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In this paper, we investigate a possibility of three-dimensional extension of correlation measurement 
based quantum secret sharing (QSS) with a three-dimensional cyclic-entangled state, called qutrit 
cyclic-entangled state. The qutrit cyclic-entangled state can be post-selected by a correlation 
measurement setup with linear optical elements. Thus, this protocol can provide a measurement-
device-independent security against a potential eavesdropper, since the measurement results reveals 
only a correlation among qutrits sent from the three parties, not the exact quantum states. We show 
that our protocol can be implemented with current state-of-the-art technologies. The security of QSS 
with a qutrit cyclic-entangled state is analyzed for the cases, when all players are trusted as well as 
there are malicious players. Possibility of higher-dimensional, qudit extension and conditions for an 
advantage with qudit are investigated as well.

In the emergence of quantum technologies, various quantum-secured protocols have been studied including 
quantum key distribution (QKD)1,2, blind quantum computation3–5, and quantum-secured sensing6–8. These 
protocols provides security based on the principles of quantum mechanics, such as the no-cloning theorem9 and 
nonlocality10, rather than the computational complexity.

In 1999, quantum secret sharing (QSS) was introduced by Hillery et al. Secret sharing is a scheme proposed 
for distrubuting a secret among participants11,12. In the scheme, one party, called a dealer, gives a part of the 
secret to participants, called players. Each player cannot access full information on the secret, since a player 
has only a share of the secret. The secret can be reconstructed only when the sufficient number of players 
cooperates by combining their shares. The scheme is called a (k, n)-threshold secret sharing, when the number 
of players is n and the sufficient number of players for reconstructing the secret is k. In QSS, a quantum secret or 
a classical secret can be shared by using a Greenberger–Horne–Zilinger (GHZ) type entangled state13 without an 
information leakage of the share not only to a potential eavesdropper, conventionally called Eve, but also to the 
other players. After its first proposal, the information-theoretic security of the QSS has been studied14–17, and 
experimental demonstrations of QSS protocols have been conducted as well18–24.

After the first proposal of QKD, significant efforts were made to improve efficiency of a secret key rate such 
as the protocol involving high-dimensional quantum states, called qudits. A qudit naturally carry more classical 
information than a qubit. QSS using qudits25–29 have been studied as well as a multiparty extension of QKD 
using qudits30,31. These results show that QSS based on qudits can achieve a higher secret key rate and a higher 
upper bound on the allowed error rate than the original protocols exploiting two-dimensional quantum states, 
called qubits, because of the structure of a qudit. From the results, it is known that a quantum communication 
protocol adopting qudit is noise robust compared to that with qubit. Moreover, there were the studies that fidelity 
of an optimal state estimation and the optimal fidelity of the 1 → 2 universal optimal quantum cloning machine 
decrease for increasing d, the dimension of a target quantum state32,33. Therefore, Eve can obtain less information 
when a qudit is exploited as an information carrier in QSS, i.e., qudits can make a quantum communication 
protocol more secure.

However, generation of a qudit GHZ state, which needs demanding technologies, is necessary to implement 
the QSS protocols using qudits. In 2018, there was the first generation of a tripartite three-dimensional GHZ 
state, called tripartite qutrit GHZ state, using orbital angular momentum (OAM) modes of a single photon34, 
but its generation efficiency and fidelity were not enough to implement a practical QSS protocol using qudits. 
Under the situation, it is natural to investigate a QSS protocol based on correlation measurement35,36. In QKD, 
Bell state measurement (BSM)37 based protocols have been widely studied rather than generation of entangled 
states38. Moreover, they provide measurement-device-independent (MDI) security, i.e., security loopholes from 
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imperfection of measurement devices are closed, since BSM reveals only correlation between the two quantum 
state, not the exact key information. To enhance the efficiency, high-dimensional version of MDIQKD protocols 
have been studied39–42. However, there is an obstacle to implementing high-dimensional MDIQSS protocols 
that a high-dimensional BSM and a high-dimensional GHZ state analyzer cannot be implemented with linear 
optical elements43.

In this article, we investigate a possibility of QSS with a qutrit cyclic-entangled state (3d-CQSS). It is 
known that implementation of a qudit GHZ state analyzer is not possible with linear optics. However, high-
dimensional correlation measurement projecting on the cyclic-entangled state is possible with linear optical 
elements41,44, especially based on a multiport interferometer45,46, and it was successfully implemented for qudit 
quantum teleportation47,48. With the correlation measurement setup, we propose an implementable 3d-CQSS 
protocol for (2, 2)-threshold QSS; there are a dealer, called Alice, and two Bobs who are authorized. The protocol 
would be generalized to d-dimensional CQSS (d-CQSS), and a class of the proposed protocol is (d − 1, d − 1)
-threshold QSS; there are a dealer, called Alice, and (d − 1) players, called Bob1 to Bobd−1. In this protocol, 
Charlie, an untrusted third party, is introduced, and only Charlie has the correlation measurement setup, which 
is performed on the three photons sent from the authorized parties. We analyze the security of d-CQSS and 
investigate conditions for security enhancement using qudits. We show the security of the protocol is not trivial 
like other high-dimensional quantum communication protocol, since the cyclic-entangled state has different 
properties to a GHZ-type entangled state. The conditions for the proposed protocol has higher secret sharing 
rate compared to two-dimensional QSS or entanglement-based d-CQSS are investigated as well.

Results
Three-dimensional correlation measurement with linear optical elements
In this section, an implementation of experimental elements to construct the three-dimensional correlation 
measurement with linear optical elements is introduced. For a qudit, it is impossible to construct a measurement 
setup with linear optical elements of which projector is a maximally entangled state or a GHZ-type state even 
if ancillary modes or systems are introduced43. Thus, a direct high-dimensional generalization of BSM or GHZ 
state analyzer is not implementable with linear optical elements. However, it is possible to construct a correlation 
measurement for a certain type of d-partite d-dimensional entangled state39,44. We investigate an entangled state 
exactly discriminated by the setup.

Here, we utilize the OAM mode of a single photon as an information carrier, but another mode could 
also be used. OAM modes, whose dimensionality can, in principle, be infinite, have been employed as high-
dimensional information carriers not only in classical optical communication49, but also in quantum information 
processing50,51, including QKD52,53. Encoding information in OAM modes enhances both channel capacity and 
resilience to noise54,55. Despite these advantages, OAM-based systems face certain challenges, such as state-
dependent diffraction56 and sensitivity to atmospheric turbulence in free-space links57. Various strategies have 
been proposed to improve the efficiency of OAM-encoded protocols, including the use of focusing techniques to 
address state-dependent diffraction58, and vortex-mode-division multiplexing to mitigate inter-mode crosstalk 
caused by turbulence59.

A single photon OAM state is written as follows:

	 |0⟩ = â†
l=−1|vac⟩, |1⟩ = â†

l=0|vac⟩, |2⟩ = â†
l=1|vac⟩,� (1)

where â†
l=x denotes the photon creation operator of which the OAM mode is x, and |vac⟩ is a vacuum state. Two 

mutually unbiased bases (MUBs), called ordinary basis and bar basis, will be exploited for QSS. The quantum 
states in the bar basis can be obtained from the three-dimensional Fourier transformation of the states in the 
ordinary basis as follows:

	

|0̄⟩ = 1√
3

(|0⟩ + |1⟩ + |2⟩) ,

|1̄⟩ = 1√
3

(
|0⟩ + ω3|1⟩ + ω2

3 |2⟩
)

,

|2̄⟩ = 1√
3

(
|0⟩ + ω2

3 |1⟩ + ω3|2⟩
)

,

� (2)

where ωd = exp(2πi/d). These two bases are MUBs, since |⟨ᾱ|β⟩|2 = 1/3 is always satisfied for all 
α, β ∈ {0, 1, 2}, i.e., a quantum state from one MUB can be expressed as an equal-probability superposition of 
the quantum states forming another MUB.

An example of schematic setup of the three-dimensional correlation measurement is presented in Fig. 1. 
The three photons sent from three users, called Alice, Bob1, and Bob2, enter each input port of a three-port 
interferometer, called a tritter45,46,60. The tritter consists of linear optical elements including beam splitters, 
mirrors, and phase modulators46. In linear optics, the response of a material to incident light is directly 
proportional to the intensity of the light. In contrast, nonlinear optics involves more complex interactions, 
where the material’s response depends nonlinearly on the light intensity. As a result, linear optical systems are 
generally less sensitive to input power fluctuations and are simpler to align and maintain, making them more 
stable than their nonlinear counterparts. Owing to these advantages, linear optical quantum interferometers 
play a significant role in quantum information processing61. The tritter performs the three-dimensional Fourier 
transformation on path modes of the photons as described in the following equation:
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Û3|a, b1, b2⟩ABC = 1

3
√

3
[
(|a⟩ + |b1⟩ + |b2⟩)A′ ⊗ (|a⟩ + ω3|b1⟩ + ω2

3 |b2⟩)B′ ⊗ (|a⟩ + ω2
3 |b1⟩ + ω3|b2⟩)C′

]
,� (3)

where a, b1, and b2 are the encoded information of Alice, Bob1, and Bob2, respectively. The input ports and 
output ports are distinguished by the subscripts, A, B, and C for the input ports, and A′, B′, and C′ for the 
output ports. Then the unitary operation on the path modes, Û3, performed by the tritter can be written as 
shown in the following equation:

	
Û3 = 1√

3

(1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

)
.� (4)

Subsequently, an OAM value of the photons is measured. Figure 2 shows a possible setup with linear optical 
elements that changes a direction of propagation of incoming photons according to their OAM value. The OAM 
hologram, which adds (+1) to the OAM value of an incoming photon, and OAM beam splitters (OAM BSs) 
are exploited in the setup62. An OAM BS consists of a Mach-Zehnder interferometer and two Dove prisms 

Fig. 2.  A schematic diagram for measuring an OAM value of a single photon. The OAM BSs change a 
direction of propagation of an incoming single photon according to its OAM value. OAM BS consists of a 
Mach-Zehnder interferometer with Dove prisms. The relative angle between the two Dove prisms in each arm 
of the Mach-Zehnder interferometer is denoted as α/2. In the setup, value one is added in the OAM value of 
an incoming photon by using an OAM hologram (+1). Then the first OAM BS (α/2 = π/2) splits photons 
whose OAM value is odd and even, and the second OAM BS (α/2 = π/4) does photons whose OAM value is 
l = 0 and l = 2. Finally, the incoming photon enters into corresponding single photon detector.

 

Fig. 1.  A schematic diagram of a tripartite three-dimensional correlation measurement setup. Three photons 
enter into a 3-port interferometer, called a tritter. After interference in the tritter constructed by Clements’ 
method46, an OAM value and a label of existing output port of the photons are measured by means of OAM 
discrimination elements and single photon detectors. The setup can discriminate a part of tripartite qutrit 
entangled states from a combination of clicked detectors. For the tritter operation in Eq. (4), the parameters 
are θA = arccos(1/

√
3); θB = π/4; θC = π/4; φA = 0; φB = π; φC = 3π/2; φB′ = π/4; and φC′ = π/4. 

DXy :  a detector corresponding to the OAM state |y⟩ on the path X.
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in each arm. The relative angle between the two Dove prisms is α/2, and the relative phase between photons 
in the two arms is given by eilα. The first OAM BS (α = π) splits photons whose OAM value is even and 
odd, and the second OAM BS (α = π/2) does photons whose OAM value is 0 and 2. Then there is one-to-
one correspondence between the OAM value of an incoming single photon and the label of clicked detector. 
In our proposal, the OAM value discrimination setup should be able to measure an OAM value of the three 
incoming photons simultaneously, since there can be at most three photons on the same output port of the 
tritter. Direct measurements of an OAM value of a single photon are also considerable, such as the OAM value 
measurement by using refractive optical elements63,64, the measurement separating OAM modes spatially65,66, 
and the measurement using a single phase screen67.

To describe our protocol, we define 27 orthonormal tripartite qutrit entangled states |Φ3⟩ as follows:

	
|Φ3

(2i+j,σ)⟩ = 1√
6

2∑
k=0

ωσk
3 |k⟩

[
|k + i + 1, k + i + 2⟩ + (−1)j |k + i + 2, k + i + 1⟩

]
, � (5)

	
|Φ3

(6+m,σ)⟩ = 1√
3

2∑
k=0

ωσk
3 |k, k + m, k + m⟩, � (6)

where ω3 = exp(2π/3), i, m, σ ∈ {0, 1, 2}, and j ∈ {0, 1}. With these states, the relation between the three-
photon quantum states that enter the tritter and its corresponding detector click events are investigated. The 
correlation measurement setup cannot discriminate all of the tripartite qutrit entangled state written in Eqs. (5) 
and (6). The only state that can be exactly discriminated and its click events are described as follows:

	

|Φ3
(0,0)⟩ →




DA′0, DB′1, DC′2 with probability 1/12
DA′0, DB′2, DC′1 with probability 1/12
DA′1, DB′2, DC′0 with probability 1/12
DA′1, DB′0, DC′2 with probability 1/12
DA′2, DB′0, DC′1 with probability 1/12
DA′2, DB′1, DC′0 with probability 1/12
DA′0, DA′1, DA′2 with probability 1/6
DB′0, DB′1, DB′2 with probability 1/6
DC′0, DC′1, DC′2 with probability 1/6

, � (7)

where DXy  denotes a click event of the detector corresponding to the quantum state |y⟩ in the output port 
X. The three click events of which probability is 1/6 can be used in our protocol, since the other events are 
overlapped with the click events of |Φ3

(1,0)⟩ as shown in the following equation:

	

|Φ3
(1,0)⟩ →




DA′0, DB′1, DC′2 with probability 1/6
DA′0, DB′2, DC′1 with probability 1/6
DA′1, DB′2, DC′0 with probability 1/6
DA′1, DB′0, DC′2 with probability 1/6
DA′2, DB′0, DC′1 with probability 1/6
DA′2, DB′1, DC′0 with probability 1/6

. � (8)

Fig. 3.  A schematic diagram of our protocol. There are three authorized parties, Alice, Bob1, and Bob2, and 
one untrusted party, Charlie. Each of the authorized parties generates a single photon state according to their 
choice of an encoding basis and three-dimensional information. They send the quantum states to Charlie who 
measures a correlation among the OAM mode of the three photons by means of a tripartite three-dimensional 
correlation measurement. The three authorized parties can share a secret by using their encoded information 
and the result of the measurement.
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There are always overlaps of click events for the other states, so only |Φ3
(0,0)⟩is exactly discriminated by using the 

correlation measurement setup. The details of calculation are drawn in the Methods section. We call this state as 
qutrit cyclic-entangled state68, since the state has the form of the following equation:

	
|Φ3

(0,0)⟩ = 1√
6

[|0⟩(|1, 2⟩ + |2, 1⟩) + |1⟩(|2, 0⟩ + |0, 2⟩) + |2⟩(|0, 1⟩ + |1, 0⟩)] .� (9)

We expect that the existing setup41 also can be used for the 3d-CQSS protocol as well, which can exactly 
discriminate three tripartite qutrit entangled states, but it needs nondestructive photon number measurement 
setups that require demanding technologies.

This setup could be generalized to a d-dimensional correlation measurement which consists of a d-port 
interferometer and d-dimensional OAM mode discrimination elements. The d-port interferometer performs the 
d-dimensional Fourier transformation on the path modes, and its operator is shown in Eq. (10):

	

Ûd = 1√
d




1 1 1 1 · · · 1
1 ωd ω2

d ω3
d · · · ωd−1

d

1 ω2
d ω4

d ω6
d · · · ω

2(d−1)
d

1 ω3
d ω6

d ω9
d · · · ω

3(d−1)
d

...
...

...
...

. . .
...

1 ωd−1
d ω

2(d−1)
d ω

3(d−1)
d · · · ω

(d−1)(d−1)
d




,� (10)

where ωd = exp(2πi/d). In this case, a d-dimensional cyclic-entangled state, which is a d-partite d-dimensional 
entangled state, is written as follows:

	
|Φd

(0,0)⟩ = 1√
d!

perm(Λ)|vac⟩,� (11)

where perm(A) is the permanent of the matrix A. The matrix Λ is defined as shown in the following equation:

	

Λ =




â†
00 â†

01 · · · â†
0(d−1)

â†
10 â†

11 · · · â†
1(d−1)

...
...

. . .
...

â†
(d−1)0 â†

(d−1)1 · · · â†
(d−1)(d−1)


 ,� (12)

where â†
xy  denotes the photon creation operator. The subscript x denotes an OAM value of the single photon. 

The subscript y means a label of the party who sent the photon to Charlie, where y = 0 means Alice, and y = n 
means Bobn for n ∈ {1, 2, ..., d − 1}.

Schematic description of QSS with correlation measurement
In this section, a schematic description of 3d-CQSS is presented. In this protocol, three authorized parties, Alice, 
Bob1, and Bob2, participate in secret sharing, and an untrusted third party, Charlie, performs a measurement. 
Each authorized party has a single photon generator and a three-dimensional information encoder, such as 
a spatial light modulator (SLM) to encode in OAM modes of a single photon. Note that another degree-of-
freedom of a single photon can be used in this protocol for three-dimensional encoding, such as multi time-bin 
modes. In QSS, it is necessary that one party cannot expect distributed secrets of the others. If the system of one 
party is traced out, the quantum states of the others are entangled for Eq. (5). Therefore, it is impossible to exactly 
predict the secret of the other party in this case. For the quantum state described in the form of Eq. (6), when the 
system of one party is traced out, the quantum states of the others are a fully mixed state.

The procedure of the 3d-CQSS protocol is as follows: 

	1.	 Alice (Bob1, Bob2) randomly generates binary information to choose a basis, and three-dimensional infor-
mation, a (b1, b2).

	2.	 Each authorized party generates a single photon state, |i⟩ or |̄i⟩, according to his/her three-dimensional 
information, i.

	3.	 The authorized parties send their single photon states to Charlie, who has a correlation measurement setup.
	4.	 Charlie performs the correlation measurement onto the incoming photons, and he announces the result of 

the measurement.
	5.	 The authorized parties compare their encoding bases through classical communication. They keep the en-

coded information if the encoding bases are the same. The trials that Alice’s and Bobs’ bases are not identical, 
are discarded.

	6.	 If Charlie’s measurement result is one of the states described in Eq. (5), Alice performs a local operation to 
satisfy the following condition: a + b1 + b2 = 0( mod 3). (See Table 1.)

	7.	 After several repetition of steps 2.2–2.2, they estimate parameters for security analysis by revealing a part of 
data.
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•	 A portion of the data is revealed when all authorized parties choose the ordinary basis and Charlie’s meas-
urement outcome corresponds to one of the states given in Eq. (5).

•	 The entire dataset is revealed when all authorized parties choose the ordinary basis and Charlie’s measure-
ment outcome corresponds to one of the states described in Eq. (6).

•	 All of the data is revealed if all authorized parties used the bar basis.

	8.	 At this point, Alice and the Bobs are prepared to share a classical secret based on their measurement out-
comes and proceed with the analysis of security parameters.

The parameters for security analysis will be described in the Security Analysis section. Measurement statistics 
from both the ordinary and bar bases are required for security analysis. However, outcomes obtained in the bar 
basis are used solely for parameter estimation, not for secret sharing, since a party could potentially infer the 
encoded values of the others when the encoding is done in the bar basis. For example, the 3d-cyclic-entangled 
state is written in the bar basis as follows:

	
|Φ3

(0,0)⟩ = 1
3
√

2

2∑
k=0

(
2|k̄, k̄, k̄⟩ − |k̄, k + 1, k + 2⟩ + |k̄, k + 2, k + 1⟩

)
. � (13)

If Alice sent |0̄⟩ to Charlie, the number of possible cases is three. The two cases are that Bob1 and Bob2 sent 
|1̄⟩ and |2̄⟩, or |2̄⟩ and |1̄⟩ to Charlie, respectively, and the probability of each case is one fourth. The other case 
is that both Bob1 and Bob2 sent |0̄⟩ to Charlie, and its probability is one half. Since these three cases are not 
equally probable, the encoded number of the other parties is not random for one party. Therefore, the bar basis 
cannot be used to share a secret. In conclusion, measurement results obtained in the ordinary basis are used 
for both QSS and its security analysis, whereas those obtained in the bar basis are used exclusively for security 
analysis.

In step 5 of the protocol, the probability that all players choose the same basis is (1/2)2, since each player 
independently selects between two bases with equal probability, and there are two players involved. Therefore, 
only a fraction (1/2)2 of the trials is retained after basis sifting. In step 7, although there are 27 orthonormal 
entangled states in total, secret sharing is performed only using the quantum states defined in Eq. (5). As a result, 
only one-third of the sifted trials contribute to secret sharing, while the remaining two-thirds are used solely for 
security analysis under the assumption of ideal correlation measurements. When using the practical correlation 
measurement introduced in Fig. 1, it can successfully distinguish only one entangled state with probability 1/2. 
Thus, the success probability of this measurement is (1/27) × (1/2), and the total sifting probability becomes the 
product of the basis-sifting probability from step 5 and the success probability of the correlation measurement, 
yielding (1/2)2 × (1/54).

When Alice, Bob1, and Bob2 distributed three-dimensional classical information, a, b1, and b2, then the 
procedure of sharing a three-dimensional classical number is as follows: 

	1.	 The dealer, Alice, chooses a classical secret, S, where S ∈ {0, 1, 2}.
	2.	 Alice announces the message, M, through classical communication. M is defined from the equation: 

M = S + a( mod 3).
	3.	 Players, Bob1 and Bob2, can decode the classical secret by sharing their encoded numbers, but cannot with-

out collaboration. The decoding is shown in the following equation:

	M + b1 + b2( mod 3) = S + a + b1 + b2( mod 3) = S.

The protocol can be extended to d-dimensional CQSS (d-CQSS) among a dealer, Alice, and players, Bob1 to 
Bobd−1. In the d-CQSS protocol, each of the authorized parties send a d-dimensionally encoded photon to 
Charlie who has a d-dimensional correlation measurement setup. They use two different bases, the ordinary 
basis {|0⟩, |1⟩, ..., |d − 1⟩} and the bar basis {|0̄, |1̄⟩, ..., |d − 1⟩⟩}. Similarly with the three-dimensional 
case, the relation between the two bases is the d-dimensional Fourier transformation. They can distribute a 
d-dimensional classical secret with the d-partite d-dimensional quantum state written in Eq. (11). If the result 
of the d-partite d-dimensional correlation measurement is |Φd

(0,0)⟩, a sum on (mod d) of the encoded numbers 
of all the quantum state always becomes zero. A participant cannot predict the encoded number of the others, 
since if k photons in |Φd

(0,0)⟩ are traced out, for k < d − 1, the rest of the photons are entangled with the same 

Basis Alice’s operation

ordinary basis a → a + i( mod 3)

bar basis ā → ā + σ( mod 3)

Table 1.  Alice’s local operation when the result of the three-dimensional correlation measurement is 
|Φ3

(2i+j,σ)⟩. To satisfy the condition, a + b1 + b2 = 0( mod 3), a local operation is necessary, where a, b1, and 
b2 are encoded number of Alice, Bob1, and Bob2, respectively.
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probabilities. Therefore, the authorized parties can employ (d − 1, d − 1)-threshold QSS by using this quantum 
state.

Security analysis of our QSS protocol
Strategy for security analysis
Before we analyze security of the 3d-CQSS protocol, we should define constraints to construct a secure QSS 
protocol: (i) The single photon generators and the OAM encoders, which the authorized parties have, should be 
characterized and not be influenced by Eve. (ii) The authorized parties hold trusted random number generators 
to select an encoding basis and encoding information. (iii) Successive rounds of the protocol must be completely 
independent, i.e., we assume an independent and identically distributed (i.i.d.) attack of Eve. (iv) The laboratory 
of each authorized party must be isolated from the outside to prevent unintended information leakage or inflow. 
Under these assumptions, we analyze security of the 3d-CQSS protocol in the asymptotic limit.

Here, we introduce the security analysis for 3d-CQSS. To analyze the security, we exploit the entanglement 
distillation process (EDP)69–71 of an equivalent protocol of the 3d-CQSS protocol, which the authorized parties 
share a tripartite qutrit entangled state |Φ3

(0,0)⟩. The equivalent protocol can be constructed by replacing the 
qutrit generation setups of the authorized parties to bipartite qutrit maximally entangled state generation setups 
and qutrit discrimination measurement setups. Each authorized party generates the bipartite three-dimensional 
maximally entangled state described in the following equation:

	
|Θ⟩ = 1√

3
(|0, 0⟩ + |1, 1⟩ + |2, 2⟩) ,� (14)

and send one photon to Charlie. Subsequently, Charlie performs the three-dimensional correlation measurement 
and announces the result. The six-photon quantum state is described as follows:

	

|Ξ⟩AA′B1B′
1B2B′

2
= |Θ⟩AA′ ⊗ |Θ⟩B1B′

1
⊗ |Θ⟩B2B′

2

=
2∑

σ=0

8∑
j=0

[
|Φ3

(j,σ)⟩A′B′
1B′

2
⊗ |Φ3

(j,3−σ)⟩AB1B2

]
,
� (15)

where the subscripts A, B1, and B2 denote the photons that Alice, Bob1, and Bob2 keep, and A′, B′
1, and B′

2 
are the photons sent from Alice, Bob1, and Bob2 to Charlie, respectively. If Charlie’s result is |Φ3

(j,σ)⟩ where j 
is an even number and j < 6, the authorized parties can share |Φ3

(0,0)⟩AB1B2  by means of local operations and 
classical communication (LOCC). Finally, the authorized parties choose a measurement basis and measure their 
photon. If the measurement bases are the same, a + b1 + b2 = 0( mod 3) is always satisfied where a, b1, and b2 
are the outcome of Alice, Bob1, and Bob2, respectively.

In order to assure the information-theoretic security, the authorized parties analyze their security under the 
assumption that Eve can exploit everything allowed by the quantum mechanics for an attack. The worst case is 
that Eve has full control over the shared quantum state. This attack can be realized by means of purification of 
the total quantum system, including Eve’s ancillary system. The total system can be described in the form of a 
pure state as shown in Eq. (16):

	

2∑
σ=0

8∑
j=0

√
λ(j,σ)|Φ3

(j,σ)⟩AB1B2 ⊗ |e(j,σ)⟩E ,� (16)

where {|e(j,σ)⟩} is Eve’s orthonormal basis. Then the quantum system of the authorized parties can be obtained 
by tracing out Eve’s system as described in the following equation:

	
ρ̂AB1B2 =

2∑
σ=0

8∑
j=0

λ(j,σ)|Φ3
(j,σ)⟩⟨Φ3

(j,σ)|.� (17)

Now, we analyze the amount of a shared classical secret through a single sifted pulse in the asymptotic limit, 
which we refer a secret key rate for simplicity from now on. A sifted pulse means that a pulse can be used for 
generating a secret key. In the 3d-CQSS protocol, the sifted pulse is obtained when all the authorized parties use 
the ordinary basis, and the result of the three-dimensional correlation measurement is |Φ3

(0,0)⟩. The asymptotic 
secret key rate of the 3d-CQSS protocol can be calculated from the Devetak–Winter formula71, which is used in 
various QSS protocols72–74, shown in Eq. (18):

	 rmin = I(A, B) − χ(A; E) = I(A, 3 − B1 − B2) − χ(A; E),� (18)

where B denotes joint measurement result of Bobs and (mod 3) is omitted in the bracket of the mutual 
information. Hereafter, we omit min in the subscript of the secret key rate r. The first term of the right-hand side 
in Eq. (18) is defined as the mutual information between Alice’s encoded information, A, and joint measurement 
result of players, which is a modular sum of Bob1 and Bob2’s encoded information, 3 − B1 − B2( mod 3). In 
a multiparty QKD, all the authorized parties share a symmetric secret key, so the smallest mutual information 
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between two parties is necessary to obtain a secret key rate75,76. Unlike multiparty QKD, in QSS, it is necessary 
to consider the mutual information between Alice’s information and the modular sum of the others to evaluate 
a secret key rate since a classical secret is shared by using Alice’s encoded information and the modular sum 
of the others. The second term is the Holevo information which is defined as an upper bound to the amount 
of information that Eve can know about a quantum state transmitted through the quantum channel77. By 
subtracting the Holevo information from the mutual information, we can obtain the amount of information that 
the authorized parties can share securely by using the quantum state.

There is another case that one of the authorized players is malicious. For instance, Bob1 can collaborate 
with Eve to obtain Alice’s information without Bob2’s information. In this case, the security of the proposed 
protocol becomes more vulnerable compared with a QSS protocol using a tripartite qutrit GHZ state shown in 
the following equations:

	

|3d-GHZ3⟩ = 1√
3

(|0, 0, 0⟩ + |1, 1, 1⟩ + |2, 2, 2⟩)

=1
3

2∑
k=0

(
|k̄, k + 1, k + 2⟩ + |k̄, k + 2, k + 1⟩ + |k̄, k̄, k̄⟩

)
.

� (19)

In a QSS protocol using the GHZ state, if Bob1’s measurement outcome is 0̄, then there are three possible 
outcomes of Alice and Bob2, {0̄, 0̄}, {1̄, 2̄}, and {2̄, 1̄}. However, in the proposed protocol, only the two cases, 
{1, 2} and {2, 1}, are possible from Eq. (5) when Bob1’s measurement outcome is 0. Therefore, intuitively, 
a secret key rate of the proposed protocol with a malicious player could be low compared with that of a QSS 
protocol using the GHZ state with a malicious player. To analyze the security of the proposed protocol with the 
malicious Bob1, the Devetak–Winter formula is shown in Eq. (20) can be used:

	 r = I(A, 3 − B1 − B2) − χ(A; EB1),� (20)

where (mod 3) is omitted in the bracket of the mutual information.
Like the case of 3d-CQSS, a secret key rate of d-CQSS can be obtained from the Devetak–Winter formula as 

shown in Eq. (21):

	
r = I

(
A, d −

d−1∑
n=1

Bn

)
− χ(A; E),� (21)

when all the authorized parties are trusted. The secret key rate is changed to the following equation:

	
r = I

(
A, d −

d−1∑
n=1

Bn

)
− χ

(
A; E

k∏
n=1

Bn

)
,� (22)

when Bob1 to Bobk  are malicious players who collaborate with Eve.

Error parameters
We define three groups of the tripartite qutrit entangled states, {|Φ3

(2i,σ)⟩}, {|Φ3
(2i+1,σ)⟩}, and {|Φ3

(6+i,σ)⟩}, 
where i, σ ∈ {0, 1, 2}. A state can be transformed to another state in the same group by means of LOCC but 
cannot be transformed to a state in another group. To simplify the analysis, the density matrix described in Eq. 
(17) is transferred to the depolarized state written in Eq. (23):

	

ρ̂dp =
2∑

σ=0

(
λ(0,σ)|Φ3

(0,σ)⟩⟨Φ3
(0,σ)| +

2∑
i=1

λ−|Φ3
(2i,σ)⟩⟨Φ3

(2i,σ)|

+
2∑

j=0

λ+|Φ3
(2j+1,σ)⟩⟨Φ3

(2j+1,σ)| +
8∑

k=6

λ=|Φ3
(k,σ)⟩⟨Φ3

(k,σ)|

)
,

� (23)

by means of LOCC like the multipartite qubit description78under the assumption that Eve performs a symmetric 
attack to obtain encoded information in the both bases well79. The coefficients, λ−, λ+, and λ=, can be obtained 
from the following equations:

	
λ− = 1

6

2∑
σ=0

2∑
j=1

λ(2j,σ), � (24)

	
λ+ = 1

9

2∑
σ=0

2∑
j=0

λ(2j+1,σ), � (25)
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λ= = 1

9

2∑
σ=0

8∑
j=6

λ(j,σ). � (26)

To evaluate a secret key rate, it is necessary to define parameters which can be obtained from the revealed data. 
T﻿he four different error rates are defined as shown in the following equations:

	
Qs =

8∑
j=2

λ(j,0) = 2λ+ + 2λ− + 3λ=, � (27)

	
Qω =

2∑
σ=1

8∑
j=0

λ(j,σ) = λ(0,1) + λ(0,2) + 6λ+ + 4λ− + 6λ=, � (28)

	 Q± = λ(1,0) = λ+, � (29)

	
Qu = 1

9

2∑
k,σ=0

λ(k+6,σ) = λ=. � (30)

The Qs is called a state error rate, which is defined as the probability that the result state does not have a ω3 phase 
change; however, it is not the wanted state. The Qω  is a three-dimensional phase error rate, the probability that 
the result state has a phase of ω3. The Q± is a two-dimensional phase error rate, the probability that the (+) 
sign in |Φ3

(0,0)⟩ is changed to (−). Finally, the Qu is called a user error rate, the probability of a state for which 
the two players, Bob1 and Bob2, have the same encoded information. The parameters can be obtained from the 
statistics of the authorized parties as shown in the following equations:

	

Qs = p(a + b1 + b2 ̸= 0 & b1 ̸= b2) − p(ā + b̄1 + b̄2 ̸= 0)

+ 1
3

[
2p(a + b1 + b2 = 0 & b1 ̸= b2) − (⟨X̂X̂X̂⟩ + c.c.)

]
,
� (31)

	 Qω = p(ā + b̄1 + b̄2 ̸= 0), � (32)

	 Q± =
∣∣1 − 2p(ā = b̄1 = b̄2 | ā + b̄1 + b̄2 = 0)

∣∣ , � (33)

	
Qu = 1

9p(b1 = b2), � (34)

where p(x) can be obtained from (the number of pulses for which x is true)/(the number of sifted pulses for 
which the basis including x is used), and (mod 3) is omitted in all the brackets. In Eq. (31), c.c. denotes complex 
conjugate of ⟨X̂X̂X̂⟩. The operator X̂  is defined as the following equation:

	
X̂ =

(
0 1 0
0 0 1
1 0 0

)
,� (35)

where the bases of the matrix are the OAM modes.

Secret key rate
In this section, the secret key rate for 3d-CQSS is evaluated using Eqs. (17) and (18) under the assumption that 
all authorized parties are trusted, as shown in Eq. (36):

	
r = log 3 +

8∑
j=0

2∑
σ=0

(
λ(j,σ) log λ(j,σ)

)
−

8∑
j=0

[(
2∑

σ=0

λ(j,σ)

)
log

(
2∑

σ=0

λ(j,σ)

)]
+

2∑
i=0

Λi log Λi. � (36)

In the absence of isotropy, the secret key rate can be determined through numerical analysis based on the 
measurement outcomes from the authorized parties. This analysis seeks to identify a shared quantum state that 
minimizes the secret key rate80.

To compare our protocol with others, we consider a depolarizing channel, which has been commonly used 
in the literature for such comparisons81,82. With the depolarized state in Eq. (23), an analytic secret key rate of 
3d-CQSS can be evaluated by using the Eqs. (23–30), as shown in Eq. (37):

	

r =(1 − 3Qu − 3Q±) log 3 − (Qω + Qs − 2Q± − 3Qu)
+ (1 − Qω − Qs − Q±) log(1 − Qω − Qs − Q±) + 3(Qs − Qu) log(Qs − Qu)
+ (Qω − 2Qs − 2Q±) log(Qω − 2Qs − 2Q±) − (1 − 3Qs − 3Q±) log(1 − 3Qs − 3Q±).

� (37)
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The unit of the secret key rate is (bits)/(sifted pulse). This equation can be used to evaluate not only the secret key 
rate of the 3d-CQSS protocol, but also that of an entanglement-based 3d-QSS protocol that exploits the tripartite 
qutrit cyclic-entangled state, |Φ3

(0,0)⟩. By using the same method, a secret key rate of d-CQSS can be calculated 
as well. Calculation details are drawn in the Methods section.

Now, let us compare the secret key rate of QSS using qudit. To compare the secret key rates, we consider a 
depolarizing channel with white noise. The depolarized state for d-CQSS is shown in Eq. (38):

	
ρ̂d,dp = (1 − p)|Φd

(0,0)⟩⟨Φd
(0,0)| + p

dd
�dd ,� (38)

where �x is the x × x identity operator. For 2d-QSS, we calculate the secret key rate evaluated by using the 
Devetak–Winter formula and a N-partite qubit GHZ state under a depolarizing channel is described in the 
following equation:

	
ρ̂2,dp = (1 − p)|2d-GHZN ⟩⟨2d-GHZN | + p

2N
�2N .� (39)

where the N-partite qubit GHZ state is defined as shown in the following equation:

	
|2d-GHZN ⟩ = 1√

2
(|0⟩⊗N + |1⟩⊗N ).� (40)

Figure 4(a) shows the secret key rate of 3d-CQSS (red solid line) and that of three-party 2d-QSS (black dashed 
line) evaluated under a depolarizing channel when all the parties are trusted. 3d-CQSS has a higher secret 
key rate than 2d-QSS since d-dimensional information is transferred by a single quantum, rather than binary 
information. The plots show 3d-CQSS has noise robustness compared with 2d-QSS as well. Figure 4(b) shows 
the secret key rate of 3d-CQSS (red solid line) and that of 2d-QSS (black dashed line) when Bob1 cooperates 
with Eve. Since Bob1 can expect values of the others from his number, the security becomes more vulnerable 
against a dishonest authorized party compared with three-party 2d-QSS. The secret key rate of 3d-CQSS is 
slightly higher only when the noise factor is smaller than approximately 7%, and then 2d-QSS becomes more 
efficient when the noise factor is larger than the value.

Figure 5 shows the secret key rate of 4d-CQSS (blue solid line) and that of four-party 2d-QSS (black dashed 
line) evaluated under a depolarizing channel. Figure  5(a) shows the secret key rates when all players are 

Fig. 5.  Secret key rates per sifted pulse under a depolarizing channel. The secret key rate of the four-party QSS 
protocol using qubits (black, dashed line) and that of the 4d-CQSS protocol (blue, solid line) are drawn. p is the 
ratio of white noise. (a) The secret key rates when all the authorized parties are trusted. (b) The secret key rates 
when Bob1 cooperates with Eve. (c) The secret key rates when Bob1 and Bob2 cooperate with Eve.
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trusted. Similarly with three-dimensional case, 4d-CQSS has the higher secret key rate and the protocol can 
be accomplished when the noise is larger compared with four-party 2d-QSS. Figure 5(b) shows the secret key 
rates when Bob1 collaborates with Eve to obtain Alice’s encoded number without encoded numbers of Bob2 
and Bob3. Since the mutual information between Alice and Bob1 is 2 − log 3 for the ideal situation, i.e., the 
authorized parties share |Φ4

(0,0)⟩, the maximum secret key rate of the protocol can be obtained the mutual 
information among the authorized parties subtracted by the mutual information between Alice and Bob1, log 3. 
Therefore, 4d-CQSS has the higher secret key rate compared with four-party 2d-QSS even when there is one 
malicious player. If there are two malicious players, Bob1 and Bob2, the secret key rate becomes almost similar 
with that of four-party 2d-QSS as shown in Fig. 5(c) since the mutual information between Alice’s number and 
the numbers of Bob1 and Bob2 becomes one for the ideal situation.

For d-CQSS, the maximum secret key rate per sifted pulse can be obtained as log(d − m) where m is the 
number of malicious players for 0 ≤ m ≤ d − 2. This value comes from the mutual information among the 
authorized parties, log d, and the mutual information among Alice and malicious players, log d − log(d − m), 
for the ideal situation, i.e., the authorized parties share the quantum state |Φd

(0,0)⟩. Because of the structure of the 
quantum state, d-CQSS cannot guarantee the same security with d-party QSS using d-dimensional GHZ state 
when there are malicious players. However, if there are more than two trusted players in d-CQSS, the protocol 
can be more efficient compared with d-party 2d-QSS.

In Fig. 6, the secret key rates of the 2d-MDIQSS protocol35 (black dashed line), the entangled state based 
3d-CQSS (3d-ECQSS) protocol (blue dotted line), the correlation measurement based 3d-CQSS protocol (red 
solid line), and single photon based 3d-QSS (3d-SQSS) protocol83 (Purple dotted line) are compared under the 
consideration of experimental factors, transmission loss of a photon and a dark count rate of a single photon 
detector. The other conditions are assumed as the ideal, for instance, there is no Eve, state preparation is perfect, 
and the all authorized parties are trusted. In the plot, it is shown that the secret key rate of the 3d-CQSS protocol 
is higher than that of the 2d-MDIQSS protocol, when the transmission loss is lower than approximately 39 dB. 
This effect also can be seen in QKD, as it was known that a high-dimensional QKD protocol is vulnerable to the 
transmission loss compared with the same type of QKD protocol using qubits84,85.

As shown in the plot, the 3d-CQSS with the correlation measurement has an advantage compared with 
the entanglement-based 3d-CQSS (3d-ECQSS) protocol regarding resistance to the transmission loss when all 
authorized parties are trusted. Note that this advantage appears even when the preparation efficiency of an 
entangled state is not considered. This effect come from the number of errors which occur when two or more 
photons are lost. For example, let us consider the case that Bob1’s and Bob2’s photons are lost. In the correlation 
measurement based 3d-CQSS protocol, if Alice’s photon clicks the detector DA′0, then the three-dimensional 
correlation measurement succeeds only when DA′1 and DA′2 are clicked due to the dark count. In this situation, 
if Bob1 and Bob2 did not send quantum states having an OAM mode of 1 and 2, the trial introduces an error. 
In the 3d-ECQSS protocol, if one photon clicks Alice’s detector D0, where Dx is the detector corresponding to 
the OAM mode x, there are two cases that an error does not occur. The first case is that Bob1’s detector D1 and 
Bob2’s detector D2 are clicked, and the other is that Bob1’s detector D2 and Bob2’s detector D1 are clicked. 
Errors are introduced for the other cases, for which Bob1’s one detector and Bob2’s one detector are clicked due 
to the dark count. Therefore, the transmission loss and the dark count introduce more errors in the 3d-ECQSS. 
In conclusion, the 3d-CQSS protocol has the advantage of its practicality compared with the 3d-ECQSS even 
though the state generation rate is not considered. A QSS protocol based on a 3-dimensional GHZ state would 
yield similar results, as the measurement setup for the 3-dimensional GHZ state QSS protocol is identical to that 
of the 3d-ECQSS protocol. Details of the calculation are described in the Methods section.

Fig. 6.  The secret key rates per sifted pulse with experimental factors when all players are trusted. The secret 
key rates of the 2d-MDIQSS protocol (black dashed line), the entangled state based 3d-CQSS (3d-ECQSS) 
protocol (blue dotted line), the correlation measurement based 3d-CQSS protocol (red solid line), and single 
photon based 3d-QSS (3d-SQSS) protocol (Purple dotted line) are plotted. Experimental factors, transmission 
loss η and a dark count rate of a single photon detector, are considered in the plots. The dark count rate is 
assumed as 10−5 per pulse.
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We compare the performance of our protocol with that of another high-dimensional QSS protocol. As an 
example, we consider the single-photon-based d-QSS (d-SQSS) protocol29,83. In this protocol, a dealer generates 
a single-photon quantum state and sends it to the players. The players then sequentially perform unitary 
operations chosen from a predefined set and return the results to the dealer. The dealer selects a measurement 
basis from the players’ broadcasts to obtain a deterministic outcome. Therefore, the protocol relies on just a single 
photon, and with active basis choice, only three detectors are needed. The mutual information for 3d-SQSS is 
shown in Fig. 6 for performance comparison. Since 3d-SQSS uses only three detectors, it is less susceptible to 
photon loss and detector dark counts compared to other protocols. Although SQSS appears to be the best QSS 
protocol in this comparison, our protocol offers certain advantages.

Transmission loss can be translated into communication distance. For instance, a typical single-mode 
fiber (SMF) has a loss of about 0.25 dB/km at a 1550 nm wavelength signal. Thus, the maximum distance 
for QSS protocols can be obtained from Fig.  6. However, due to the differences in protocol constructions, 
some corrections are needed in the conversion. In the case of 3d-SQSS, since the dealer generates the single 
photon and the photon must return to the dealer, the communication distance is effectively half of the photon 
transmission distance. For CQSS and MDIQSS, an untrusted third party with the correlation measurement 
setup can serve as an intermediary between the authorized parties, meaning the communication distances in 
these protocols can be doubled in the conversion of the plots in Fig. 6. In the case of 3d-ECQSS, due to the 
trusted device assumption, Alice must possess the entangled state generator, so the plot in Fig. 6 can be directly 
translated into the communication distance. With these conditions in mind, we conclude that QSS protocols 
with correlation measurement capabilities can achieve longer-distance quantum communication compared to 
other QSS protocols.

Discussion
In this article, the (d − 1, d − 1)-threshold d-CQSS was investigated. It was shown that the d-CQSS protocol 
can be implemented with the current state-of-the-art technologies and is more practical compared with the 
entanglement-based d-QSS protocol since generation of qudit GHZ state is not necessary. By employing 
correlation measurement, our protocol inherently ensures MDI security35,36,38,39, meaning that all types 
of potential side-channel attacks exploiting detector imperfections are mitigated, especially when such 
imperfections pose significant security risks86. Even if an untrusted party attempts to deceive the authorized 
parties, the deception will influence their measurement statistics, making the attempt detectable.

The security of the d-CQSS protocol was analyzed, showing improvement on the secret key rate compared 
with 2d-QSS. The security when there are malicious players was investigated as well. Due to the properties 
of the entangled state discriminated by the correlation measurement, the advantage of high-dimensional 
system decreases with malicious players. However, it was shown that there is enhancement on the secret key 
rate compared with the 2d-QSS when there are more than two trusted players. Even when there is only one 
trusted player, the enhancement exists at low error regime. It was also shown that the 3d-CQSS protocol with 
the correlation measurement would have robustness against transmission loss compared with the entanglement-
based 3d-CQSS protocol. A single-photon-based 3d-QSS protocol29,83 offers a higher secret key rate for the 
same transmission loss compared to our protocol. However, when translated into communication distance, our 
protocol outperforms in terms of the maximum achievable communication distance due to its design.

We have analyzed the security of our protocol under certain assumptions to highlight its characteristics 
through a simple comparison. However, in practical scenarios, these assumptions may not always hold. Several 
studies have focused on relaxing these assumptions, such as finite key analysis82,87–89 as opposed to asymptotic key 
rates, and analysis against coherent attacks without the i.i.d. assumption90,91. Additionally, device-independent 
(DI) security analysis, based on nonlocality tests, can eliminate most of the assumptions74,92–95. In DI analysis, 
only two assumptions are required: first, that quantum physics is correct; and second, that there is no unintended 
information leakage in the laboratories of each authorized party. Nonlocality tests, often referred to as Bell-type 
inequalities10,96, reveal correlations that cannot be explained by classical means based on measurement statistics. 
In other words, quantum correlations are confirmed when measurement statistics violate the Bell inequality, 
without assuming any specific device. For DI analysis, an appropriate Bell inequality is necessary. While the 
Clauser–Horne–Shimony–Holt (CHSH) inequality96 satisfies tightness and maximal violation with maximal 
entanglement (MVME) conditions, no such inequality exists for high-dimensional systems. The Collins–Gisin–
Linden–Massar–Popescu (CGLMP) inequality97 is known as the unique tight inequality for 3-dimensional 
bipartite quantum systems98, but its maximal violation occurs with a partially entangled state. A nonlocality test 
for high-dimensional bipartite quantum systems that satisfies MVME has been proposed99. However, since our 
protocol relies on cyclic-entangled states for security analysis, the GHZ-type generalization cannot be applied. 
Therefore, it is crucial to construct a suitable nonlocality test for cyclic-entangled states to ensure the DI security 
of our protocol.

Methods
Three-dimensional correlation measurement
Here, click events of the three-dimensional correlation measurement are investigated. The interference among 
the three photons sent from the authorized parties is performed by using the tritter described in Eq. (3) and Eq. 
(4). The tripartite quantum states, |Φ3

(0,σ)⟩ and |Φ3
(1,σ)⟩ are considered where σ ∈ {0, 1, 2}. In the other states, 

there are photons whose OAM mode is identical. This causes the two photons to enter the same detector. These 
states cannot be discriminated, since photon number resolving detectors are not involved in the setup.

With the tritter operation shown in Eq. (4), the detector click events can be calculated. A quantum state 
|0, 1, 2⟩ABC  is transformed with the tritter operation as follows:
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|0, 1, 2⟩ABC
tritter−−−−→ 1

3
√

3
[
(|0⟩A′ + |0⟩B′ + |0⟩C′ )(|1⟩A′ + ω3|1⟩B′ + ω2

3 |1⟩′
C)(|2⟩A′ + ω2

3 |2⟩B′ + ω3|2⟩C′ )
]

= 1
3
√

3
(
|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ + ω2

3 |0, 1, 2⟩A′B′C′ + ω3|0, 2, 1⟩A′B′C′

+ω2
3 |1, 2, 0⟩A′B′C′ + ω3|1, 0, 2⟩A′B′C′ + ω2

3 |2, 0, 1⟩A′B′C′ + ω3|2, 1, 0⟩A′B′C′ + · · ·
)

.

� (41)

Similarly, quantum states after tritter operation can be obtained as follows:

	

|0, 2, 1⟩ABC
tritter−−−−→ 1

3
√

3
(
|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ + ω3|0, 1, 2⟩A′B′C′ + ω2

3 |0, 2, 1⟩A′B′C′

+ω3|1, 2, 0⟩A′B′C′ + ω2
3 |1, 0, 2⟩A′B′C′ + ω3|2, 0, 1⟩A′B′C′ + ω2

3 |2, 1, 0⟩A′B′C′ + · · ·
)

,

� (42)

	

|1, 2, 0⟩ABC
tritter−−−−→ 1

3
√

3
(
|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ + ω2

3 |0, 1, 2⟩A′B′C′ + ω3|0, 2, 1⟩A′B′C′

+ω2
3 |1, 2, 0⟩A′B′C′ + ω3|1, 0, 2⟩A′B′C′ + ω2

3 |2, 0, 1⟩A′B′C′ + ω3|2, 1, 0⟩A′B′C′ + · · ·
)

,

� (43)

	

|1, 0, 2⟩ABC
tritter−−−−→ 1

3
√

3
(
|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ + ω3|0, 1, 2⟩A′B′C′ + ω2

3 |0, 2, 1⟩A′B′C′

+ω3|1, 2, 0⟩A′B′C′ + ω2
3 |1, 0, 2⟩A′B′C′ + ω3|2, 0, 1⟩A′B′C′ + ω2

3 |2, 1, 0⟩A′B′C′ + · · ·
)

,

� (44)

	

|2, 0, 1⟩ABC
tritter−−−−→ 1

3
√

3
(
|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ + ω2

3 |0, 1, 2⟩A′B′C′ + ω3|0, 2, 1⟩A′B′C′

+ω2
3 |1, 2, 0⟩A′B′C′ + ω3|1, 0, 2⟩A′B′C′ + ω2

3 |2, 0, 1⟩A′B′C′ + ω3|2, 1, 0⟩A′B′C′ + · · ·
)

,

� (45)

	

|2, 1, 0⟩ABC
tritter−−−−→ 1

3
√

3
(
|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ + ω3|0, 1, 2⟩A′B′C′ + ω2

3 |0, 2, 1⟩A′B′C′

+ω3|1, 2, 0⟩A′B′C′ + ω2
3 |1, 0, 2⟩A′B′C′ + ω3|2, 0, 1⟩A′B′C′ + ω2

3 |2, 1, 0⟩A′B′C′ + · · ·
)

.

� (46)

Then, the quantum states after tritter operation with |Φ3
(0,0)⟩ABC  and |Φ3

(1,0)⟩ABC  can be calculated as follows:

	

|Φ3
(0,0)⟩ABC

tritter−−−−→ 1
3
√

2
[
2 (|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ ) + (ω3 + ω2

3) (|0, 1, 2⟩A′B′C′ + |0, 2, 1⟩A′B′C′

+|1, 2, 0⟩A′B′C′ + |1, 0, 2⟩A′B′C′ + |2, 0, 1⟩A′B′C′ + |2, 1, 0⟩A′B′C′ )]

= 1
3
√

2
[2 (|0, 1, 2⟩A′A′A′ + |0, 1, 2⟩B′B′B′ + |0, 1, 2⟩C′C′C′ ) − |0, 1, 2⟩A′B′C′ − |0, 2, 1⟩A′B′C′

−|1, 2, 0⟩A′B′C′ − |1, 0, 2⟩A′B′C′ − |2, 0, 1⟩A′B′C′ − |2, 1, 0⟩A′B′C′ ] ,

� (47)

	

|Φ3
(1,0)⟩ABC

tritter−−−−→ω2
3 − ω3√

6
(|0, 1, 2⟩A′B′C′ − |0, 2, 1⟩A′B′C′ + |1, 2, 0⟩A′B′C′ − |1, 0, 2⟩A′B′C′

+|2, 0, 1⟩A′B′C′ − |2, 1, 0⟩A′B′C′ ) .

� (48)

As shown in the above equations, the rest terms, denoted as · · ·  in Eqs. (41–46), are canceled with the definitions, 
ω2

3 + ω3 + 1 = 0 and ω3
3 = 1. From the equations, we can obtain the detector click events and their probabilities 

written in Eqs. (7) and (8).
The other detector click events of the quantum states exploited in the protocol are described in the following 

equation:

	

|Φ3
(0,1)⟩, |Φ3

(0,2)⟩, |Φ3
(1,1)⟩, |Φ3

(1,2)⟩ →





DA′0, DA′2, DB′1 with probability 1/18
DA′0, DA′1, DC′2 with probability 1/18
DA′0, DA′2, DB′1 with probability 1/18
DA′0, DA′2, DC′1 with probability 1/18
DA′0, DB′1, DB′2 with probability 1/18
DA′0, DC′1, DC′2 with probability 1/18
DA′1, DA′2, DB′0 with probability 1/18
DA′1, DA′2, DC′0 with probability 1/18
DA′1, DB′0, DB′2 with probability 1/18
DA′1, DC′0, DC′2 with probability 1/18
DA′2, DB′0, DB′1 with probability 1/18
DA′2, DC′0, DC′1 with probability 1/18
DB′0, DB′1, DC′2 with probability 1/18
DB′1, DB′2, DC′1 with probability 1/18
DB′0, DC′1, DC′2 with probability 1/18
DB′1, DB′2, DC′0 with probability 1/18
DB′1, DC′0, DC′2 with probability 1/18
DB′2, DC′0, DC′1 with probability 1/18

, � (49)

where DXy  denotes a click event of the detector corresponding to the state |y⟩, the photon exists in the output 
port X, and the fractional numbers denote the probability of the click events. The click events of |Φ3

(0,0)⟩ and 
|Φ3

(1,0)⟩ are described in the maintext.
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Even if photon number resolving detectors are involved, the other states cannot be discriminated. An example 
is described in the following equation:

	

|Φ3
(2,0)⟩, |Φ3

(2,1)⟩, |Φ3
(2,2)⟩, |Φ3

(3,0)⟩, |Φ3
(3,1)⟩, |Φ3

(3,2)⟩ →




DA′2, D2
B′0

D2
B′0, DB′2

DB′0, D2
B′1

...

,� (50)

where the superscripts 2 in the right-hand side mean that two photons enter the detector. In conclusion, only 
|Φ3

(0,0)⟩ is exactly discriminated by using the three-dimensional correlation measurement.

Calculations for a secret key rate of 3d-CQSS
Main results
In this section, calculation details of the secret key rate written in Eq. (37) are described. To calculate the secret 
key rate, it is necessary to obtain the mutual information and the Holevo information written in Eq. (18). The 
mutual information can be obtained from the following equation:

	 I(A, 3 − B1 − B2) = H(A) + H(3 − B1 − B2) − H(A, 3 − B1 − B2),� (51)

where (mod 3) is omitted in the all brackets, A, B1, and B2 are encoded information of Alice, Bob1, and Bob2, 
respectively, H(x) is the Shannon entropy, and H(x, y) is the joint entropy. The entropies can be evaluated by 
using the tripartite quantum state written in Eq. (17) and they are shown in Eqs. (52–54):

	 H(A) = log 3, � (52)

	 H(3 − B1 − B2) = log 3, � (53)

	
H(A, 3 − B1 − B2) = log 3 −

2∑
i=0

Λi log Λi, � (54)

where

	
Λi =

2∑
σ=0

[
λ(2i,σ) + λ(2i+1,σ) + λ(6+i,σ)

]
,� (55)

and the base 2 of all the logarithms is omitted.
The definition of the Holevo information is given as

	
χ(A; E) = S(ρ̂AE) −

2∑
a=0

p(a)S(ρ̂E|A=a),

where S(ρ̂) is the von Neumann entropy. The Holevo information means that the maximum information that 
Eve can obtain through the quantum state. Since Alice will encrypt a classical secret by using her encoded 
information, a, Eve’s attack strategy is obtaining the maximum information about Alice’s encoded number. The 
reduced density matrix between Alice and Eve is obtained by tracing out Bob1’s and Bob2’s systems from the 
full quantum state written in Eq. (16). Eve’s conditional density matrix, ρ̂E|A=a, can be obtained by performing 
projection of Alice’s system onto |a⟩⟨a|. Then the two terms in the Holevo information can be calculated as 
shown in Eq. (56) and Eq. (57):

	
S(ρ̂AE) = −

8∑
j=0

2∑
σ=0

λ(j,σ) log λ(j,σ), � (56)

	

2∑
a=0

p(a)S(ρ̂E|A=a) = −
8∑

j=0

[(
2∑

σ=0

λ(j,σ)

)
log

(
2∑

σ=0

λ(j,σ)

)]
. � (57)

From the equations, the secret key rate is obtained as shown in Eq. (58):

	
r = log 3 +

8∑
j=0

2∑
σ=0

(
λ(j,σ) log λ(j,σ)

)
−

8∑
j=0

[(
2∑

σ=0

λ(j,σ)

)
log

(
2∑

σ=0

λ(j,σ)

)]
+

2∑
i=0

Λi log Λi. � (58)

When the depolarized state written in Eq. (23) is considered, the secret key rate becomes the equation shown 
in Eq. (59):
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r =(< spanclass =′ convertEndash′ > 1 − 3 < /span > λ+ − 3λ=) log 3

+

[(
2∑

σ=0

λ(0,σ)

)
+ 3λ+ + 3λ=

]
log

[(
2∑

σ=0

λ(0,σ)

)
+ 3λ+ + 3λ=

]

+
2∑

σ=0

(
λ(0,σ) log λ(0,σ)

)
−

(
2∑

σ=0

λ(0,σ)

)
log

(
2∑

σ=0

λ(0,σ)

)
+ 6 (λ+ + λ− + λ=) log (λ+ + λ− + λ=) .

� (59)

Finally, the secret key rate becomes the form described in Eq. (37) by substituting the λs to the error rates defined 
in Eqs. (27–30).

	

r =(1 − 3Qu − 3Q±) log 3 − (Qω + Qs − 2Q± − 3Qu)
+ (1 − Qω − Qs − Q±) log(1 − Qω − Qs − Q±) + 3(Qs − Qu) log(Qs − Qu)
+ (Qω − 2Qs − 2Q±) log(Qω − 2Qs − 2Q±) − (1 − 3Qs − 3Q±) log(1 − 3Qs − 3Q±).

� (60)

Error parameters
Here, we describe how the error rates written in Eqs. (27–30) can be calculated in the 3d-CQSS protocol. First, 
Qp is the most simple error rate to calculate. As it is shown in Eq. (28), the 3d-phase error rate is a sum of 
the probabilities of the tripartite quantum states which have ω and ω2 phases. The 3d-phase error rate can be 
calculated from the statistics of the bar basis, since ā + b̄ + c̄ = 0( mod 3) is satisfied only when there are no ω 
and ω2 phases in the state. Therefore, the 3d-phase error rate can be calculated as shown in Eq. (61):

	
p(ā + b̄1 + b̄2 ̸= 0) =

2∑
σ=1

8∑
j=0

λ(j,σ) = λ(0,1) + λ(0,2) + 6λ+ + 4λ− + 6λ= = Qω,� (61)

where p(x) is defined as (the number of signals that x is true)/(the number of sifted signals of which bases 
including x are used), and (mod 3) is omitted in the bracket in the left-hand side of the equation.

The state error rate is defined as a sum of the probabilities of the states |Φ0
j ⟩, where j ∈ {0, 1, 2, ..., 8} as 

shown in Eq. (27). To evaluate the state error rate written in Eq. (27), we use the equations shown in Eq. (62):

	

p(a + b1 + b2 ̸= 0 & b1 ̸= b2) =
2∑

σ=0

5∑
j=2

λ(j,σ) = 6λ+ + 6λ−,

p(a + b1 + b2 = 0 & b1 ̸= b2) =
2∑

σ=0

(
λ(0,σ) + λ(1,σ)

)
=

(
2∑

σ=0

λ(0,σ)

)
+ 3λ+,

� (62)

and an expectation value of the operator X̂ , which is defined in Eq. (35). The expectation value of one party, for 
example Alice’s, can be obtained from the following equation:

	 ⟨X̂⟩A = p(a = 0) + ωp(a = 1) + ω2p(a = 2).

By using the depolarized state in Eq. (23), we can obtain the value shown in Eq. (63):

	
⟨X̂X̂X̂⟩ + c.c. =

8∑
j=0

(
2λ(j,0) − λ(j,1) − λ(j,2)

)
= 2λ(0,0) − λ(0,1) − λ(0,2).� (63)

Then the state error rate can be obtained by using the probabilities described in Eqs. (62) and (63) as shown in 
Eq. (64):

	

Qs =2λ+ + 2λ− + 3λ=

=p(a + b1 + b2 ̸= 0 & b1 ̸= b2) − p(ā + b̄1 + b̄2 ̸= 0) + 1
3

[
2p(a + b1 + b2 = 0 & b1 ̸= b2) − (⟨X̂X̂X̂⟩ + c.c)

]
.
� (64)

The user error rate is easily obtained when the depolarized state is considered as shown in Eq. (30) and Eq. (34), 
but the 2d-phase error rate is difficult to be exactly evaluated. Therefore, the error rate is approximated by using 
the probability shown in Eq. (65):

	 p(ā = b̄1 = b̄2 | ā + b̄1 + b̄2 = 0).� (65)

This probability is 1/2 for the states {|Φ3
(2j,0)⟩}, zero for the states {|Φ3

(2j+1,0)⟩}, and 1/3 for the states 
{|Φ3

(6+j,0)⟩}, where j ∈ {0, 1, 2}. From these probabilities, we define the 2d-phase error rate as Eq. (34) of 
which value is zero for the ideal state, |Φ3

(0,0)⟩, and one for the state |Φ3
(1,0)⟩. The 2d-phase error rate is not 

always the same as λ(1,0), since the probability is affected by other states as well.
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Secret key rate with experimental factors
Here, the secret key rate is evaluated by using the experimental factors, transmission loss, η, and a dark count 
of single photon detectors, µ. The situation is the ideal case, where there is no Eve, and there is no state error. In 
the 3d-CQSS protocol, there are nine single photon detectors and three photons propagate through quantum 
channels. A success probability of the 3d-CQSS protocol, p3MDI(x, y, z), is defined as the probability that when 
Alice, Bob1, and Bob2 send the quantum states, |x⟩, |y⟩, and |z⟩ to Charlie, respectively, the result of the 
three-dimensional correlation measurement is |Φ3

(0,0)⟩. Then the success probability can be calculated from the 
experimental factors as shown in Eq. (66):

	 p3CM(a, b1, b2) = (1 − µ)6(1 − η)3 + 3(1 − µ)6µ(1 − η)2η + 3(1 − µ)6µ2(1 − η)η2 + 3(1 − µ)6µ3η3,� (66)

when a + b1 + b2 = 0( mod 3) and a ̸= b1 ̸= b2 ̸= a are satisfied. The subscript 3 CM denotes the three-
dimensional correlation measurement based protocol. The first term means the three photons sent from the 
authorized parties arrive at the measurement setup successfully, and there is no dark count. The second term 
is the case that one photon is lost, and the others arrive, but it is considered to be a successful trial, since one 
detector is clicked due to the dark count. The coefficient 3 comes from the number of possibilities that one 
photon is lost among the three photons. The success probability when two photons and when all the photons are 
lost are described in the third term and the final term, respectively. The coefficient 3 of the final term comes from 
the fact that there are three different click combinations considered for the successful trial, as shown in Eq. (7).

The case is considered when a + b1 + b2 = 0( mod 3) and a ̸= b1 ̸= b2 ̸= a are not satisfied. If a = b1 = b2 
is true, the success probability becomes as shown in Eq. (67):

	 p3CM(a, b1, b2) = 3(1 − µ)6µ2(1 − η)η2 + 3(1 − µ)6µ3η3.� (67)

In this case, at least two photons should be lost, and two detectors are clicked due to the dark count for a 
successful trial. Therefore, the success probability has only two terms which are the cases that two photons are 
lost, and all the photons are lost.

If two photons have the same OAM mode, then the success probability can be obtained from Eq. (68):

	 p3CM(a, b1, b2) = (1 − µ)6µ(1 − η)2η + 3(1 − µ)6µ2(1 − η)η2 + 3(1 − µ)6µ3η3.� (68)

By using the equations, Eqs. (66–68), the error rates can be calculated as an example is shown in Eq. (69):

	
Qω =

∑
ā+b̄1+b̄2 ̸=0 p3CM(ā, b̄1, b̄2)∑2
ā,b̄1,b̄2=0 p3CM(ā, b̄1, b̄2)

,� (69)

where (mod 3) is omitted.
For the entanglement-based 3d-CQSS protocol, the probabilities are changed. Assume that each party has 

three SPDs to discriminate three different OAM modes. The p3E(a, b1, b2) is defined as a probability that Alice’s 
a detector, Bob1’s b1 detector, and Bob2’s b2 detector are clicked, and an entangled state generator produces the 
|Φ3

(0,0)⟩ state. When a + b1 + b2 = 0( mod 3) and a ̸= b1 ̸= b2 ̸= a, the probability becomes as shown in Eq. 
(70):

	 p3E(a, b1, b2) = (1 − µ)6(1 − η)3 + 3(1 − µ)6µ(1 − η)2η + 6(1 − µ)6µ2(1 − η)η2 + 12(1 − µ)6µ3η3,� (70)

where the subscript 3E denotes three-dimensional entanglement-based protocol. As in Eq. (66), n-th term is 
defined as the probability that (n − 1) photons are lost, but the measured values of Alice, Bob1, and Bob2 are 
a, b1, and b2, respectively, due to the dark count. The first term and the second term are the same with those 
of Eq. (66), but there are differences in the third term and the fourth term. In the correlation measurement 
based 3d-CQSS protocol, if one photon arrives at the corresponding detector, the other two detectors for the 
successful trial is determined as shown in Eq. (7). The other detector click events are not considered, since they 
are discarded in the correlation-measurement based 3d-CQSS protocol. However, in the entanglement-based 
3d-CQSS protocol, if one photon arrives at the detector of one party, there are only two different cases for a 
successful trial. If Alice’s detector D0 is clicked by an arriving photon, the successful trial can occur when Bob1
’s D1 and Bob2’s D2 are clicked, or when Bob1’s D2 and Bob2’s D1 are clicked. Therefore, the coefficient of the 
third term and that of the fourth term are different from Eq. (66), and this difference enlarges the error rates of 
the entanglement-based 3d-CQSS protocol.

The probability can be calculated when OAM value of all the authorized parties is the same, a = b1 = b2, as 
shown in Eq. (71):

	 p3E(a, b1, b2) = 6(1 − µ)6µ2(1 − η)η2 + 3(1 − µ)6µ3η3.� (71)

The probability of two of the parties having the same results of the OAM mode detection is written in Eq. (72):

	 p3E(a, b1, b2) = 6(1 − µ)6µ(1 − η)2η + 4(1 − µ)6µ2(1 − η)η2 + 12(1 − µ)6µ3η3.� (72)
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By using the probabilities, the error rates can be calculated with Eq. (69), as well. Since the coefficient of the 
terms in Eq. (71) and Eq. (72) is greater than those in Eq. (67) and Eq. (68), the error rates of an entanglement-
based 3d-CQSS protocol are greater than those of the correlation measurement based 3d-CQSS protocol.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the security 
policy of the Ministry of National Defense of South Korea, but are available from the corresponding author upon 
reasonable request.
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