the actual positive samples correctly recognized as positives (Eq. 27). 
Finally, to merge the precision and recall to have a unified metric, F1-score is used, which is defined in Eq. 28.

	
Accuracy = TP + TN

TP + TN + FP + FN
,� (25)

	
Precision = TP

TP + FP
,� (26)

	
Recall = TP

TP + FN
,� (27)
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F1 − score = 2 × P recision × recall

precision + recall
� (28)

Confusion matrix
For binary classification, the confusion matrix is a 2 × 2 matrix, in which the rows represent the actual classes 
and the columns represent the predicted classes. The diagonal cells contain the true positive and true negative 
counts, while the off-diagonal cells show the false positives and false negatives. Figure 10 shows a schematic of 
a confusion matrix.

ROC curve
The ROC curve is a visual performance metric for a binary classifier across different decision thresholds for 
differentiating between positive (1) and negative (0) classes. The ROC curve is generated by plotting the true 
positive rate (TPR) against the false positive rate (FPR) at multiple thresholds, where TPR is TP/(TP + FN), while 
FPR is FP/(FP + TN).

As the ROC curve approaches to the top-left corner, both specificity and recall increase. To have a single 
quantitative measure of the model’s performance based on the ROC curve, the Area Under the Curve (AUC) is 
utilized. A higher AUC is an indication of better recall and specificity at various thresholds.

Results and discussion
To achieve optimal predictive performance from machine learning models, their hyperparameters must be 
tuned. A common method for hyperparameter tuning is grid search, where a pre-specified set of hyperparameter 
combinations is examined based on performance on a validation subset. The set of hyperparameters leading to 
the highest validation score (e.g., accuracy) is chosen as the best set.

Nonetheless, when the training dataset is small, separating a subset of samples as a validation subset makes 
the training set even smaller. Thereby, K-fold cross validation is used to tackle this challenge. In this strategy, 
the training set is divided into K non-overlapping folds; training is done K times with fixed hyperparameters, 
and each time one of the folds is used as the validation subset and the remaining folds for training. Each time 
the validation score is calculated and, in the end, the ultimate score is calculated as the average of the validation 
scores on K folds, known as the cross-validation score. The set of hyperparameters with the highest cross-
validation score is chosen as the optimal hyperparameters to train the final model.

In this study, grid search with five-fold (K = 5) cross validation was used to tune the hyperparameters. The 
range of hyperparameters evaluated for each machine learning model, along with the optimal values and cross-
validation scores, are reported in Table 2.

The optimal hyperparameters were used to train the individual experts. Then, their performance on the test 
subset was evaluated and reported in Table 3.

Table 3 shows that RF, KNN, and DT have the best performance across all evaluation metrics. NB shows the 
worst performance since it assumes that the input variables are conditionally independent and follow a Gaussian 
distribution. However, the reality is something else. In practice, scale formation occurs due to a combination of 
various factors, including ion concentration, pH, pressure, temperature, TDS, and artificial lift type. Thereby, 
assuming that the input variables are conditionally independent is not a good assumption, as they are correlated. 
Moreover, Fig. 4 showed that not all the variables follow a Gaussian distribution. For the same reason, LR also 
showed indecent results. The best-performing method, which achieved high values for all evaluation metrics, is 
RF. This is because RF uses random subsets of features to construct its estimators, resulting in reduced bias. This 
means we do not rely on only a single set of features; instead, various subsets of features are used to build the 
estimators. Each estimator produces its own class prediction (0 or 1), and the final result is computed based on 

Fig. 10.  Schematics of a confusion matrix.
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the majority voting paradigm. This approach leads to the creation of diverse rules for predicting scale formation 
and reduces overfitting. Additionally, tree-based algorithms are effective at extracting complicated rules from 
tabular data and are not constrained by the assumptions of conditional independence or Gaussian distribution 
of variables, which also explains the good performance of DT. The reason for the outperformance of RF over 
DT lies in RF’s reduced overfitting due to its use of an ensemble of trees, rather than relying on a single tree. 
The second best model is KNN. The reason for its good performance is that it is an instance-based algorithm 
and does not estimate the output using a universal function and does not impose assumptions like conditional 
independence or Gaussian distribution on the input variables. Since scale formation as a function of the input 
variables is a complex phenomenon, it is difficult to model it with a universal function. It is worth pointing 
out that the best three methods have similar recall values, but different precisions, which indicates that their 
differences lie in how accurate is their positive predictions are.

To assess the performance of the individual models for each class, confusion matrices were constructed and 
are shown in Fig. 11. The numbers on the main diagonal of the confusion matrix show the true negatives and 
true positives. Specifically, the top-left number shows the true negatives, and the bottom-right number shows 
the true positives. In line with Table 3, KNN, DT, and RF have the highest number of true positives, while LR 
has the fewest. Accordingly, KNN, DT, and RF have a better accuracy at predicting the positive samples than 
other individual models, meaning that most positive samples were correctly recognized by them. The reason for 
the better performance of RF compared to KNN and DT is its higher number of true negatives, indicating that 
RF was more successful in correctly identifying negative (no-scale) samples; however, DT misclassified three of 
those negative samples as positives, and KNN misclassified one as positive (scale). As shown in Fig. 11, other 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

KNN 84.4 73.3 78.6 75.9

SVM 77.8 64.3 64.3 64.3

NB 71.1 52.9 64.3 58.1

RF 86.7 78.6 78.6 78.6

LR 75.6 61.5 57.1 59.3

DT 80.0 64.7 78.6 71.0

Table 3.  Performance of the machine learning models to predict scale formation on the test subset.

 

Model Hyperparameter Optimal value Range Cross-validation score

LR

C 2 1–100

76.6%

Fit intercept True True, False

Solver Saga lbfgs, Sag, Newton

Penalty norm L2 L1, L2

Max iterations 200 100, 200, 300, 400

RF

Criterion Entropy Entropy, Gini

88.3%

Max_depth 5 2–10

n_estimators 100 50–500

Min_samples_split 3 2–20

Min_samples_leaf 1 1–5

Max_features Auto Sqrt, log2, Auto

oob_score True True, False

DT

Criterion Entropy Entropy, Gini

81.4%
Min_samples_split 100 2–150

Min_samples_leaf 1 1–5

Max_depth 6 2–10

SVM

Kernel Rbf Linear, Poly, Rbf

79.4%Probability True True, False

C 1 0.001, 0.01, 0.1, 1, 10

KNN

n_neighbors 5 1–11

84.8%Metric Minkowski Minkowski, Euclidean, l1, l2

P 2 1, 2

NB
Fit_prior True True, False

74.2%
Class_prior None None, True

Table 2.  Optimal hyperparameters for each model, along with their investigated range and cross-validation 
scores.
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models (SVM, NB, and LR) have fewer true positives and true negatives, and more false positives and more false 
negatives than the other three models. In this regards, NB had the highest number of false positives (8), and 
LR had the highest number of false negatives (6). This indicates that NB tends to predict no-scale conditions as 
scale with a high probability, which can lead to unnecessary treatments and financial loss. On the other hand, 
all the three models (SVM, NB, and LR) have a high probability of missing actual positives (scale conditions), 
potentially resulting in damage to facilities due to undetected scale formation.

To make the comparison more convenient, the ROC curve for each machine learning model, along with their 
calculated AUC, is illustrated in Fig. 12. As the ROC curve approaches to the top-left corner, it indicates high 
recall (low false positives), which means that most of the positive predictions by the model were truly positives. 
According to Fig. 12, RF has the highest AUC, followed by KNN and DT. The lowest AUC is achieved by LR. 
Therefore, the results provided by the ROC curves are in agreement with the results in Table 3 and Fig. 11. 
Consequently, positive samples are mostly captured by RF, KNN, and DT models, and their positive predictions 
were actually positives, making them more reliable tools than other individual models for predicting inorganic 
scale formation.

To improve the predictions, the outputs of the individual machine learning models were integrated using 
the PLEM method. To do so, the coefficients of the PLEM model were optimized using the PSO algorithm on 
the training subset, and the predictions were made on the testing subset. Figure 13 shows the confusion matrix 
and ROC curve for the PLEM method on the test subset. As can be seen, the PLEM method has successfully 
identified all 14 positive samples in the test subset, and its only failure was in three negative samples incorrectly 
labeled as positives. Thus, three out of seventeen positive predictions by the PLEM method were incorrect, 
reducing its precision. Moreover, the ROC curve with an AUC of 0.95 shows a stronger inclination toward the 
top-left corner than the ROC curves of the individual models, indicating the superior performance of the PLEM 
method over its constituent models.

Figure  14 provides a comprehensive comparison between the metrics of the PLEM and the individual 
models. The PLEM model outperformed its constituent parts in all evaluation metrics. A recall of 1.0 for the 
PLEM indicates that all positive samples were recognized by the model, but it has incorrectly classified three 
negative samples as positives, resulting in a precision of 0.824. Consequently, no-scale conditions are reliably 
predicted by the PLEM model (no false negatives). In other words, when the PLEM predicts that no scale will 
form, it is 100% accurate, but when it predicts scale forming, it is 82.4% accurate. Nevertheless, its predictions 
(scale or no-scale) are more reliable than those of the individual models.

In the following, each input variable is plotted against scale formation to identify any possible explicit rule 
for scale formation. Figure 15 illustrates the input–output analysis. According to this figure, when analyzing the 
relationship between each variable and scale formation, no clear distinction is observed. In other words, scale 
formation occurs within similar intervals of each variable. Therefore, scale formation does not occur because a 
specific variable is higher or lower than a threshold but due to a combination of conditions and incompatibility 

Fig. 11.  Confusion matrix for each machine learning model on the test subset.
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Fig. 13.  Confusion matrix and ROC curve for the PLEM method on the test subset.

 

Fig. 12.  ROC curves for the individual machine learning models.

 

Scientific Reports |        (2025) 15:21277 15| https://doi.org/10.1038/s41598-025-05003-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


among ions, pH, pressure, and temperature. As a consequence, we cannot develop specific rules based solely 
on thresholds for influential factors; instead, data-driven models are needed to uncover hidden relationships 
between the inputs and the output (scale formation). Extracting these rules is not easy without the help of 
machine learning models.

To investigate the accuracy of the PLEM as the best-performing model on a real case, a water analysis report 
from a random wellhead sample was taken from a well in the Shuaiba field. Figure 16 provides the results of the 
water analysis on the sample. The target well was completed with a sucker rod pump operating under a pressure 
of ~ 290 psi at the pump depth. By processing the data presented in Fig. 16, the model predicted that the well had 
a high probability of forming inorganic scale.

The well was gone under investigation and the following observations were recorded:

•	 Frequent pump failures were reported in the well, leading to three pump replacements.
•	 The pumps suffered from a short run-life, especially the last two pumps had a life span of 150 and 116 days.
•	 After a thorough root-cause analysis, it was revealed that the well suffered from scale formation, which was in 

agreement with the model’s prediction.

Fig. 15.  Input–output analysis for extracting scale-forming rules.

 

Fig. 14.  Comparison between the PLEM method and its constituent models.

 

Scientific Reports |        (2025) 15:21277 16| https://doi.org/10.1038/s41598-025-05003-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Table 4 provides a description of the last three pumps used in the candidate well, their run life, reported failures, 
root causes, and observations extracted from well intervention history report. As can be seen, all three pumps 
suffered from scale formation, and the issue worsened over time, leading to shorter run-life after each pump 
replacement. The developed tool is being planned for deployment across more wells to prepare it for future use.

Fig. 16.  Full water analysis report for a new sample.
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Real-life applications
The match between the what was reported in the well intervention history and the PLEM method’s prediction 
indicates the reliability of the proposed methodology for predicting inorganic scale formation. The findings of 
this study can be used to develop data-driven models for real-life applications, such as:

	– Early detection of scale formation and take preventive actions, such as timely replacement of downhole 
pumps before severe scale buildup.

	– Optimization of operational conditions, such as water composition, pressure, or pH, to prevent scale build 
up. The model can serve as a surrogate to predict and prevent scale formation by adjusting controllable op-
erational parameters.

	– By timely predicting the scale formation the company can implement chemical injection in high-potentioal 
wells for scale formation to reduce costs related to scale remediation and pump failures.

	– Petroleum, geothermal energy, and water treatment projects can take benefit from the developed data-driven 
model to reduce the costs and increase operational safety.

Conclusions
A dataset of 224 field samples of scale formation gathered from Natih and Shuaiba reservoirs in Oman was 
used to develop data-driven models for predicting scale formation. Six machine learning models with different 
learning algorithms were developed, and their predictions were integrated using the PLEM method. Results 
showed that three of the machine learning models (RF, KNN, and DT) could predict scale formation with 
an F1-score higher than 70%. However, by integrating the outputs of the individual models using the PLEM 
method the F1-score improved to 90.3%. This indicates the strong ability of the PLEM method to improve the 
predictions significantly. The reason for the inferior performance of LR and NB is that they assume conditional 
independence among input variables, whereas factors influencing scale formation are correlated. Moreover, the 
SVM attempts to find a universal classifier, which is a challenging task in problems where classes change with 
small perturbations in inputs.

The finding of this study show that ensemble learning with a power-law integration approach is a reliable 
technique to leverage strengths of individual data-driven models with different learning strategies to improve 
the prediction of scale formation. The result of input–output analysis showed that scale formation does not 
result from the high or low concentration of a single ion but is a complex phenomenon that requires advanced 
models to uncover the relationships between inputs and outputs. Moreover, tree-based models and the KNN 
model performed better than other individual experts, showcasing their suitability for modeling highly sensitive 
relationships between input and output variables.

In practice, the PLEM method can be used to predict scale formation before the situation becomes severe, 
allowing to take preventive actions, such as timely pump replacement and avoiding unexpected production 
blockage. Furthermore, the predictive tool can help identify the root cause of scale formation by altering input 
parameters and inspecting whether scale forms.

The limitation of this work is that it does not use time series data, such as fluid rates, pressure over time, 
temperature over time, ion concertations over time, pH over time, and TDS over time, to forecast scale formation 
ahead of time. It also cannot identify the risk of scale formation at early stages before scale formation starts. 
Moreover, this study only considered inorganic scale. It is recommended to extend the dataset and models to 
include all types of solids, such as organic and inorganic scale, wax, asphaltene, sand, and metals. The data-
driven predictive models used in this study can only determine whether inorganic scale will form in oil and gas 
wells; they cannot predict the trend, specific scale formation amount, or type of scale formation. Additionally, 
the models do not account for the influence of the presence of gas and oil phases on the trend of scale formation. 
It is recommended to gather a more comprehensive dataset of scale formation, including the amount, type, and 
root cause of scale, gas analysis results, and oil composition, to enable the predictive model to overcome the 
mentioned limitations. For example, if the model can identify the root cause and type of scale, it can suggest 
tailored solutions. In addition, gas analysis results can enrich the inputs of the model with values such as CO2 
concentration, H2S concentration, and dissolved oxygen, as these parameters play an important role in scale 
formation.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 25 March 2025; Accepted: 30 May 2025

Reservoir Run-life (days) Reported failure Root cause Observations

Shuaiba 633 Downhole issue Inorganic scale Deposited solids and scale in sucker rod pumps

Shuaiba 150 Downhole issue Inorganic scale Inorganic scale in sucker rod pumps

Shuaiba 116 Downhole issue Inorganic scale A sucker rod pump fully covered with inorganic scale

Table 4.  Description of the last three pumps used in the candidate well.
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