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Ensemble learning for prediction of
inorganic scale formation: A case
study in Oman
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Inorganic scale formation is one of the major flow assurance issues in geothermal energy, oil, and
water production due to its damaging effects on formation rock, wells, and transportation facilities.
Owing to the intricate nature of scale formation, developing a closed-form mathematical formulation
for its prediction is difficult. Thereby, the ability of six machine learning algorithms and a Power Law
Ensemble Model (PLEM) to predict inorganic scale formation in carbonate formations is examined in
this study. A new dataset of scale formation from realistic wells in Oman, which included temperature,
pressure, artificial lift, ionic composition, pH, total dissolved solids, and scale formation tendency

of each well, was collected from two reservoirs (Natih and Shuaiba). The machine learning models

are Naive Bayes (NA), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Decision Tree (DT). The results revealed that the RF, KNN and DT
provided the best predictions among the individual experts with a F1-scores of 78.6%, 75.9%, and
71.0%, respectively. By integrating the predictions of the individual experts using the PLEM method,
the F1-score increased to 90.3% on the test subset. Moreover, a study was conducted to find out some
rules of thumb for each input that cause scale formation, but the results showed that there was no
explicit condition, indicating that scale formation is a complicated phenomenon requiring advanced
modeling approaches. Finally, a new water analysis report was given to the PLEM (as the best model)
to predict scale formation in a well that demonstrated a match between the predicted class and the
report outcome.
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Scale formation is a major problem in petroleum and geothermal energy production. It occurs when seawater is
injected into the formation (for pressure maintenance or geothermal energy production) or when two brines mix
and the chemical stability is violated. This can lead to the creation of insoluble solids, which may block pipelines
and equipment, reduce production rates, and increase operational costs'. Scale formation can also have negative
environmental impacts, as hazardous chemicals are often used to prevent it. Most of the reservoirs in Oman are
composed of limestone, which is prone to scale formation. The usual completion type is an open hole with long
horizontal legs. The majority of the wells are equipped with artificial lift systems—including gas lift, sucker rod
pumps, and Electrical Submersible Pumps (ESP)—to facilitate the lifting of produced fluid from bottom hole to
the surface. Due to the carbonate nature of the reservoirs in Oman and the use of water injection for pressure
maintenance, scale formation is one of the primary challenges that appears on casing walls, production tubing,
and downhole pumps. Frequent pump failures and the need for well interventions to replace pumps have caused
many challenges, such as financial losses and unscheduled well shut-ins. Therefore, it is of great importance to
predict scale formation at early stages to enable timely and appropriate preventive actions.

The main reason for scale formation is the incompatibility in ionic compositions, not abnormalities in ionic
concentration, pH, pressure, or temperature. Consequently, developing simple rules or closed-form mathematical
models to predict scale formation is not easy. The conventional way to determine whether scale formation occurs
is through experimental laboratory tests. Nonetheless, The high cost and lengthy procedures of these tests limit
their application. Consequently, alternative methods, such as data-driven methods, are often preferred over
experimental methods?. Machine learning models have been widely used to solve various problems in the oil
and gas industry, including production prediction®, well log data generation?, anomaly detection in well log
data®, reservoir property estimation®, Pressure Volume Temperature (PVT) property prediction’, reservoir
characterization and numerical modeling®, estimation of minimum miscibility pressure’, and fracturing design
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optimization'®!. In the context of scale formation prediction, Moghadasi et al.'> developed an intelligent
model for the prediction of scale formation as a function of the ionic composition of brines, temperature,
and pressure. Hajirezaie et al.'* used two models to estimate the reduction in permeability as a function of
barium concentration. Their results showed that the models could estimate the permeability reduction due to
scale formation with an average relative error of only 1%. Al-Hajri et al.'* employed several intelligent models,
including KNN, gradient boosting, decision tree, and support vector machine to predict calcium carbonate scale
formation as a function of pH and ionic composition. Ahmadi and Chen'® used two models, an Artificial Neural
Network (ANN) and a Least Squares — Support Vector Machine coupled with Genetic Algorithm (LSSVM-GA)
to estimate formation damage due to deposition of scale during water injection. According to their results, the
LSSVM-GA performed better than the ANN. Xu et al.!® developed five intelligent models, including Multi Linear
Regression, KNN, Support Vector Regression, Random Forest (RF), and Gradient Boosting Regression, using
702 experimental samples to predict hydrate formation temperature in the presence of salty water. Yousefzadeh
et al.'” compared the performance of ten machine learning algorithm in predicting scale formation under harsh
conditions. However, their study did not include artificial lift type, pressure, and temperature as inputs despite
their outstanding influence on scale formation.

To wrap up, although many works have studied scale formation prediction using data-driven models, they
have not considered some operational factors, such as artificial lift type, pressure, and temperature at pump depth.
Moreover, previous studies have not examined the ability of the PLEM method to predict the inorganic scale
formation by integrating the predictions of individual machine learning models. The benefit of using the PLEM
method is taking advantage of different types of learning algorithms to strengthen the reliability of predictions
and reduce the bias toward a specific method. In this study, six data-driven models, such as Random Forest (RF),
Decision Tree (DT), K-nearest Neighbors (KNN), Logistic Regression (LR), Support Vector Machine (SVM),
and Naive Bayes (MB), are adopted as six experts to predict inorganic scale formation as a function of ionic
concentrations (Na* (ppm), Ca** (ppm), Mg?* (ppm), SO,* (ppm), HCO," (ppm)), artificial lift type (AL Type),
Total Dissolved Solids (TDS), temperature at pump depth, pressure at pump depth, and pH, collected from
two reservoirs (Natih and Shuaiba) in Oman. Then, the outputs of the individual experts were integrated using
the PLEM method coupled with Particle Swarm Optimization (PSO). The contribution of this investigation is
demonstrating the ability of individual experts and the potential of the PLEM method to achieve reliable scale
formation predictions.

Field description

Shuaiba and Natih oil reservoirs are two of the biggest carbonate reservoirs in the northwest of Oman that
originate from the Cretaceous period'®. The Shuaiba formation is 130 m thick, while the Natih formation reaches
up to 419 m. Production takes place through a multitude of horizontal wells completed as open hole'®. Three
types of artificial lift methods are used to lift produced fluids from downhole to the wellhead, including gas lift,
ESP, and sucker rod pumps. Over the past decade, the number of wells with scale buildup has shown a substantial
increase in this field, damaging subsurface and surface (e.g. flow lines) equipment. The consequences encompass
a variety of damages to the field, such as decreased production due to blocked flow paths, pump failures, and
increased acid back flushing and CTU/hoist interventions.

Methods and materials

Figure 1 shows the overall workflow of the study. The first step is gathering the dataset. Then, the dataset is
undergone a comprehensive statistical analysis to analyze the correlation between the input parameters, inspect
the range of each parameter, asses the distribution of the parameters, and preprocess the data to make it ready
for modeling. Next, individual data-driven experts are trained and validated. This step includes tuning the
hyperparameters of the experts and analyzing their generalization on unseen data based on several evaluation
metrics. Finally, the outputs of the individual experts are integrated using the proposed PLEM model. These
steps and the utilized tools and models are described in more details in the following subsections.

Dataset

The utilized dataset consisted of 240 samples gathered from 240 wells from the two Omani reservoirs (Natih and
Shuaiba). Each sample included 15 features, such as the well name, well type (producer or injector), artificial
lift type (AL Type), target formation and reservoir, collection date, temperature and pressure at pump depth,
ionic concentrations (Na* (ppm), Ca®* (ppm), Mg** (ppm), SO * (ppm), HCO,™ (ppm)), TDS (ppm), and pH.
Previous studies did not include AL Type in their inputs and most of them excluded pressure and temperature
from the list of inputs. The target of each sample was either 0 (no-scale) or 1 (scale).

The dataset was gathered from multiple sources, including water analysis, X-RD (X-ray diffraction)
analysis?, coiled tubing intervention, workover intervention, and downhole pumps’ sensor data. By removing
incorrect values and missing data, the total number of samples was decreased to 224. Moreover, five out of fifteen
features were excluded from the features list since they were not useful for developing the predictive models. The
excluded features were well name, well type, collection data, target formation, and target reservoir. Thereby, the
inputs included ten features.

Since most of machine learning algorithms expect inputs as digits, we must convert categorical variables into
digits. In this regard, AL Type was encoded to digits as follows: ESP (0), rod pump (1), and gas lift (2).

Before moving on to developing the data-driven models, statistical analysis and preprocessing of the variables
is of great importance. A typical statistical analysis is studying the correlation between the input variables to
discover highly correlated ones. Pearson’s correlation and Spearman’s correlation?! are two of the commonly
used methods to compute the correlation between two variables. In this regard, the pairwise correlation between
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Fig. 1. Flowchart of the study.
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Fig. 2. Correlation matrix between the variables.

variables is checked using Pearson’s correlation and one of two variables with a mutual correlation higher than
0.9 is excluded from the inputs. Figure 2 shows the correlation between the variables. As can be seen, there is no
correlation higher than 0.9 and all variables are used for model development. To evaluate the significance of the
observed correlations and address the null hypothesis, P-values are shown in Fig. 3. By comparing Figs. 2 and 3,
it is evident that the P-value is low for high correlation coefficients, whereas it gets larger for weaker correlations.
This is because the P-values indicate the statistical significance of the correlations under the null hypothesis of
no association. In other words, if P-value <0.05, it indicates a strong evidence against the null hypothesis that is
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Fig. 3. P-values calculated from t-distribution for correlation coefficients.

Temperature | Pressure @
@ pump depth | pump depth HCO3
A/Ltype | (°C) (psi) Na (ppm) | Ca (ppm) | Mg (ppm) | S04 (ppm) | (ppm) | TDS (ppm) | pH | Scale

Count 224 224 224 224 224 224 224 224 224 224 | 224
Mean 0.91 80.57 637.58 33,703.99 | 8469.36 1408.71 230.25 148.56 | 128,402.30 |6.15 | 0.35
Std 0.98 9.284 309.28 17,260.86 | 4436.41 662.58 357.11 54.02 | 60,809.63 0.48 | 0.47
Min 0 56 80 1836 1300 425.20 0 1 596 4.75 |0
25% 0 76 426.75 18,305 4710.25 848.25 104.75 117.97 | 77,522.50 587 |0
50% 0 83 614 28,960 7363.65 1261.70 167.50 146.85 | 113,425 6.06 | 0
75% 2 87 813 51,431.25 | 11,855 1837.50 241.25 176.50 | 190,045 642 |1
Max 2 113 2363 66,890 23,200 3050 3370 336 263,000 7.96 |1
Skewness | 0.19 -0.29 1.28 0.27 0.45 0.59 6.46 0.42 0.177 0.57 | 0.64

Table 1. Statistical analysis of the utilized dataset.

no relation between two variables. In contrast, P-value >0.05 indicates there is not enough evidence to reject the
null hypothesis, which means that the low correlation between two variables is confirmed.

Another statistical analysis performed on the utilized dataset involves analyzing its statistical moments,
such as mean, standard deviation, minimum, maximum, etc. to find out the diversity of the data. The results
of this analysis are reported in Table 1. As shown in Table 1, the collected data points cover a wide range of
operational conditions, making them suitable for developing and testing the data-driven models. Moreover,
as shown in Table 1, the range of the variables differs significantly. For example, pH values are below 10, while
Na* concentrations are on the order of ten thousands. Thereby, rescaling the variables to similar intervals is
paramount. To achieve this, first, the dataset was divided into training and testing subsets using an 80:20 ratio.
Then, the samples were standardized to make training more efficient, as shown in Eq. 1.

X, = X=X (1)
g

where X is the standardized input, X denotes the mean, and o denotes the standard deviation of inputs over
the samples in the training subset.

Finally, the distribution of the ten input variables (along with the target formation) and the output is depicted
in Fig. 4. Based on this figure:
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Fig. 4. Distribution of the inputs and the output.

o ESP is the AL Type for 119 samples, sucker rod pump is seen in 98 samples, and gas lift appears in only 9
samples.

o Most of the inputs (Pressure, Ca, Mg, SO » HCO,, and pH) have a skewed and nearly Gaussian distribution,
which is favorable for classification algorithms that rely on the Gaussian assumption for input variables, while
the others have a bi-modal or Bernoulli distribution.

« The non-Gaussian distribution of some variables make it hard for Gaussian-based classification algorithms,
such as the LR and NB, to model scale formation.

o Thelast plot (bottom-right) indicates that almost 2/3 of the samples show no scale (0), while 1/3 of them show
scale formation. Thereby, the dataset is imbalanced, which necessitates the use of classification metrics other
than accuracy for evaluating the predictive models.

The machine learning models were trained using 80% of the data and tested on the remaining 20%. To tune the
hyperparameters of the models, grid search with fivefold cross validation was used.

Naive bayes

Naive Bayes (NB) classifier is a probabilistic learning algorithm that leverages statistical principles to learn
from data’’. NB can be employed to solve classification problems, such as predicting scale formation. The
fundamental rule of this algorithm is Bayes’ theorem, as shown in Eq. 2. According to Bayes' theorem, the
probability of a sample belonging to class Cy, given X is denoted by p (Cn| X'), where X is the vector of input
features (21,%2,...2,)T and C,, is the m-th class. Note that, in Bayes’ theorem, the variables are assumed to be
conditionally independent. Based on this assumption, Eq. 2 can be rearranged to Eq. 322

P (Cn) P(XICn)

p(leX) = p(X) ) (2)
P (Col¥) = 250 Co) [ [ ptaiiCn) 3

Based on Eq. 3, the probability of scale formation (C', = 1) given the input variables is equal to the product of
the probability of z; given C',, = 1, multiplied by the prior probability of scale formation (calculated as the ratio
of sacle samples to all samples), and divided by the probability of observing the given inputs, p (X). Since p (X)
is intractable, it is omitted from Eq. 3, which leads to Eq. 4.

P (Cm] X) o< p (Co) [ [ p(@ilCon) (4)
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which is known as the maximum likelihood. Thereby, by calculating the likelihood for each class, the class with
the maximum likelihood is chosen as the most probable class.

Logistic regression

Logistic regression (LR) is a machine learning technique rooted in statistics?>. LR computes the probability that a
sample belongs to a specific class. This algorithm resembles a regression algorithm but with a categorical output
due to applying the logistic function to the linear combination of the inputs, as shown in Fig. 5. In this figure, b
denotes the bias term, and o is the sigmoid/logistic function.

The logistic function produces outputs between 0 and 1. Moreover, it has a different learning process, which
is based on the assumption of conditional independence among the variables and a Gaussian distribution of the
inputs. At first, LR was able to solve problems with only two classes, but later on it was extended to multi-class
problems?%,

Assuming that there are only two classes (0 and 1), the probability that a sample belongs to class 1 is given as
follows, which is based on Bayes’ theorem:

P(Y = )P(X[Y = 1)

P(Y=1X)=
V=1 = s =Py =)+ PV = 0) PX|Y =) ®)
After dividing the nominator and denominator by the nominator, we will have:
1
P =1[X) = | 4 PO=0PX[Y=0) (6)
P(Y=1)P(X|Y=1)
It is equivalent to:
1
Py =11X) = 1 I PY=0)P(X|Y=0) (7)
t+exp | s pxy=D

Since the features are assumed to be conditionally independent:
1 1

P(Y =1]X) = -
8
Lt exp (NE=0 + 3 B0 1 exp (nsE + 3 mbap=y) O

For the summation term, assuming that P(X|Y = y) is Gaussian:

ex d
P(X;]Y =0) : ? Pio — pi1 — pio
In 1 = X; d
2 py=n ) I = BT
2

i

Substituting this into Eq. 6 gives:

o(TL, x;w; +b)

Fig. 5. Schematic diagram of logistic regression.
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1
P(Y =1X)= ,
( %) 1+exp (ln I—TW + Zl (M(;;un X; + “3;;;%)) (10)
which is equivalent to:
1

P(Y =1X)= Tt o (w0 + 5, wiXy) (11)

Equation 11 is optimized, which is equivalent to maximizing the likelihood of assigning a sample to class 1 using
optimization methods such as gradient ascent.

K-nearest neighbors
K-Nearest Neighbors (KNN) is a non-parametric learning algorithm introduced by Evelyn Fix and later
upgraded by Thomas Cover?>?°, KNN can be used for both classification and regression. The overall principle
is that the label of a sample is determined based on the label(s) of its surrounding neighbor(s) in the database.
For classification, majority voting is usually used to determine the output, and for regression, arithmetic or
distance-based averaging can be used. K determines the number of nearest neighbors to do majority voting or
averaging. K= 1 means that the closest neighbor is only used. As the name of the method implies, the nearest
neighbors must be found to estimate the output of a sample, which requires calculating the distance between the
query sample and all other samples in the training dataset. If the scale of the input features differs substantially,
standardization of the samples is vital to have a fair distance calculation?”-?8. The final class of a query sample
(z4) can be determined by means of Eq. 12.
K
f (2q) < argmax "6 (e, f (21)) 6 (a,b) = Tifa = b, (12)

ceC
=1

where =, denotes the query sample, and z; is the i-th neighbor of the query sample, K is the number of nearest
neighbors, d (a, b) is the Kronecker delta which is 1 if a = b and 0 otherwise, and f determines the label of x;
among C' classes. Figure 6 shows the schematic diagram of KNN with four classes. The circle shows the five (K
=5) nearest neighbors of the query sample (z).

In distance-weighted version of the KNN, the inverse of the distance between the query sample and adjacent
samples is used as the weight of that sample. In this manner, the label of the query sample is determined as
follows:

K
[ (wq) < arg rcneagzwié (¢, f(x:)),0(a,b) = lifa=b, (13)
i=1
F N
C2
1
o i g m
[ J
o m N -
e Q m N
o0 m N
® m
8] [ [l
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Fig. 6. Schematic diagram of KNN with four classes and K= 5.
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where w; is the weight of sample 7. Accordingly, as a sample gets closer to the query sample, it will have a
stronger impact on the final label of the query sample.

Decision tree

A decision tree is a supervised machine learning algorithm applicable to both classification and regression tasks.
It is a flowchart-like structure that consists of a root node, branches, internal nodes, and leaf nodes, as shown
in Fig. 7.

The root node represents the starting point of the tree, and the leaf nodes represent the final predictions. The
branches represent the possible outcomes of a decision, and the internal nodes represent the tests that are used to
make decisions?. The complicated process of decision making is broken into multiple processes that are simpler
than the original problem™. Decision trees are trained using a top-down, greedy approach. This means that
the algorithm starts at the root node and recursively splits the dataset into increasingly homogeneous subsets.
The splitting is done by finding the attribute that separates the data into two groups in an optimal manner. The
attribute that is selected is the one that has the highest information gain or Gini index, which indicates how well
the attribute separates the data into two groups. In this study, the Gini index is used to select the nodes. The Gini
index is calculated by means of Eq. 14.

C

Gini=1— Z (pi)?, (14)

=1

where C is the number of classes (2 in this study), and p; is the probability of the i ™ class. The Gini index is
calculated for each split, and the larger and easy to implement splits are preferred to smaller splits with distinctive
values.

Random forest

Random forest (RF) is an ensemble learning method composed of multiple decision trees. These trees are trained
independently using random subsets from the training dataset with randomly selected features®'. Random
selection of samples and features assures diversity in the tree building process, which reduces the chance of
overfitting. The number of selected features is limited by the maximum number of features, which should be
tuned by trial and error. The intuition of the random forest tree-building approach is to use several decision
trees, instead of only a single tree. The ultimate output is determined through averaging or majority voting,
depending on the nature of the problem (regression or classification). In classification tasks, majority voting is
used to determine the final label of the sample. An advantage of RF over conventional decision trees is its better
stability®’. As stated, several trees are constructed to build a random forest. These trees should have a decent
performance. Thereby, an out-of-bag (OOB) subset is separated from each random subset of samples to calculate
the prediction error as the approximation of the overall error. The schematic diagram of an RF is shown in Fig. 8.

Support vector machine
Support vector machines (SVMs) were introduced by Cortes and Vapnik®*. One of the great advantages of SVMs

is their ability to solve non-linear problems via the kernel trick. By means of the kernel trick, the original data
is transformed from the original space, where it is not linearly separable, to a higher-dimensional space, where

‘ Root node . Internal node ‘ Leaf node

Fig. 7. Schematic representation of a decision tree.
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Fig. 8. Schematic diagram of a random forest.

data is linearly separable. The classification principle in SVMs relies on maximizing the margin between the
classes. The margin between the classes is defined as the distance between the support vectors from which two
hyperplanes are drawn, one for each class. The support vectors are found in a way to maximize the margin
between the hyperplanes®*~*°. The decision boundary that separates the classes is drawn from the middle of
the hyperplanes. Assuming that X = [:cf, =3 1‘5,] is the matrix of inputs with M samples, and @ is the

mapping function to transform the original data to a higher-dimensional space, the classification boundary is
given by Eq. 15.

wWro(X)+b=0, (15)

where W is the vector of weights and b is the bias term. The margin is calculated as the line that separates the
support vectors with the shortest perpendicular distance. This distance is two times the distance between the
decision boundary and the hyperplanes. If the distance between the two hyperplanes is p and we scale the
weights and bias by p/2, for each sample we will have:

yi (W0 (i) +0] >1,i={1,2,...,M} (16)

Each support vector (s, ys) lies on a hyperplane, which means that the inequality becomes an equality. Now, we
can calculate the distance from the support vectors to the decision boundary (d) as:

d:M:i, 17)
w w

in which ||W || is norm 2 of the weight vector. Since the distance between the support vectors and the classification

boundary was half the margin between the hyperplanes, the margin will be ﬁ .Now, the purpose is maximizing
2

> Where we can minimize %WT W, instead. Thereby, we should solve the following minimization problem:

1
argmin—WTW
W,b 2 (18)
s.t.y; [WT(/) (z3) + b] >1, fori=1,...,.M

Hyperplanes with the maximum margin give the highest generalization on unseen data. To further improve the
generalization of the model, slack variables (£) are introduced, which convert the hard-margin policy to the soft-
margin policy. Slack variables are defined as the distance between misclassified samples from their class-specific
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hyperplane, as shown in Fig. 9 for a bi-variate example. In this manner, we ignore the strict rule of correctly
classifying all training examples, and let the model make some mistakes in the training phase with the benefit of
improved generalization. By considering the slack variables, the problem in Eq. 18 becomes:

yi W0 (2i) +b] > 1-¢&, (19)
where &; is the slack variable for the 4 th sample. Now, the minimization problem can be re-written as:
PR S
argmin( W 4 ¢y &),
i (20)
sty (W0 () +b] >1-&, fori=1,....M

where c is the regularization coefficient, which specifies the importance of the slack variables. The problem
above is a dual optimization problem for which the Lagrange approach is adopted to solve. This approach
incorporates the inequality and equality constraints to the dual-optimization problem and transforms it to a
single-optimization problem.

M

L(W,b,a) = %WTWfZai [y: (WT0 (i) +b) — 1]
i=1

st0<a; <c,i=1,...,M

(21)

where «; s are known as the Lagrange multipliers. To optimize the above problem (Eq. 21), the derivative of
the loss function, L, w.r.t to W and b should be set to zero. The Karush-Kuhn-Tucker (KKT) conditions yield:
W = Zi\ilaiyig () and Z?;aiyi = 0. Plugging these back into Eq. 21, the dual formulation is obtained.

X1
A
+
+ +
+ +
+
+
Support
vector

vector

i WToX)+b =1

N WToX)+b=0
Support
vector \

wTeX) +b = -1

> x,

Fig. 9. Schematic of the SVM.
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M M

1

argmax —2 % aia;yiy;0 (@) 0 (@;) + Y ai,

i,j=1 i=1
M

s.t.Zaiyi =00<o;<ci=1,....M

i=1

To solve Eq. 22, Quadratic Programming is used, which gives the Lagrange multipliers. Only the support vectors
have non-zero Lagrange multipliers. Since the bias term (b) stays out of the dual formulation, we have to obtain it
by implementing the initial constraints. According to Mercer’s theorem*’, we can avoid computing @ (z;) @ (z;)

since it is computationally demanding. Instead, we can use the kernel trick®®3%, in which < (zi) @ () is replaced

with a kernel function K (mi, T j). A kernel function is, in fact, the mathematical result of @ (;) @ (z;) in a
symbolic form, which should be found by trial and error. During the inference time, the model’s output given a
new sample z can be obtained as follows:

M
Yy = sign ZaiyiK (zi,2) +b (23)
i=1

Power law ensemble model

Ensemble learning is a learning paradigm that solves a problem by integrating the outputs of individual predictive
models. This approach allows us to benefit from the strengths of different kinds of learning algorithms, rather
than relying on a single method. We can merge the outputs of the ensemble models using linear or non-linear
combinations. The former is known as the static strategy, and the latter is known as the dynamic strategy. The
static strategy is easier to implement but tends to produce sub-optimal results. The dynamic strategy requires
optimizing the coefficients of the non-linear combination and yields decent results. One of the dynamic strategies
is the PLEM method, in which a power law model is used to combine the outputs of the individual experts in
the ensemble, as shown in Eq. 24.

S
y=> au (24)
i=1

where S is the size of the ensemble (6 in this study), c; is the coefficient of the ¢ th experts, and f3; is the exponent
of the 5 ™ expert. The coefficients and exponents need to be optimized by an optimizer to achieve the best results
from PLEM. We have adopted the Particle Swam Optimization algorithm (PSO) to perform this optimization.

The choice of PLEM with PSO was motivated by both its flexibility and capacity to capture non-linear
relationships among the outputs of individual experts. Unlike conventional ensemble learning strategies such as
stacking or weighted voting, which typically rely on linear or fixed-weight aggregations, PLEM offers non-linear
integration that can better reflect varying confidence levels or predictive performance of individual models
across different prediction intervals. Furthermore, using PSO for optimizing the coefficients of PLEM enables
efficient global search effectively in complex, non-convex solution spaces—a great advantage when ensemble
outputs are noisy or moderately correlated.

Evaluation metrics

As a classification task, the ability of the individual experts and the PLEM method to predict scale formation
is evaluated using both quantitative and visual metrics. These include the Receiver Operating Characteristic
(ROC) curve, confusion matrix, and classification metrics, such as accuracy, precision, recall, and F1-score.
Before moving on to the definition of these metrics, some common terms should be defined.

True positive (TP): TP is attributed to a sample that its predicted and actual label is positive.

False positive (FP): FP refers to a sample that it is predicted as positive, but its actual label is negative.

True negative (TN): TN refers to a sample that its predicted and actual label is negative.

False negative (FN): FN is attributed to a sample that it is predicted as negative, but its actual label is positive.

Now, the classification metrics are defined as follows.

Accuracy is defined as the portion of all correctly classified samples, as given in Eq. 25. Precision is defined
as the intersection of positive predictions with the actual predictions, indicating that how accurate the positive
predictions are, which is defined in Eq. 26. Recall determines how accurate the model acts on positive samples.
In other words, it measures the portion of the actual positive samples correctly recognized as positives (Eq. 27).
Finally, to merge the precision and recall to have a unified metric, F1-score is used, which is defined in Eq. 28.

Accuracy = 75— %P\)I Tr ?1\31 TFN’ 25)
Precision = TPTi—fFP’ (26)
Recall = %, (27)
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F1 — score — 2 x Prec?s?on X recall (28)
precision + recall

Confusion matrix

For binary classification, the confusion matrix is a 2 x 2 matrix, in which the rows represent the actual classes
and the columns represent the predicted classes. The diagonal cells contain the true positive and true negative
counts, while the off-diagonal cells show the false positives and false negatives. Figure 10 shows a schematic of
a confusion matrix.

ROC curve
The ROC curve is a visual performance metric for a binary classifier across different decision thresholds for
differentiating between positive (1) and negative (0) classes. The ROC curve is generated by plotting the true
positive rate (TPR) against the false positive rate (FPR) at multiple thresholds, where TPR is TP/(TP +EN), while
FPR is FP/(FP +TN).

As the ROC curve approaches to the top-left corner, both specificity and recall increase. To have a single
quantitative measure of the model’s performance based on the ROC curve, the Area Under the Curve (AUC) is
utilized. A higher AUC is an indication of better recall and specificity at various thresholds.

Results and discussion

To achieve optimal predictive performance from machine learning models, their hyperparameters must be
tuned. A common method for hyperparameter tuning is grid search, where a pre-specified set of hyperparameter
combinations is examined based on performance on a validation subset. The set of hyperparameters leading to
the highest validation score (e.g., accuracy) is chosen as the best set.

Nonetheless, when the training dataset is small, separating a subset of samples as a validation subset makes
the training set even smaller. Thereby, K-fold cross validation is used to tackle this challenge. In this strategy,
the training set is divided into K non-overlapping folds; training is done K times with fixed hyperparameters,
and each time one of the folds is used as the validation subset and the remaining folds for training. Each time
the validation score is calculated and, in the end, the ultimate score is calculated as the average of the validation
scores on K folds, known as the cross-validation score. The set of hyperparameters with the highest cross-
validation score is chosen as the optimal hyperparameters to train the final model.

In this study, grid search with five-fold (K =5) cross validation was used to tune the hyperparameters. The
range of hyperparameters evaluated for each machine learning model, along with the optimal values and cross-
validation scores, are reported in Table 2.

The optimal hyperparameters were used to train the individual experts. Then, their performance on the test
subset was evaluated and reported in Table 3.

Table 3 shows that RE, KNN, and DT have the best performance across all evaluation metrics. NB shows the
worst performance since it assumes that the input variables are conditionally independent and follow a Gaussian
distribution. However, the reality is something else. In practice, scale formation occurs due to a combination of
various factors, including ion concentration, pH, pressure, temperature, TDS, and artificial lift type. Thereby,
assuming that the input variables are conditionally independent is not a good assumption, as they are correlated.
Moreover, Fig. 4 showed that not all the variables follow a Gaussian distribution. For the same reason, LR also
showed indecent results. The best-performing method, which achieved high values for all evaluation metrics, is
RE This is because RF uses random subsets of features to construct its estimators, resulting in reduced bias. This
means we do not rely on only a single set of features; instead, various subsets of features are used to build the
estimators. Each estimator produces its own class prediction (0 or 1), and the final result is computed based on

Confusion matrix

Actual

I
0 1

Predicted

Fig. 10. Schematics of a confusion matrix.
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Model | Hyperparameter | Optimal value | Range Cross-validation score
C 2 1-100
Fit intercept True True, False

LR Solver Saga Ibfgs, Sag, Newton 76.6%
Penalty norm L2 L1,L2
Max iterations 200 100, 200, 300, 400
Criterion Entropy Entropy, Gini
Max_depth 5 2-10
n_estimators 100 50-500

RF Min_samples_split | 3 2-20 88.3%
Min_samples_leaf |1 1-5
Max_features Auto Sqrt, log2, Auto
oob_score True True, False
Criterion Entropy Entropy, Gini

DT Min_samples_split | 100 2-150 o1.4%
Min_samples_leaf |1 1-5
Max_depth 6 2-10
Kernel Rbf Linear, Poly, Rbf

SVM | Probability True True, False 79.4%
C 1 0.001, 0.01,0.1, 1, 10
n_neighbors 5 1-11

KNN | Metric Minkowski Minkowski, Euclidean, 11,12 | 84.8%
P 2 1,2

NB Fit_prior True True, False 742%
Class_prior None None, True

Table 2. Optimal hyperparameters for each model, along with their investigated range and cross-validation
scores.

Model | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%)
KNN | 844 73.3 78.6 75.9
SVM 77.8 64.3 64.3 64.3
NB 71.1 529 64.3 58.1
RF 86.7 78.6 78.6 78.6
LR 75.6 61.5 57.1 59.3
DT 80.0 64.7 78.6 71.0

Table 3. Performance of the machine learning models to predict scale formation on the test subset.

the majority voting paradigm. This approach leads to the creation of diverse rules for predicting scale formation
and reduces overfitting. Additionally, tree-based algorithms are effective at extracting complicated rules from
tabular data and are not constrained by the assumptions of conditional independence or Gaussian distribution
of variables, which also explains the good performance of DT. The reason for the outperformance of RF over
DT lies in RF’s reduced overfitting due to its use of an ensemble of trees, rather than relying on a single tree.
The second best model is KNN. The reason for its good performance is that it is an instance-based algorithm
and does not estimate the output using a universal function and does not impose assumptions like conditional
independence or Gaussian distribution on the input variables. Since scale formation as a function of the input
variables is a complex phenomenon, it is difficult to model it with a universal function. It is worth pointing
out that the best three methods have similar recall values, but different precisions, which indicates that their
differences lie in how accurate is their positive predictions are.

To assess the performance of the individual models for each class, confusion matrices were constructed and
are shown in Fig. 11. The numbers on the main diagonal of the confusion matrix show the true negatives and
true positives. Specifically, the top-left number shows the true negatives, and the bottom-right number shows
the true positives. In line with Table 3, KNN, DT, and RF have the highest number of true positives, while LR
has the fewest. Accordingly, KNN, DT, and RF have a better accuracy at predicting the positive samples than
other individual models, meaning that most positive samples were correctly recognized by them. The reason for
the better performance of RF compared to KNN and DT is its higher number of true negatives, indicating that
RF was more successful in correctly identifying negative (no-scale) samples; however, DT misclassified three of
those negative samples as positives, and KNN misclassified one as positive (scale). As shown in Fig. 11, other
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Fig. 11. Confusion matrix for each machine learning model on the test subset.

models (SVM, NB, and LR) have fewer true positives and true negatives, and more false positives and more false
negatives than the other three models. In this regards, NB had the highest number of false positives (8), and
LR had the highest number of false negatives (6). This indicates that NB tends to predict no-scale conditions as
scale with a high probability, which can lead to unnecessary treatments and financial loss. On the other hand,
all the three models (SVM, NB, and LR) have a high probability of missing actual positives (scale conditions),
potentially resulting in damage to facilities due to undetected scale formation.

To make the comparison more convenient, the ROC curve for each machine learning model, along with their
calculated AUG, is illustrated in Fig. 12. As the ROC curve approaches to the top-left corner, it indicates high
recall (low false positives), which means that most of the positive predictions by the model were truly positives.
According to Fig. 12, RF has the highest AUC, followed by KNN and DT. The lowest AUC is achieved by LR.
Therefore, the results provided by the ROC curves are in agreement with the results in Table 3 and Fig. 11.
Consequently, positive samples are mostly captured by RE, KNN, and DT models, and their positive predictions
were actually positives, making them more reliable tools than other individual models for predicting inorganic
scale formation.

To improve the predictions, the outputs of the individual machine learning models were integrated using
the PLEM method. To do so, the coefficients of the PLEM model were optimized using the PSO algorithm on
the training subset, and the predictions were made on the testing subset. Figure 13 shows the confusion matrix
and ROC curve for the PLEM method on the test subset. As can be seen, the PLEM method has successfully
identified all 14 positive samples in the test subset, and its only failure was in three negative samples incorrectly
labeled as positives. Thus, three out of seventeen positive predictions by the PLEM method were incorrect,
reducing its precision. Moreover, the ROC curve with an AUC of 0.95 shows a stronger inclination toward the
top-left corner than the ROC curves of the individual models, indicating the superior performance of the PLEM
method over its constituent models.

Figure 14 provides a comprehensive comparison between the metrics of the PLEM and the individual
models. The PLEM model outperformed its constituent parts in all evaluation metrics. A recall of 1.0 for the
PLEM indicates that all positive samples were recognized by the model, but it has incorrectly classified three
negative samples as positives, resulting in a precision of 0.824. Consequently, no-scale conditions are reliably
predicted by the PLEM model (no false negatives). In other words, when the PLEM predicts that no scale will
form, it is 100% accurate, but when it predicts scale forming, it is 82.4% accurate. Nevertheless, its predictions
(scale or no-scale) are more reliable than those of the individual models.

In the following, each input variable is plotted against scale formation to identify any possible explicit rule
for scale formation. Figure 15 illustrates the input-output analysis. According to this figure, when analyzing the
relationship between each variable and scale formation, no clear distinction is observed. In other words, scale
formation occurs within similar intervals of each variable. Therefore, scale formation does not occur because a
specific variable is higher or lower than a threshold but due to a combination of conditions and incompatibility
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Fig. 12. ROC curves for the individual machine learning models.
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Fig. 13. Confusion matrix and ROC curve for the PLEM method on the test subset.
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among ions, pH, pressure, and temperature. As a consequence, we cannot develop specific rules based solely
on thresholds for influential factors; instead, data-driven models are needed to uncover hidden relationships
between the inputs and the output (scale formation). Extracting these rules is not easy without the help of
machine learning models.

To investigate the accuracy of the PLEM as the best-performing model on a real case, a water analysis report
from a random wellhead sample was taken from a well in the Shuaiba field. Figure 16 provides the results of the
water analysis on the sample. The target well was completed with a sucker rod pump operating under a pressure
of ~290 psi at the pump depth. By processing the data presented in Fig. 16, the model predicted that the well had
a high probability of forming inorganic scale.

The well was gone under investigation and the following observations were recorded:

« Frequent pump failures were reported in the well, leading to three pump replacements.

o The pumps suffered from a short run-life, especially the last two pumps had a life span of 150 and 116 days.

« After a thorough root-cause analysis, it was revealed that the well suffered from scale formation, which was in
agreement with the model’s prediction.
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Project

: Full Water Analyses

Analytical Results
Matrix: WATER
Sub-Matrix: WATER

Client Sample ID

Client sampling date / time

18-May-2022 00:00

Compound

INORGANIC NONMETALLIC PARAMETERS

CAS#

LOR

Unit

MAIJOR CATIONS & ANIONS

MAIJOR CATIONS & ANIONS - TOTAL

Chloride 16887-00-6 1 mg/L 12300
Sillica 7631-86-9 0.1 mg/L 9.56
Sulfide as S2- 18496-25-8 0.005 mg/L <0.005
Unionized Hydrogen Slfide - 0.1 mg/L <0.1

Calcium 7440-70-2 1.00 mg/L 1060
Mgnesium 7439-95-4 1.00 mg/L 328
Ptassium 7440-09-7 1.00 mg/L 129
Sodium 7440-23-5 1.00 mg/L 8260
A Sulfate as SO4 2- 14808-79-8 1.00 mg/L 3440
METALS

A Ferric Iron -—-- 0.05 mg/L 11.8
Ferrous Iron - 0.05 mg/L <0.05

METALS - TOTAL

Barium 7440-39-3 0.100 mg/L <0.100
Iron 7439-89-6 0.050 mg/L 11.8
Manganese 7440-09-7 0.010 mg/L 0.459
Strontium 7440-23-5 0.010 mg/L 20.4

NUTRIENTS

A Nitrate as NO3 14797-55-8 0.040 mg/L 2.21

A Nitrate as NO2 14797-65-0 0.020 mg/L <0.02
PHYSICAL PARAMETERTS

Carbon Dioxide as CO2 (Dissolved) ---- 1 mg/L 73
pH Value ---- 0.01 pH Unit 7.72
Specific Gravity ---- - - 1.01968
Temperature - 0.5 °C 22.3
Total Dissolved Solids @180°C -—- 5 mg/L 25800
A Total Suspended Solids -—-- 5 mg/L 32

Fig. 16. Full water analysis report for a new sample.

Table 4 provides a description of the last three pumps used in the candidate well, their run life, reported failures,
root causes, and observations extracted from well intervention history report. As can be seen, all three pumps
suffered from scale formation, and the issue worsened over time, leading to shorter run-life after each pump
replacement. The developed tool is being planned for deployment across more wells to prepare it for future use.
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Reservoir | Run-life (days) | Reported failure | Root cause Observations

Shuaiba 633 Downbhole issue | Inorganic scale | Deposited solids and scale in sucker rod pumps
Shuaiba 150 Downbhole issue | Inorganic scale | Inorganic scale in sucker rod pumps

Shuaiba 116 Downbhole issue | Inorganic scale | A sucker rod pump fully covered with inorganic scale

Table 4. Description of the last three pumps used in the candidate well.

Real-life applications

The match between the what was reported in the well intervention history and the PLEM method’s prediction
indicates the reliability of the proposed methodology for predicting inorganic scale formation. The findings of
this study can be used to develop data-driven models for real-life applications, such as:

- Early detection of scale formation and take preventive actions, such as timely replacement of downhole
pumps before severe scale buildup.

- Optimization of operational conditions, such as water composition, pressure, or pH, to prevent scale build
up. The model can serve as a surrogate to predict and prevent scale formation by adjusting controllable op-
erational parameters.

- By timely predicting the scale formation the company can implement chemical injection in high-potentioal
wells for scale formation to reduce costs related to scale remediation and pump failures.

- Petroleum, geothermal energy, and water treatment projects can take benefit from the developed data-driven
model to reduce the costs and increase operational safety.

Conclusions

A dataset of 224 field samples of scale formation gathered from Natih and Shuaiba reservoirs in Oman was
used to develop data-driven models for predicting scale formation. Six machine learning models with different
learning algorithms were developed, and their predictions were integrated using the PLEM method. Results
showed that three of the machine learning models (RE KNN, and DT) could predict scale formation with
an Fl-score higher than 70%. However, by integrating the outputs of the individual models using the PLEM
method the F1-score improved to 90.3%. This indicates the strong ability of the PLEM method to improve the
predictions significantly. The reason for the inferior performance of LR and NB is that they assume conditional
independence among input variables, whereas factors influencing scale formation are correlated. Moreover, the
SVM attempts to find a universal classifier, which is a challenging task in problems where classes change with
small perturbations in inputs.

The finding of this study show that ensemble learning with a power-law integration approach is a reliable
technique to leverage strengths of individual data-driven models with different learning strategies to improve
the prediction of scale formation. The result of input-output analysis showed that scale formation does not
result from the high or low concentration of a single ion but is a complex phenomenon that requires advanced
models to uncover the relationships between inputs and outputs. Moreover, tree-based models and the KNN
model performed better than other individual experts, showcasing their suitability for modeling highly sensitive
relationships between input and output variables.

In practice, the PLEM method can be used to predict scale formation before the situation becomes severe,
allowing to take preventive actions, such as timely pump replacement and avoiding unexpected production
blockage. Furthermore, the predictive tool can help identify the root cause of scale formation by altering input
parameters and inspecting whether scale forms.

The limitation of this work is that it does not use time series data, such as fluid rates, pressure over time,
temperature over time, ion concertations over time, pH over time, and TDS over time, to forecast scale formation
ahead of time. It also cannot identify the risk of scale formation at early stages before scale formation starts.
Moreover, this study only considered inorganic scale. It is recommended to extend the dataset and models to
include all types of solids, such as organic and inorganic scale, wax, asphaltene, sand, and metals. The data-
driven predictive models used in this study can only determine whether inorganic scale will form in oil and gas
wells; they cannot predict the trend, specific scale formation amount, or type of scale formation. Additionally,
the models do not account for the influence of the presence of gas and oil phases on the trend of scale formation.
It is recommended to gather a more comprehensive dataset of scale formation, including the amount, type, and
root cause of scale, gas analysis results, and oil composition, to enable the predictive model to overcome the
mentioned limitations. For example, if the model can identify the root cause and type of scale, it can suggest
tailored solutions. In addition, gas analysis results can enrich the inputs of the model with values such as CO,
concentration, H,S concentration, and dissolved oxygen, as these parameters play an important role in scale
formation.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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