Table 2 Optimal hyperparameters for each model, along with their investigated range and cross-validation scores.

From: Ensemble learning for prediction of inorganic scale formation: A case study in Oman

Model

Hyperparameter

Optimal value

Range

Cross-validation score

LR

C

2

1–100

76.6%

Fit intercept

True

True, False

Solver

Saga

lbfgs, Sag, Newton

Penalty norm

L2

L1, L2

Max iterations

200

100, 200, 300, 400

RF

Criterion

Entropy

Entropy, Gini

88.3%

Max_depth

5

2–10

n_estimators

100

50–500

Min_samples_split

3

2–20

Min_samples_leaf

1

1–5

Max_features

Auto

Sqrt, log2, Auto

oob_score

True

True, False

DT

Criterion

Entropy

Entropy, Gini

81.4%

Min_samples_split

100

2–150

Min_samples_leaf

1

1–5

Max_depth

6

2–10

SVM

Kernel

Rbf

Linear, Poly, Rbf

79.4%

Probability

True

True, False

C

1

0.001, 0.01, 0.1, 1, 10

KNN

n_neighbors

5

1–11

84.8%

Metric

Minkowski

Minkowski, Euclidean, l1, l2

P

2

1, 2

NB

Fit_prior

True

True, False

74.2%

Class_prior

None

None, True