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Energy management has enhanced sustainability, dependability, and efficiency in smart grids. 
Urbanisation, technology, and consumer behaviour have boosted need for innovative power use and 
price control systems. The paper intends to construct ML for smart grid power use and price prediction. 
This work used an advanced shark smell-tuned flexible support vector machine (ASS-FSVM) to forecast 
smart grid price and power use. Weather stations, smart meters, and market price databases document 
power use and pricing. The quality and consistency of data are enhanced via the processes of cleaning 
and normalizing inputs. PCA reduces dimensionality by extracting pre-processed data characteristics. 
Optimized and tested FSVM models can anticipate smart grid power use and pricing. ASS may 
identify the most important dataset properties. The research evaluates electricity consumption 
forecasting using accuracy (98.05%), recall (98.93%), precision (97.10%), and F1-score (98.04%), and 
electricity price predicting using MAPE (4.32%), RMSE (5.80%), MSE (8.50%), and MAE (2.95%). The 
recommended strategy greatly increases forecast accuracy, helping utilities improve grid stability, 
demand responsiveness, and customer pricing.
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Abbreviations
ML	� Machine Learning
PCA	� Principal Component Analysis
FPS	� Fair Pricing Scheme
LEC	� Low-Energy Consumers
HEC	� High-Energy Consumers
ELM	� Extreme Learning Machine
SVM	� Support Vector Machine
LR	� Logistic Regression
KNN	� K-Nearest Neighbor
NN	� Neural Network
NB	� Naive Bayes
DT	� Decision Trees
SG	� Specific Gravity
UCI	� University Of California, Irvine
GRU-RNN	� Gated Recurrent Unit And Recurrent Neural Network
RE	� Renewable Energy
AdaGrad	� Adaptive Gradient
DA-GmEDE	� Differential Algorithm - Generalized Mean Enhanced Differential Evolution
ANN	� Artificial Neural Network
MC	� Monte Carlo
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Bi-LSTM	� Bi-Directional Long Short Term Memory
STLF	� Short-Term Load Forecasting
DL	� Deep Learning
GWDO	� Genetic Wind-Driven Optimization
MMI	� Modified Mutual Information
FCRBM	� Factored Conditional Restricted Boltzmann Machine
PJM	� Pennsylvania-New Jersey-Maryland Interconnection
EV	� Electric Vehicle
MILP	� Mixed Integer Linear Programming
PLR	� Penalized Linear Regression
CNN	� Conventional Neural Network
GPR	� Gaussian Process Regression
EMM	� Energy Management Models
GR	� Grid Revenue
PEC	� Prosumer Energy Cost
PES	� Prosumer Energy Surplus
DNN	� Deep Neural Network
FA-HELF	� Fast And Accurate Hybrid Electrical Energy Forecasting
ISO-NE	� Independent System Operator New England
ReLU	� Rectified Linear Unit
LWSVR	� Locally Weighted Support Vector Regression
RFE	� Recursive Feature Elimination
EMD	� Empirical Mode Decomposition
SB	� Smart Building
PSO	� Particle Swarm Optimization
SHAP	� Shapley Additive Explanations
SSO	� Shark Smell Optimization
MAPE	� Mean Absolute Percentage Error
MAE	� Mean Absolute Error
RMSE	� Root Mean Square Error
MSE	� Mean Square Error
EWO	� Earth Worm Optimization
CNN-GRU-EWA	� CNN And GRU With Earth Worm Optimization
XGBoost	� Extreme Gradient Boosting
CNN-CHIO	� CNN With Coronavirus Herd Immunity Optimization
TP	� True Positive
TN	� True Negative
FP	� False Positive
FN	� False Negative

Smart grids are updated electrical networks that optimize energy transmission between utilities and customers 
in real-time by using digital technologies. In contrast to conventional networks, smart grids facilitate 
mutual communication, facilitate the combination of renewable energy sources, and improve efficiency and 
dependability. Automated metering, sophisticated analytics, and resilience enhancements are important 
components that promote an energy system that is responsive and sustainable1.

Electrical consumption prediction is potential energy demand based on chronological data, seasonal patterns, 
socio-economic factors, and real-time variables like weather. Accurate prediction is necessary for competent 
energy organizations in power grids, helping to balance supply and demand, reduce operational costs, and 
prevent outages. Advanced techniques, including machine learning, enhance accuracy, enabling better resource 
planning and sustainable energy use2.

Smart grids are essential for anticipating power consumption since they offer real-time information on 
demand trends, energy use, and grid status. Smart grids provide more precise and timely forecasting models 
using sophisticated sensors, automated metering, and two-way communication. For effective grid management, 
this data-driven strategy aids in supply-demand dynamics balancing, energy distribution optimization, and 
consumption trend prediction3. Figure 1 shows the prediction process of electricity consumption in smart grids.

Smart grids provide real-time data. They enable precise demand-response management, less stress from peak 
loads, and better forecasting of electricity usage. They lower costs and environmental impact by optimizing 
energy distribution, improving prediction accuracy, and supporting renewable energy sources4.

Forecasting electricity usage is hampered by smart grids due to issues with data security and privacy, 
expensive installation costs, and the difficulty of handling large amounts of data. Accurate forecasting is made 
more difficult by interoperability problems, legal restrictions, consumer behavior variability, integration hurdles 
with renewable energy, a lack of historical data, and a lack of technical skill5.

The forecasting of electricity usage using traditional techniques has drawbacks, such as linear assumptions 
that miss intricate, nonlinear interactions. They are prone to overfitting, have trouble integrating varied features, 
and are not flexible enough to adjust to shifting trends. Efficiency is further hampered by the fact that these 
models frequently rely on batch processing, ignore temporal dependencies, and necessitate intensive human 
feature engineering.

A more robust, effective, and sustainable energy infrastructure is promoted by smart grids’ proactive 
modifications, which also reduce the likelihood of outages6. The study objective is to generate an advanced 
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shark smell-tuned flexible support vector machine (ASS-FSVM) model to enhance the prediction accuracy of 
electricity consumption and pricing within smart grids. The goal of the study is to show how this innovative 
approach could improve grid stability, optimize demand response, and give customers more sophisticated 
pricing options.

The primary research question of the study is how to enhance the accuracy of electricity pricing and 
consumption prediction in smart grids using an Advanced Shark Smell-Tuned Flexible Support Vector Machine 
(ASS-FSVM) model.

This study has applied the ASS-FSVM approach to smart grid systems, which are advanced electric grids 
with the objective of optimizing energy exchange between consumers and utilities in real-time using digital 
technologies. Two-way communication is facilitated, and renewable energy is integrated, as well as improved 
efficiency and reliability through features like automated metering, advanced analytics, and making the system 
resilient. The study seeks to forecast electricity demand and prices in such smart grids based on the utilization 
of past data from various sources such as weather stations, smart meters, and market price databases. It seeks 
to improve grid stability, optimize demand response measures, and provide consumers with more sophisticated 
pricing options, ultimately supporting sustainable and efficient energy management based on modern urban 
and technological needs.

•	 The goal of the research is to establish a robust ML technique that accurately predicts electricity consumption 
and pricing in smart grids.

•	 The study gathers historical data on energy use, weather conditions and market prices, and then preprocess-
ing using data cleaning and normalization techniques.

•	 It introduces a PCA for dimensionality reduction and an ASS-FSVM model for optimized feature selection. 
The ASS-FSVM model significantly improves prediction accuracy, enabling better management of grid sta-
bility and a customer-centric pricing model.

•	 This demonstrates that ASS-FSVM enhances energy management in smart grids, supporting sustainable and 
efficient operations aligned with modern urban and technological demands.

Fig. 1.  Prediction process of the electricity consumption.
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The remaining of the study is separated into sections. Section “Related work” summarizes the related works. 
Section “Methodology” provides the methodology. Section “Dataset description” presents the results of the 
study. Sections “Data preprocessing” and “Feature extraction ” give the discussion and conclusion.

Related work
Several methods were provided in the field of electricity consumption and pricing prediction. For example,

Aurangzeb et al. presented an FPS that separates LEC from HEC by anticipating electricity loads using an 
ELM7. FPS ensured equity and steady utility revenue by lowering LEC prices by up to 11% and charging HECs 
more during peak hours.

Bashir et al. used a number of sophisticated ML methods, including SVM, LR, KNN, NN, NB, and DT, to 
forecast SG stability using a UCI dataset. DT outperformed other algorithms, according to the superior accuracy 
results8.

Xia et al. presented an improved GRU-RNN model for forecasting electricity load and RE generation in both 
univariate and multivariate scenarios9. Select variables are accurately mapped to energy outputs using a layered; 
AdaGrad optimized GRU-RNN using correlation analysis. Tests verify that it outperformed current techniques 
in terms of smart grid forecast efficiency and accuracy.

Hafeez et al. offered a framework for effective domestic energy management that balances electricity prices 
with user comfort, manages peak demands, and lowers expenditures10. When paired with a modified differential 
evolution algorithm DA-GmEDE for scheduling and an ANN-based forecast engine, it achieved 33.3% more 
energy efficiency than conventional techniques.

Jahangir et al. analyzed the Ontario dataset to anticipate wind speed, load demand, and power prices and 
compared the findings to benchmarks11. The suggested approach, which has been improved by MC techniques 
and Bi-LSTM networks, showed increased forecasting accuracy and robustness and is particularly successful in 
capturing spike spots.

Ibrahim et al. investigated STLF, which forecasts power consumption up to twenty-four hours in advance12. 
The results of experiments using a Panama case study and different ML techniques showed that DL performs 
best, with an R2 of 0.93 and MAPE (2.9%), while AdaBoost performs nastiest, with an R2 (0.75) and MAPE 
(5.7%).

Hafeez et al. presented a cross-method for short-term electric stipulate protection that combined a GWDO 
module, an MMI approach, an FCRBM-based forecasting module, along with data pre-processing and feature 
extraction13. The model has been tested on PJM market data and sought to improve prediction accuracy by 
optimizing parameter tweaking.

Aslam et al. presented an energy management technique that maximized user comfort while lowering peak-
to-average ratios and electricity expenses14. It scheduled EVs and smart appliances optimally using MILP, and it 
integrated energy forecasts for increased efficiency with energy generation from solar, wind, and storage systems.

Mostafa et al. examined large data analytics in renewable energy and suggested a five-step approach for 
forecasting the constancy of smart grids using a variety of ML models. In a dataset with 60,000 instances, the 
accuracy of the PLR was 96% that of the random forest was 84%, that of the DR was 78%, and that of the CNN 
and gradient-boosted models was 87%15.

Ahmad et al. evaluated the use of data-driven probabilistic ML methods in elegant energy systems. It 
emphasized ML’s significance in important energy technologies, like new materials and efficiency, in addition to 
its use in energy distribution utilities for pricing strategies and consumption forecasts16.

Ahmed et al. integrated GPR and ML with EMM. For GR, PEC, and PES, it developed an optimization 
model17. The competence of the model was established by comparing it with conventional optimization 
techniques and accounting for seasonal variations.

Hong et al. presented a DL based temporary residential load prediction framework to examine the 
spatiotemporal correlations in appliance load data18. To increase forecasting accuracy, it used an iterative DNN 
based on ResBlock and numerous time series. Using real-world data, experiments showed better performance 
than current approaches.

Hafeez et al. suggested FA-HELF architecture integrated feature engineering, data pre-processing, and a 
customized improved disparity evolutionary optimizer with an SVM-based forecaster19. When compared to 
benchmarks, it exhibited better accuracy and faster convergence on ISO-NE organization data by using a hybrid 
feature selection technique with radial basis kernel PCA for dimensionality reduction.

Syed et al. presented a cross clustering-based DL approach for distribution transformer STLF20. A k-Medoids 
system was used to cluster transformers according to energy consumption profiles, improving scalability and 
cutting down on training time, resulting in fewer models and more accurate projections.

Hafeez et al. introduced a new mixture electrical energy consumption prediction technique based on an 
FCRBM method21. Tested using actual power grid data from the USA, it combined a ReLU activation function 
and multivariate autoregressive approaches, showing better performance across several measures than previous 
models.

Zulfiqar et al. introduced a hybrid load forecasting approach that combined adaptive grasshopper 
optimization, feature engineering, and LWSVR22. Using methods like Relief-F and RFE, it optimized feature 
selection to lessen dimensionality and overfitting. Tested using load data from California and Australia, the 
method performed improved accuracy and stability than current standards.

Mounir et al. introduced a BI-LSTM and EMD method for electricity forecasting23. Before being predicted 
by BI-LSTM, EMD preprocessed the initial time series into stationary components. The model outperformed 
previous research with accuracy near 1 and a minimal MAPE of 0.28%.

Bourhnaneet al. investigated ML models, particularly those utilizing Genetic Algorithms and ANN, 
implemented in a real-world SB testbed with CompactRIO24. Even though the model’s prediction accuracy was 
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restricted by the available data, it nonetheless provided a framework for future research on scheduling and 
energy consumption prediction.

Syed et al. proposed a technique that incorporates phases for data cleaning and system construction to 
anticipate energy usage in smart buildings25. On test datasets, the model outperformed current hybrid models 
by combining fully connected layers with unidirectional and bi-directional LSTM networks, improving accuracy 
and performance.

Sarker et al. proposed an attention-based 1D-CNN-GRU system that makes use of preprocessing methods 
and PSO for hyper-parameter optimization to anticipate load on four datasets26. Low MAE values were obtained 
by the model, which also used federated learning for cooperative, privacy-preserving training and SHAP for 
interpretability.

Methodology
The study uses historical data from several sources, like weather stations and smart meters, and then pre-process 
the data using methods including Z-score normalization and data cleaning. Feature extraction is done using PCA 
to minimize dimensionality. The authors use Principal Component Analysis (PCA) for dimensionality reduction 
via feature extraction to retain the most vital information in the data set and thus enhance computational 
efficiency and prevent issues like multicollinearity among features. By mapping the original correlated variables 
onto a lower number of uncorrelated principal components, PCA simplifies the model without such significant 
loss of vital information.

This dimensionality reduction not only saves computation overhead, but also minimizes noise, leading to 
more accurate forecasts. Compared to other feature extraction techniques, PCA is computationally efficient 
due to the fact that it operates in terms of linear algebra operations like eigendecomposition or singular value 
decomposition (SVD), which in practice are extremely well optimized.

Compared to methods such as Recursive Feature Elimination (RFE) or domain-specific feature engineering, 
PCA provides an objective technique that maximizes the amount of variance retained in the data and is therefore 
particularly well adapted to high-dimensional datasets common in smart grid scenarios. PCA is both efficient 
and generalizable, certainly, but may sometimes overlook details of local interest captured more robustly by 
specialized techniques at the expense of some interpretability. The ASS-FSVM is used for precise forecasting of 
electricity usage and price in smart grids. Figure 2 illustrates the methodological flow.

Dataset description
This study leveraged datasets from multiple sources, including weather stations, smart meters, and market pricing 
databases, to gather historical records of electricity consumption, pricing, temperature, wind speed, humidity, 
and other relevant variables. The datasets comprised electricity consumption data from smart meters, weather 
data such as temperature, wind speed, and humidity from weather stations, and market pricing data to reflect 
concurrent electricity pricing. By combining these datasets, the authors created a comprehensive foundation 
for analysis that captured variations over time and across diverse weather conditions, ultimately enabling the 
development and validation of their ASS-FSVM model for predicting electricity consumption and pricing in 
smart grids.

Data preprocessing
The electricity consumption and pricing data is pre-processed using data cleaning and normalization. Data 
cleaning ensures high quality and prevent errors during normalization. Handling missing values to recognize 

Fig. 2.  Methodological Flow.
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and tackle missing values using imputation or by removing records with significant gaps. Calculate the mean 
using Eq. (1).

	
µ = 1

N

∑
N
j=1yj � (1)

.
where, µ represents the mean of a set of values. N  denotes the sum of observations. yj  represents the 

individual data point and 
∑

N
j=1yj  indicates that the individual is summing up a series of values. Calculate 

standard deviation using Eq. (2).

	
σ =

√
1
N

∑
N
j=1(yj − µ )2� (2)

.
where, σ  denotes the standard deviation of a set of values, (yj − µ )2 is to calculate the deviation of each 

data point yj  from the mean µ . Cleaned data is normalized using Z-score normalization. It is a method of 
scaling data to have a mean of 0 and a deviation of 1. This transforms the sensitive data to the scale of the input 
data. The Z-score (Zj) is computed using the following Eq. (3).

	
Zj = yj − µ

σ
� (3)

.
where, yj  is the original value of the data point, µ  is a mean of the attribute y and σ  is a deviation of the 

attribute y. This method ensures that every attribute contributes evenly to the method, preventing features with 

Algorithm 1: Advanced Shark Smell-Tuned Flexible Support Vector Machine (ASS-FSVM)
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better scales from disproportionately influencing the results. Data cleaning and Z-score normalization methods 
are essential for enhancing data quality and model performance.

Feature extraction
The normalized data features are extracted using PCA. PCA is a statistical method that makes use of an 
independent modification. A set of connected variables is transformed into a collection of distinct variables using 
PCA. PCA is employed in exploratory data analysis. A group of variables’ associations can also be examined 
using PCA. Thus, it can be functional in the reduction of dimensionality.

The data with m dimension inputs is y(1), y(2), . . . , y(n). PCA is required to convert m-dimension data 
to k-dimension (k ∼ m). The raw data should be standardized by having a zero mean and unit variance using 
Eq. (4).

	
yj

i = yj
i − yi

σ i
, ∀ i� (4)

.
where, yj

i  denotes the jth observation of the i th feature, yi represents the mean value and σ i denotes the 
standard deviation. Use the following Eq. (5) to determine the raw data’s covariance matrix:

	

∑
= 1

n

∑
n
j (yj)(yj)S ,

∑
∈ Qm∗m� (5)

.
where, 

∑
 denotes a summation operation, n represents the number of elements, S is often used as a 

power, Qm∗m denotes a space m ∗ m matrics with elements the set of rational numbers Q. Determine the co-
variance matrix’s eigenvector and eigenvalue using Eq. (6).

	
wS

∑
λ µ W = [w1, w2, . . . ..wm, ] , wj ∈ Qm� (6)

.
where, W is a vector composed of m components, wj is an individual element, m is the number of 

components or dimensions, λ  represents a coefficient and µ  represents another coefficient. It is essential to 
develop fresh data onto a k-dimensional subspace: The Hessian Matrix top k eigenvectors are selected. These 
provide the original data foundation. Equation (7) offers the corresponding vector computation.

	

ynew
j =




wS
1 yj

wS
2 yj

. . . . . .

. . . . . .
wS

k yj


 ∈ Qk � (7)

.
where, ynew

j  represents the transformed or updated version of yj  and Qk  indicates that the resulting 
vector. If the fresh data is with n dimensionality, it decreases to a new k-dimensional illustration of the data. 
This method significantly enhances the study by reducing dimensionality, improving model performance, and 
eliminating noise. PCA facilitates better interpretability and visualization while addressing multicollinearity 
among features, ultimately leading to more accurate predictions of electricity consumption and pricing in smart 
grids.

Model prediction using advanced shark smell-tuned flexible support vector machine (ASS-
FSVM)
This section provides a process for forecasting electricity consumption and pricing in smart grids using ASS-
FSVM. FSVM introduces flexibility in handling non-linear relationships within the data and ASS optimization 
to fine-tune its parameters.

Flexible support vector machine (FSVM)
Dimension-reduced data is classified using FSVM. An expansion of the conventional SVM model, the FSVM 
model is intended to manage non-linear interactions and enhance classification accuracy by adding greater 
flexibility to the decision boundary. The FSVM approach is formulated to solve classification problems involving 
m  pairs of samples and labels represented as T = (wj , zj) , ( j = 1,2, . . . ., m). Here, wj  belongs to the set of 
real numbers Q, while zj  denotes class labels zj ∈ {−1, +1} . Hyperplane is defined by Eq. (8).

	 ω Sw + a = 0� (8)

.
where, w is the matrix of hyperplane parameters and a is a bias component. To find the optimal hyperplane, 

an optimization problem is set up as follows in Eq. (9). To ensure that the hyperplane maximizes the edge among 
the two classes.

Scientific Reports |        (2025) 15:20909 7| https://doi.org/10.1038/s41598-025-05083-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
minω ,a

1
2 || ω || 2� (9)

.
where, ω is represents a vector of parameters, a represents additional parameters, || ω || 2 represents the 

objective function being minimized. Where data points cannot be perfectly separated, a soft margin approach is 
employed to avoid overfitting as given in Eq. (10).

	
minω ,a,t

1
2 ||ω ||2 + D

∑
m
j=1ϵ j � (10)

.
where, Here t indicates that finds the minimum value of the function, ϵ j  is a slack variable that allows for 

some misclassification and D is a penalty parameter. In practical applications, data often exhibits non-linear 
separability. To address this, FSVM employs a non-linear transformation Φ (wj) to project the original data 
into a higher-dimensional gap where linear division is possible. The corresponding optimization trouble in the 
double form is given by Eq. (11).

	
min

α

∑
m
j α j − 1

2
∑

m
j

∑
m
i α jα izjzi⟨Φ (wj) , Φ (wi)⟩E � (11)

.
where, α represents the Lagrange multipliers in the context of SVM. The last categorization is resolute by 

the decision mechanism given in Eq. (12). It utilizes the Lagrange multipliers α j  to weight the contributions of 
support vectors.

	
class (w) = sign

(∑
m
j ∝ jzj⟨Φ (wj) , Φ (w)⟩E + a

)
� (12)

.
where, sign is to determine the class label based on the weighted sum calculated inside the parentheses, 

and zj  denotes the actual class label of the jth support vector. The kernel function is integral to the FSVM 
framework, as defined in Eq. (13).

	 L (w, z) = ⟨Φ (w) , Φ (z)⟩E � (13)

.
where, L (w, z)is the function that measures the relationship, Φ  is a mapping function and E denotes the 

inner product in the reproducing kernel Hilbert space. This function quantifies the similarity between new data 
points and support vectors. Commonly used kernels include polynomial, radial basis function, and custom-
defined kernels tailored to specific data. FSVM model provides greater flexibility and robustness in classification 
tasks; its ability to handle non-linear data, incorporate feature selection, and effectively manage noise makes it a 
valuable tool in various applications.

Advanced shark smell (ASS) optimization
The classified data is optimized using ASS optimization for improving prediction capability. The traditional SSO 
technique has been enhanced using the ASS algorithm. With the use of sharks’ sensory abilities and predatory 
habits, ASS seeks to increase search efficiency in challenging optimization tasks. Sharks are renowned for their 
notable capability to sense prey utilizing their fabulous physical traits, as well as their admirable trial and sense 
of smell. The search space is split into smaller sub-regions via the ASS approach. The best answers are found in 
these areas using both local and global search tactics. Tracking prey and searching for prey are the two primary 
stages of the search process.

	(A)	 Prey tracking.

Sharks move freely through their surroundings, continuously adjusting their locations in response to the sensory 
characteristics of possible prey. Their amazing sensory system, which can pick up on even the smallest changes 
in their environment, is essential for tracking prey. Ris a matrix representing the position of all sharks across n 
dimensions is represented by Eq. (14).

	

R =




R1
1. . . ..Rn

1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

R1
n . . . . . . Rn

n


� (14)

.

	(B)	 Prey searching.
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Sharks use their special senses to investigate their surroundings and find prey. This involves identifying the 
electromagnetic fields and vibrations produced by the prey’s motions, which enables them to efficiently focus on 
possible targets. Velocity detection is given in Eq. (15).

	 υ = w × we� (15)

.
where, υ represents the velocity of the waves, w denotes the distance between consecutive points, and we 

represent the frequency of the waves. Position update based on movement is given in Eq. (16).

	 ρ = ρ j + (υj × ∆ S) + 0.5 × Acc × ∆ S2� (16)

.
where, ρ  represents the new position of the shark, ρ j  denotes the previous position of the shark, and 

∆ S represents the time interval. Each decision variable’s upper and lower boundaries are assigned at random 
to the search space, enabling the sharks to investigate different locations within the specified dimensions. The 
initialization is calculated using Eq. (17).

	 Rx
y = LBx + rand × (LBy − UBx)� (17)

.
where, Rx

y  represents the randomly generated value, LBx indicates the lower bound, UBx represents 
the upper bound, and rand randomly generated number. Sharks change their locations and speeds to follow 
prey when they spot them. To mimic efficient movement methods toward ideal solutions, this behavior is 
mathematically described. Equation (18) mentions the movement of the shark.

	 υt+1
b = υt

b + (T1 ×
(
Rhat − Rbt

)
× rand 1 + (T2 × (Rυ aT a − Rbt) × rand2)� (18)

.
where, υt+1

b denotes the update velocity, υt
b is the current velocity, T1 is a scaling factor, Rhat represents 

the estimated, and Rbt is the current position of the b th agent. Sharks move to new locations when the target 
is not close by, adjusting their positions in response to external stimuli and the scent of prey. Equation (19) is to 
update the position of the shark.

	
RbT +1 =

{
RbT ± Rp + UB.h + LB.g if rand < nE
RbT + υT

b xe if rand ≥ nE
� (19)

.
where, hrepresents a directional and g is another directional factor. To sustain equilibrium between inclusive 

search exposure and targeted optimization attempts, the ASS algorithm includes parameters that dynamically 
adjust exploration and exploitation actions. The sharks’ capacity to regulate to their environment and the 
effectiveness of their search strategy are both reflected in Eq. (20).

	 Recall = 1 − f−r× t
T � (20)

.
where, r is a positive invariable, t represents the present iteration and S is the maximum of iterations. 

The ASS optimization algorithm leverages the predatory instincts of sharks to improve feature selection and 
optimization procedures. Through complicated tracking, searching, and position regulation strategies, ASS 
optimization offers an effectual framework for solving multifaceted optimization troubles in related fields. 
Its capacity to adaptively explore and exploit search spaces makes it a powerful tool for improving prediction 
accuracy and operational efficiency in different applications.

The ASS-FSVM uses a feature selection technique modeled after sharks’ capacity to locate prey to evaluate 
smart grid pricing and electricity consumption estimates. This technique uses FSVM’s capacity to detain 
complex, non-linear correlations while extracting the most relevant features from historical data. When 
compared to conventional techniques, the model’s exacting optimization and validation procedures greatly 
increase prediction accuracy; utilities enhance grid stability and pricing tactics. Algorithm 1 provides an ASS-
FSVM algorithm.

Results and discussions
Python 3.10 is employed to implement the ASS-FSVM model for predicting the power consumption and power 
price at smart grids. This model is trained with the latest machine learning algorithms to improve the precision 
and validity of its predictions. The performance of the ASS-FSVM model is comprehensively evaluated using 
important metrics: F1-score, Accuracy, Recall, Precision, MAPE, MAE, RMSE, and MSE27–29. These indicators 
provide a thorough evaluation of the model’s efficacy in forecasting power usage and price30–35. The efficacy 
of the ASS-FSVM model is meticulously contrasted with other existing methodologies, such as GRU-RNN9, 
FCRBM21, XGBoost36, CNN-GRU-EWA37 and CNN-CHIO38, to illustrate its superiority and resilience in 
managing smart grid data. This comparative study emphasizes the advantages and capabilities of the ASS-
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FSVM model in enhancing smart grid management and decision-making processes. The employed measures 
are formulated below.

	
Accuracy = T P + T N

T P + T N + F P + F N
× 100� (21)

 

	
Sensitivity = T P

T P + F N
× 100� (22)

 

	
P recision = T P

T P + F P
× 100� (23)

 

	
F 1 = 2 × P recision × Sensitivity

P recision + Sensitivity
× 100� (24)

 

In the following, a brief description about the utilized measures have been presented.

•	 Accuracy: This measure shows the percentage of true outcomes of both TP and TN between all the instances. 
It gives a broad indication of the method’s performance.

•	 Precision: It demonstrates the percentage of TP cases that were expected. Extreme precision is necessary 
when FP costs are large. It is computed by separating the sum of FP by the number of TP.

•	 Recall: It is the fraction of TP to the sum of TP and FN. It illustrates how well the method can establish all 
pertinent cases. High recall is necessary when recording as many happy occurrences as possible is essential.

•	 F1-score: This offers a single value that balances precision and recall by attracting the harmonic mean. When 
there is inequity in the circulation of a program, it is extremely helpful.

Comparative analysis
Figure 3 shows the comparative analysis of different models as a 3-D column diagram.

The higher-order results based on various evaluation metrics suggest that the ASS-FSVM model clearly 
outperforms the higher-order models. The lowest invalid classification is still the OAK1 at 10.15%, meaning that 
there are 10.15% errors when the model identifies positive cases per thousands, which is the best recall value 
from the other models.

ASS-FSVM is the robust and reliable 98.05% accurate power usage prediction. This, our model achieved 
an F1-score of 98.04%, reflective of a perfect balance between the precision and recall metrics, demonstrating 
the model was not only successful but also resistant to more sophisticated patterns within the data. The Major 
improvements in various dimensions at present reflect the superior ASS-FSVM algorithm that grasp the highly 
complex, non-linear association and assess and compute vast dataflows, Resulting in Best predictive evaluation. 
This makes the ASS − FSVM model a continuation of a series of prediction modelling with applications to smart 
grid confirming stability of grid, demand response mechanisms and more advanced customer-centric pricing 
methods.

In addition to this investigation, error analysis has been used for more clarification. In the following, a brief 
description about the employed measures have been presented.

Fig. 3.  Comparative Analysis of Different Models.
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•	 Root Mean Squared Error (RMSE): The standard squared disparity among the predictable and genuine 
principles is measured by the RMSE. It conveys the degree of concentration of the data around the row of 
greatest fit.

•	 Mean Squared Error (MSE): MSE computes the average squared distinction between estimated and actual 
values.

•	 Mean Absolute Error (MAE): By averaging the absolute values of the errors, MAE calculates the mean degree 
of the errors in a series of predictions without attractive into reporting their course.

Figure 4 illustrates the comparative analysis of different models based on errors as a 3-D column diagram.
As can be observed, in all of these three metrics, the improvement of the ASS-FSVM is evident. In terms of 

the minimum MSE of 8.50, the minimum RMSE of 5.80 and the minimum MAE of 2.95, the ASS-FSVM model 
outperforms the other models’ properties and demonstrate the ASS-FSVM model have better predicting ability 
to minimize the prediction error.

The results of these metrics thus prove that ASS-FSVM is a superior model in predicting electricity 
consumption and pricing with more precision and reliability which eventually results in obtaining more precise 
and closer results as compared to the actual values. This improved precision is essential for refining energy 
management in smart grids, which leads to better grid reliability, demand response techniques, and customer-
driven pricing structures.

The model based on ASS-FSVM not only achieved the lowest error rates, but also demonstrated strong 
robustness and proficiency in capturing the information of the complicated and nonlinear relationships in the 
data, markedly distinguishing itself from the other models.

Analysis of an additional dataset
To further verify the generalizability and robustness of the Advanced Shark Smell-Tuned Flexible Support 
Vector Machine (ASS-FSVM) model, we tested it using another dataset obtained from a different geographic 
region with distinct energy consumption patterns and market conditions. The dataset had hourly electricity 
consumption records, weather conditions such as temperature, humidity, and wind speed, and real-time market 

Model PR RC AC F1 MSE RMSE MAE MAPE

GRU-RNN 0.925 0.901 0.918 0.923 13.2 8.1 4.2 5.20%

FCRBM 0.918 0.897 0.912 0.915 14.8 8.6 4.9 5.80%

XGBoost 0.941 0.916 0.933 0.940 11.5 7.5 4.1 4.80%

CNN-GRU-EWA 0.948 0.927 0.940 0.946 10.1 6.8 3.7 4.40%

CNN-CHIO 0.955 0.936 0.948 0.953 9.4 6.2 3.4 4.10%

ASS-FSVM 0.978 0.975 0.979 0.978 8.2 5.6 2.85 3.90%

Table 1.  Analysis of an additional dataset.

 

Fig. 4.  Comparative errors analysis of different models based on 3-D column diagram.
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prices for two years. This dataset was included to check how well the model would continue evolving with 
shifting environmental and economic states during preserving prediction accuracy. Data preprocessing in the 
form of Z-score normalization and dimensionality reduction via Principal Component Analysis (PCA) allowed 
consistency of processing a variety of data sets. The ASS-FSVM model was then utilized to forecast electricity 
demand and prices, allowing us to directly compare its performance metrics with those attained from the 
original dataset.

The analysis of the additional dataset reiterates again the improved performance of the ASS-FSVM model 
across several measures, indicating its superior predictability across all situations. The ASS-FSVM model 
performed better consistently in precision, recall, accuracy, and F1-score measures with values at 97.8%, 97.5%, 
97.9%, and 97.8%, respectively, over the other models including GRU-RNN, FCRBM, XGBoost, CNN-GRU-
EWA, and CNN-CHIO. Moreover, the measures of error (MSE, RMSE, and MAE) were significantly lower in the 
ASS-FSVM model case at 8.2, 5.6, and 2.85 respectively, which is a reflection of its ability to minimize prediction 
errors. The findings show the stability and reliability of the model in different environments, thus qualifying it 
for use in different smart grid environments. The multiple dataset performance success not only supports the 
model’s generalizability but also strengthens the use rationale towards enhanced grid stability, demand response 
optimization, and customer-centric price regimes. Cross-domain generalizability places the ASS-FSVM in the 
forefront of state-of-the-art solutions to cutting-edge smart grid operations, competent at solving advanced, 
nonlinear profiles inherent in most energy systems.

Discussion
The development of the ASS-FSVM model for smart grid pricing and consumption prediction was the main goal 
of this work. Existing techniques like CNN-GRU-EWA37, CNN-CHIO38, and XGBoost36 show varied degrees 
of efficacy, but they also have serious drawbacks. Even with its strong performance, XGBoost36 has trouble 
with the intricacies of time-series data and is prone to overfitting. The CNN-GRU-EWA37 method encounters 
problems with hyper-parameter tuning and computational effectiveness despite combining CNN with GRU. 
Additionally, CNN-CHIO’s38 ability for simplification can be limited by its incapacity to handle outliers in 
energy consumption data. The suggested ASS-FSVM model improves its capability to assess time-series data by 
integrating sophisticated feature selection technique with a flexible optimization framework. Through the use 
of shark smell-tuning methods for efficient feature selection, the model enhances computational effectiveness 
and forecasting accuracy. Furthermore, ASS-FSVM adapts to the active nature of smart grids by outstanding 
a cooperation between interpretability and difficulty. A significant improvement in the field, the ASS-FSVM 
model not only performs better than conservative techniques but also gives utilities useful insights for attractive 
pricing models and demand response strategy optimization.

Conclusion
Accurate price forecasting and demand forecasting of electricity in smart grids is necessary to achieve the 
optimum demand response measures, utilize the resources to the maximum extent, enhance the reliability of 
the system, particularly owing to growing urbanization and technological advancements on the consumers’ 
behavior. This study created an Advanced Shark Smell-Tuned Flexible Support Vector Machine (ASS-FSVM) 
model based on historical data from smart meters, weather stations, and market price data bases to predict 
accurate electric power consumption and prices. The findings showed the improved performance of the ASS-
FSVM model compared to traditional forecasting methods, with very high accuracy rates: precision (97.10%), 
accuracy (98.05%), recall (98.93%), F1-score (98.04%), and lowest error rates (MAPE: 4.32%, RMSE: 5.80, MSE: 
8.50, MAE: 2.95). The results emphasize the model’s ability to identify complex, nonlinear relationships in smart 
grid data, which benefits utilities by allowing them to identify key insights for best-pricing models and demand 
response measures. While such success is quoted, the study does point out that there are some limitations. 
Its reliance on historical data which could never reflect sudden changes in market forces, and that it needs 
to be validated across different demographic and geographic contexts. Future research has to concentrate on 
the use of real-time data streams, the analysis of hybrid models, and the inclusion of other parameters such as 
socioeconomic factors and renewable energy sources to further enhance predictive power. These developments 
will allow the flexibility and credibility of the model in various smart grid systems over a period of time, 
eventually giving rise to more sustainable and efficient energy management systems.

Data availability
All data generated or analysed during this study are included in this published article.
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