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In real-time streaming data, concept drift and class imbalance may occur simultaneously which 
causes the performance degradation of the online machine learning models. Most of the existing 
work is limited to addressing these issues for binary class data streams. Very little focus is given to the 
multi-class data streams. The most common approach to address these issues is ensemble learning. 
Ensemble learning consists of multiple classifiers combined which are trained on different subsets of 
the data to improve the overall accuracy. The performance of the ensemble learning approach suffers in 
case the new classifier is not trained on appropriate data (the data about the new concept). To address 
this gap, this study has proposed a Smart Adaptive Ensemble Model (SAEM) to address the issues of 
concept drift and class imbalance for multi-class data streams. The SAEM monitors the feature-level 
change in data distribution and creates a background ensemble to train the new classifier on features 
that observe change. To address the class imbalance issue, SAEM applies higher weights on the 
minority class instances using the dynamic class imbalance ratio. The proposed model outperformed 
the existing state-of-the-art approaches on the eight different data streams. The results showed 
an average improvement of 15.857% in accuracy, 20.35% in Kappa, 16.12% in F1-score, 15.58% in 
precision, and 16.42% in recall. The Friedman test confirmed statistically significant performance 
differences among all models across five key metrics. Based on the obtained results, the research 
findings strongly support the notion that SAEM exhibits enhanced effectiveness and efficiency as a 
solution for online learning applications.
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Advancements in technology have greatly increased the ability to generate and collect data in real-time, 
particularly in the areas of IoT (Internet of Things), 5G, and cloud computing1. These technologies have enabled 
the deployment of a vast number of connected devices and sensors, as well as the ability to process and store 
large amounts of data. This has led to an explosion in the amount of data being generated and collected in real-
time, from various sources such as social media, e-commerce transactions, and sensor data from industrial 
systems. The applications such as, monitoring remaining useful life in an industrial environment2–4, monitoring 
the traffic within the city such as traffic congestion5, whether prediction6, monitoring customer satisfaction 
in banking7, forecasting the share values in stock markets8, education9, telecommunications10, healthcare11, 
network data monitoring12 in computer-based distributed applications all are common examples of applications 
that generate data streams. As a result, the importance of real-time analysis of data streams is growing as the 
number of applications in this field increases.
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The analysis of such data streams requires special algorithms that can classify the continuous data as soon as 
it is received without any delay. Online Machine Learning (OML) is a branch of machine learning that deals with 
continuous data streams with data being available only sequentially, in the form of a stream. In OML, the ML 
model continuously learns from new data instances and updates itself as it classifies them. The continuous data 
generated by these applications is non-stationary. The non-stationary data stream has specific characteristics 
such as data being inconsistent which causes a change in data distribution, is infinite in length, and it keeps 
evolving over time. This non-stationary nature of the data causes a change in the underlying concept of data 
over time called Concept Drift (CD) and a change in class distribution called Class Imbalance (CI)13–16. Due to 
the non-stationary nature of the data stream, current online machine learning approaches suffer from issues of 
concept drift and class imbalance especially in multi-class data, as illustrated in Fig. 1.

These issues are addressed independently, and very little focus has been given to the combined issue (when 
both issues occur simultaneously), especially for multi-class data streams. Hence, there is a need to further 
explore this research domain13,17.

The novel Smart Adaptive Ensemble Model (SAEM) is proposed in this study to address the joint issue 
of concept drift and class imbalance in multi-class data streams. The SAEM is based on ensemble approach, 
as the ensemble approach is considered better approach then single-class approach for continuous learning 
from streaming data18. In SAEM, each member of the ensemble is initially trained on a random feature subset 
to maintain the diversity among the classifiers. The random feature subset is simply the random selection of 
features from the original feature space. The size of the feature subset is based on the hyper parameter; however, 
the default feature subset size is 70% of the total feature space. The idea of using random feature space has also 
been discussed in other studies such as19,20. The SAEM uses input feature-based and output-based drift detection 
mechanism to counter both the virtual drift and the real drift of any type such as sudden drift, incremental 
drift, gradual drift, and recurring drift. The feature-based drift detection not only help in early drift detection 
but also help in preparing a training set containing drifted features along with random features for appropriate 
adaptation of the ensemble. The SAEM also addresses the multi-class imbalance issue using the dynamic weight-
based approach which is based on the dynamic class imbalance ratio of each class. The core contribution of 
SAEM which makes it different from other ensemble approaches is its feature-based drift detection; feature 
subset preparation mechanism; and building a smart background ensemble; to adapt the new concept efficiently.

In the general following are the key features of the proposed model:

•	 A novel feature-level drift detection mechanism, enabling drift-aware feature selection for classifier updates.
•	 A smart background ensemble update strategy, using the most drift-relevant features.
•	 Dynamic class-level imbalance monitoring, which uses both current and cumulative imbalance ratios to as-

sign instance-level weights.

These contributions collectively enhance the model’s adaptability to evolving data streams with imbalanced class 
distributions and frequent concept drift.

The work presented in this manuscript focuses on developing an adaptive model that can identify new 
concepts in the streaming data and update the underlying classifier to correctly classify the new concept of the 
streaming data. For example, in healthcare applications, the model can detect new diseases or treatment methods 
and adapt the classifier to correctly identify these new concepts in the patient data. The outcome of this work 
may benefit real-time applications that use continuous data streams include Healthcare11,37,38; Manufacturing 
Industry2–4,21,22; Traffic Monitoring Systems5; Recommendation Systems39; Fraud Detection and Security40; 
Automated Data Analysis41; Finance7,8; and Telecommunication10,12.

Related work
According to17, learning from data stream which has both concept drift and class imbalance issues, requires 
three steps or phases in OML environment. These are 1) Concept Drift Detection, Class Imbalance Handling, 
and 3) Concept Drift Adaptation. The discussion on each of these steps is given in following subsections.

Concept drift detection
A phenomenon known as concept drift describes a circumstance in which the statistical properties of a target 
class fluctuate randomly over time. These modifications may be the result of changes in elements that cannot 
be easily quantified or identified. Two types of concept drift exist virtual drift and real drift23. Virtual drift may 
be thought of as a shift in the conditional probabilities P t(y | X), whereas real drift can be thought of as a 
shift in the unconditional probability distribution P t (X). The virtual drift occurs when the distribution of 
input data P t (X) changes over time, but the posterior probability of the output P t(y | X), which shows 
the mapping relationship between Xt and yt, doesn’t change with time. In real concept drifts, the posterior 

Fig. 1.  Issues of concept drift and class imbalance in non-stationary data streams.
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probability distributions P t(y | X) change over time, but this change is not caused by changes in P t (X). 
In contrast, hybrid drift is the combination of both virtual drift and real drift. In simple words, the data, even 
after facing changes in input features, it represents to the different target output. Mathematically, concept drift 
can be defined as a change in the distribution P (X, y) of the input-output pairs (X, y) over time, where X  
represents the features and y represents the target variable24–26. According to23,27,28 the major types of drift are 
further classified into four different ways based on the time frequency, such as (1) sudden drift (2) gradual drift 
(3) incremental drift, and (4) recurring drift.

A classifier’s performance is affected when the concept of the data or target output changes. The primary 
objective of concept drift detection methods is to offer an efficient approach that collaborates with the classification 
model, recognizing instances of drift or novelty when there is a significant alteration in data characteristics23,29.
This approach ensures that the classification model is updated accordingly, preventing it from being impacted by 
the change and thereby enhancing its predictive performance. These established drift detection techniques are 
typically classified into three categories28: those reliant on error rates30–32 ; those centered on data distribution33, 
and those based on multiple hypothesis tests or statistical tests34,35. The detailed discussion of these techniques is 
out of the scope of this study, the literature studies27,36 can be referred for further details.

Class imbalance handling
Class imbalance, on the other hand, refers to the situation where the number of instances of one class is 
significantly higher than the number of instances of another class. This can lead to bias in the learning process of 
the ML model, as the majority class will be more heavily represented in the training data, hence, the ML model 
gives poor performance to the minority class37,38.

Class imbalance is a problem in data of many real-time applications where the data distribution among 
the classes is not the same. Instances in one class are significantly underrepresented known as minority class 
in comparison to instances in another class having a huge amount of data samples known as majority class39. 
If a classifier is trained on imbalanced data it becomes biased toward majority class instances and misclassifies 
the minority class instances40. Various methods have been suggested to tackle the problem of enhancing the 
classifier’s performance specifically for the minority class. These methods can be generally categorized into 
four groups: Data-level strategies41,42; Algorithm-level strategies43,44; Ensemble strategies45,46; and Hybrid 
strategies47–49.

The Jiang, Zhen, et al. in50 proposes a novel approach to address the challenges posed by class-imbalanced 
datasets. The method leverages a semi-supervised learning framework combined with resampling techniques to 
improve the classification performance of minority class samples. One of the key advantages of this approach is 
its ability to effectively utilize both labeled and unlabeled data, reducing the reliance on labeled samples, which 
are often scarce in imbalanced datasets. However, a potential downside is that the effectiveness of the method 
may be limited in extremely imbalanced scenarios or when the quality of unlabeled data is low, which can lead 
to overfitting or inaccurate decision boundaries.

Another study51 introduces an innovative approach that combines boosting with co-training to address 
the challenges of class imbalance in machine learning. The method enhances the performance of classifiers by 
iteratively improving the accuracy of both the minority and majority class predictions through collaborative 
learning. One of the major strengths of this approach is its ability to exploit the strengths of multiple 
classifiers, leading to improved robustness and accuracy in imbalanced datasets. However, the method may be 
computationally expensive due to the iterative nature of boosting and may face challenges in scenarios where the 
individual classifiers perform poorly, potentially impacting the overall performance.

In a recent work52, authors proposes a post-processing technique to improve the performance of classifiers on 
imbalanced datasets, particularly in a transductive learning context. The framework refines the model’s output 
by adjusting the decision thresholds based on the classifier’s confidence scores, enhancing the classification of 
minority class instances. One of the key benefits of this approach is its simplicity and flexibility, as it can be 
applied to a wide range of existing classifiers without the need for significant modifications. However, a potential 
drawback is that its effectiveness depends heavily on the quality of the initial model and may not perform well in 
highly complex or noisy datasets where the classifier’s confidence scores are less reliable.

Aspect

Existing (Proposed)

AWE AUE KUE CALMID ROSE SAEM

Feature subset 
strategy Full feature space Full feature space Random subset Full feature space Random subset (variable 

size) Drift-based feature subset

Drift detection None Implicit (via 
errors) Kappa-based Adaptive ensemble update Background ensemble drift 

detection
Multi-level: feature-
level + performance-based

Drift adaptation Classifier 
replacement Weight update

Classifier 
selection via 
Kappa

Adaptive 
sampling + ensemble update

Background ensemble 
update

Background ensemble training 
using Drift-based feature subset

Imbalance 
handling Not addressed Not addressed Not addressed Proactive sampling of 

minority class Per-class sliding windows Dynamic + cumulative 
imbalance ratio-based weighting

Learning type Chunk-based Incremental Hybrid 
(online + block) Active learning Online Online

Table 1.  Comparative summary of SAEM with existing methods for handling concept drift and class 
imbalance in data streams.
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​Dai et al., in53 introduces a heterogeneous clustering ensemble method to detect class overlap in multi-class 
imbalanced datasets. While effective in addressing class overlap, the method is tailored for static datasets and 
does not account for concept drift in evolving data streams.

​The study54 presents GQEO, an oversampling technique utilizing nearest neighbor graphs and generalized 
quadrilateral elements to address class imbalance. While GQEO effectively improves minority class representation, 
it is developed for static datasets and does not consider the challenges posed by concept drift in streaming data.

​In a more recent study55, the authors propose a mutually supervised heterogeneous selective ensemble 
framework based on matrix decomposition to tackle class imbalance. Although the approach enhances 
classification performance in imbalanced settings, it is primarily designed for static environments and lacks 
mechanisms to adapt to concept drift in dynamic data streams.

Concept drift adaptation
Concept drift adaptation refers to the process of adjusting or updating a machine learning model to accommodate 
changes in the underlying data distribution over time. The concept drift adaptation approaches can be further 
classified in many forms, including online learning algorithms56–58versus batch learning algorithms59,60; single 
classifier61 versus ensemble-based or multiple classifiers approaches62–65.

The single classifier approach retrains the existing classifier on the latest data to adapt the new concept 
like66,67. These approaches get the knowledge on the latest data and forget the knowledge learned from old data. 
An ensemble approach combines multiple models to improve the performance of a machine learning system. 
This can be done in a variety of ways, such as by averaging the predictions of multiple models, by training 
a meta-model to make predictions based on the outputs of multiple models, or by training multiple models 
and selecting the one that performs best on a validation set. Ensemble approaches can be used to improve the 
accuracy, robustness, and generalization of a machine learning system20.

In machine learning, due to the class imbalance, it is very difficult for the classifier to learn tiny class events 
in cases of skew data or infrequent or uneven class distribution68. In situations where both issues (concept drift 
and class imbalance) occur simultaneously, the classification performance is more affected69–71. The complex 
multi-class imbalance with other factors such as class overlapping, and rare examples cause more difficulty in 
retraining the new classifier to address the changing behavior of data72.

Besides this, the change may occur in multiple classes, and the number of instances of each class may also 
vary, leading to a class imbalance problem13,73–75. In case the stream is multi-class, the changes may occur in 
multiple classes simultaneously; this becomes more challenging for the drift detection methods to detect the new 
concept and adapt the existing model to the latest concept76.

In the OML environment, where the data is non-stationary, there is a higher probability that the problem of 
class imbalance and concept drift can occur together (simultaneously), due to which the deployed models suffer 
in maintaining the required accuracy17,77–79. During online learning, there are constraints of limited data, time, 
and memory for retaining the new model80.

The ensemble approaches are considered as the most appropriate for concept adaptation. However, ensemble 
approaches mostly train a new classifier on the latest data using the window-based approach. In case of gradual 
drift, the window may not fully contain the latest concept. The other method ensemble approaches apply is to 
train a new classifier on a random feature set to maintain the diversity among the ensemble members. In case 
the drift occurs in some of the features (not all), the selection of a random feature set can miss the features of 
real interest which will ultimately causes inappropriate concept drift adaptation81. Also, it is difficult it detect and 
adapt the concept drift when the data has multiple imbalance classes72.

State-of-the-art methods
Details of the approaches used in comparison to validate the proposed model SAEM is given below. These 
approaches are considered as the benchmark in the data stream learning approaches82.

	1.	 Accuracy Weighted Ensemble (AWE)83: Reads the data streams in chunks and adds a new classifier after every 
chunk and removes the old classifier. In AWE, the weight of classifiers are actually the error rates produced 
during testing on the latest data chunk. It selects the classifiers with low error for the prediction of the new 
data chunk.

	2.	 Accuracy Update Ensemble (AUE)84: AUE uses the incremental learning classifier to continuously update the 
weights of the classifier as well as incrementally update the classifier on each data sample. It initially applies 
the weights on each classifier and updates the weights after every chunk based on the error of the classifier. It 
removes the classifier with high error rate.

	3.	 Kappa Updated Ensemble (KUE)85: The KUE is an ensemble learning method that combines online and 
block-based approaches. KUE utilizes the Kappa statistic to dynamically weight and select base classifiers. To 
increase the diversity of base learners, each classifier is trained using a unique subset of features, and they are 
updated with new instances based on a Poisson distribution. Also, the ensemble is only updated with new 
classifiers when they positively contribute to improving its quality.

	4.	 Comprehensive Active Learning method for Multiclass Imbalanced streaming Data with concept drift 
(CALMID)86: CALMID introduces a comprehensive active learning method for handling multiclass im-
balanced data streams with concept drift. The method combines proactive sampling adaptive ensemble 
modeling, and uncertainty-based instance selection to improve classification performance in real-time en-
vironments. The proactive sampling strategy is employed to select instances from the minority class and 
conceptually relevant instances from the majority class, ensuring a balanced representation of classes. The 
ensemble adapts to concept drift by continuously updating the pool of classifiers with new instances and 
adjusting their weights accordingly.
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	5.	 Robust Online Self-Adjusting Ensemble (ROSE)20: ROSE is an innovative online ensemble classifier that can 
effectively handle various challenges. Its main characteristics are as follows: (i) it trains base classifiers online 
on random subsets of features with varying sizes; (ii) it can detect concept drift online and create a back-
ground ensemble to enable faster adaptation to changes; (iii) it employs a sliding window per class approach 
to build classifiers that are insensitive to skew, irrespective of the current imbalance ratio; and (iv) it utilizes 
self-adjusting bagging to increase the exposure of challenging instances from minority classes.

How SAEM differs from and improves upon existing methods. A comparative summary is provided in Table 1 
below to underscore these differences:

This comparison highlights the core innovations of SAEM. Unlike existing approaches, SAEM employs a 
feature-level drift detection mechanism that allows for targeted classifier updates using only the most relevant 
features, rather than relying on random retraining. Furthermore, its dual-level drift detection strategy, combining 
performance-based and feature-level drift detection mechanisms enhances its ability to handle a variety of 
concept drift types more effectively. In addition, SAEM introduces a dynamic imbalance handling approach 
that adjusts instance weights based on both current and cumulative class imbalance ratios, allowing it to adapt 
to changes in class distribution over time. Together, these innovations contribute to improved classification 
performance and more efficient learning in dynamic, imbalanced data stream environments. The detailed 
description of proposed model is provided in the next section.

Materials and methods
In this section we propose a novel Smart Adaptive Ensemble Model (SAEM) to address the joint issue of concept 
drift and class imbalance in multi-class data streams. The detailed description of each feature of SAEM is given 
in following sub sections.

Ensemble architecture
The SAEM uses the ensemble approach to classify the data streams. The size of the ensemble or the number of 
classifiers in an ensemble is based on the input hyper parameters. The default size for the ensemble is 10, similar to 
the ROSE20. The base classifier used in ensemble approach is Hoffeding Tree (HD) classifier87 which is considered 
as the most suitable base classifier because of its incremental learning approach20,88. The initial training of each 
member of the ensemble is performed on a random feature subset to achieve diversity in the ensemble members. 
In other words, SAEM builds each base classifier Υj of ensemble ε on a random η-dimensional feature subset 
Ψ, from the original m-dimensional space in the data stream S, where 1 ≤ η ≤m. The η-dimensional subset 
of features Ψj is randomly generated for each base learner Υj. It allows to generate diverse feature subspaces of 
uniform size. Contrast to the ROSE which uses the variable size feature spaces for each member of the ensemble. 
The diversity of ensemble is mainly based on the set of features selected for the feature subset or feature space, 
not on the feature space size. Although keeping the variable size of feature space may further add the diversity in 
ensemble but it may affect the classifier replacement mechanism in ensemble adaptation phase in case the new 
classifier is trained on a feature subset which does not include the drifted features. The classifier replacement 
is a mechanism of comparing the performance of ensemble members with the members of the background 
ensemble and replace the poor performers of ensemble with the best performers of background ensemble. We 
will use the notation of an ensemble ε of k number of base classifiers Υ each trained on η- dimensional random 

Fig. 2.  Smart adaptive ensemble model.

 

Scientific Reports |        (2025) 15:21140 5| https://doi.org/10.1038/s41598-025-05122-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


feature subspace Ψ R which is subset of m dimensional space X  of stream S, Given in (1) and (2). Where, F1
R 

is first randomly selected feature, F2
R is the second randomly selected feature, and so on.

	 ε = { Υ1, Υ2, . . . Υk} � (1)

	 Ψ R = [F1
R, F2

R, F3
R, ......, Fη

R] � (2)

In OML, the early detection of concept drift helps the base classifier to timely learn the new concept. Most of the 
existing drift detection methods are based on the performance of the classifier89. Those methods monitor the 
error rate of the classifier if it increases and reaches a defined threshold, they consider it as a drift and update the 
classifier. This approach works well for the sudden drift type where the error rate of the classifier suddenly jumps 
in case of arrival of new concept. These approaches struggle to timely detect the gradual and incremental drifts. 
The reason is in both cases the performance of the classifier decreases slowly. As a result of that, it takes longer 
time to detect the gradual and incremental drifts using the error-rate based drift detection approach. Therefore, 
this study uses both an output-based approach to detect sudden drift, and data distribution-based approach to 
timely detect the gradual and incremental drifts.

Output based drift detection
Output-based drift detection methods focus on monitoring the output of the predictive model to detect changes 
in the data distribution. The goal of output-based drift detection is to detect changes in the output of the model 
between two time windows, which may indicate a drift in the output data distribution. These methods either 
monitor the error rate or the performance of the classifier such as accuracy or f1 score. Sometimes it is possible 
that a drift may occur even if the data distribution remains unchanged. This can happen if there is a change in the 
relationship between the input features and the output variable, which can affect the performance of the model. 
For example, let’s say a predictive model that is trained to predict the price of a stock based on its historical data. 
The data distribution remains the same over time, but a major news event occurs that affects the price of the 
stock. This news event can change the relationship between the input features and the output variable, and the 
model may no longer be able to accurately predict the price of the stock.

In this case, a drift has occurred even though the data distribution remains unchanged. Output-based drift 
detection methods may detect this drift by monitoring the accuracy or other performance metrics of the model, 
even though the data distribution remains the same. Therefore, this study also uses output-based or performance-
based drift detection as a second-level drift detection to avoid performance degradation in such situations. We 
use ADaptive WINdowing (ADWIN)59 to monitor the performance of each classifier based on the correct and 
incorrect ratio. If the performance of the classifier Υ decreases to certain level δw, we create a new copy of the 
classifier as Υ′ and start training this classifier in background parallel to the original classifier Υ. We train the 
new background classifier on the same feature space Ψ on which the original classifier generated warning. We do 
not generate a new feature subset using the random feature selection like the existing approaches such as ROSE 
do. Again, the reason is simple, we believe a new model should be trained on the feature space which causes 
performance to decrease due the change in data distribution. Generating a new random feature space may have 
entirely different feature space. When the same classifier generates the signal for drift δd, we replace the classifier 
Υ with the newly trained classifier Υ′ and link it with this particular Ψ in the feature space pool Ρ.

Feature-based drift detection
The data distribution-based drift detection approaches are considered more effective in early detection of the 
concept drift. Most of these approaches are based on data similarity and dissimilarity. The study90 proposed 
feature based drift detection over a complete feature subset of defined chunk size. But this approach is not 
suitable for real-time online incremental online learning which requires to learn on the instance level not the 
chunk level. The distribution-based approaches produce effective results in detecting the real concept drift 
where the change occurs in the class boundary. In case the change occurs in the distribution of the data that 
does not affect the class boundary, this change is hard to detect with the data distribution-based drift detection 
methods. The data-distribution based approaches which detect drift from complete feature space may struggle 
in a situation where data changes for certain features only that does not affect much to the data distribution at 
complete feature space. Therefore, this study applies the feature-based drift detection method which helps in 
detecting drift even if it occurs in only single feature.

This study uses DDM91 to monitor the statistical change in data distribution at each feature separately on 
incremental basis (instance-level). To initialize DDM object we use one-time fixed window W  of size 500 
instances. After that it monitors the feature level data distribution on arrival of every instance. This study uses 
two threshold values to indicate the change in data distribution. One represents the warning level Fw and the 
other represents the drift level Fd as given in (3) and (4). Both threshold values are based on the user input as 
hyperparameter. How we deal such drift once warning is generated, we discuss this in concept adaptation sub 
section. 

	 Warning : P t0 (X, y) − P t1 (X, y) | ≫ Fw� (3)

	 Drift : P t0 (X, y) − P t1 (X, y) | ≫ Fd� (4)

Class-wise dynamic and cumulative imbalance ratio monitoring
There are several approaches used in online data stream learning to address class imbalance during drift 
adaptation. The most common are Bagging and Boosting92. These are two popular ensemble methods that are 
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used in online data stream learning to address class imbalance during drift adaptation. Bagging (Bootstrap 
Aggregating) is an ensemble method that involves training multiple classifiers on random subsets of the data 
and then combining their outputs to make predictions. In the context of class imbalance, bagging can be used to 
reduce bias towards the majority class by training classifiers on balanced subsets of the data.

Boosting is an ensemble method that involves training multiple classifiers sequentially, with each subsequent 
classifier focusing on the instances that were misclassified by the previous classifiers. Boosting can be effective in 
handling class imbalance by giving higher weight to the misclassified instances from the minority or by giving 
higher weights to the classifier which produces more correct prediction. Adaptive boosting (AdaBoost) is a 
commonly used variant of boosting that can be adapted to online data stream learning.

Instead of training the classifier on balanced subsets, applying higher weights on misclassified instances or 
classifier, the SAEM uses the imbalance ratio of a class to assign the weights to its instances. SAEM monitors 
dynamic imbalance ratio (calculated over the current data window) as well as cumulative imbalance ratio 
(calculated from the beginning of the stream up to the current window) of each class. Dynamic imbalance ratio 
or current imbalance ratio is the imbalance ratio calculated on the current batch or window of data using (5). 
The advantage of using a dynamic imbalance ratio is that it can adapt to changes in the class distribution over 
time.

	
DIRCi = W − W N Ci

W N Ci
� (5)

where DIRCi is the dynamic imbalance ratio of class ‘Ci’ and : NCi is the number of instances of class ‘Ci’, 
so WNci  is the number of instances of class ‘Ci’ in current window. The W  is number of instances in current 
window. SAEM calculates the class imbalance ratio after every W  instances and subsequently updates the weights 
of class instances using the (6) during the concept adaptation phase while training the background ensemble.

	 � (6)

The  is the weight of instances of Class Ci, and C is random constant value based on the input hyper parameter 
λ . On the other hand, the cumulative imbalance ratio is the imbalance ratio calculated from the beginning of 
the data stream up to the current time using (7). The advantage of using a cumulative imbalance ratio is that it 
provides a long-term perspective on the class distribution and can capture trends and patterns over time.

	
CIRCi = NT − NCi

NCi
� (7)

The CIRCi is cumulative imbalance ratio of class Ci, NT   is total number of instances processed so far, and 
NCi  is total number of instances of class Ci seen so far. SAEM uses the cumulative imbalance ratio to update 
the weights of class instances using the (8) during the incremental learning of the main ensemble.

	 � (8)

Combining dynamic and cumulative imbalance ratios can be a useful approach in situations where the class 
distribution in the data stream is both changing over time and exhibits long-term trends. Therefore, SAEM uses 
cumulative imbalance ratio to address the class imbalance during incremental training of ensemble members, 
whereas it uses dynamic imbalance ratio to apply higher weights to the minority instances of current window 
during the training of classifier of background ensemble. The reason is, the background classifiers are trained on 
more recent data to adapt the new concept, therefore class imbalance ratio of recent data is considered. Whereas 
the ensemble members also have knowledge about the old concepts therefore we consider cumulative imbalance 
ratio for updating the ensemble members. By combining the two measures, we can obtain a more accurate 
estimate of the class distribution and better adjust the weights assigned to instances.

Concept drift adaptation
The concept drift adaptation is the mechanism to learn the new concept from recent data and update the 
machine learning model to avoid the performance degradation during online classification of data streams93. 
The background ensemble is an ensemble learning technique that can be used in online data stream learning 
to address the concept drift during drift adaptation. The idea behind background ensemble is to maintain a 
background set of classifiers that are trained on past data and use them to provide additional support to the 
current classifier during drift adaptation.

In a typical background ensemble, the new classifier is trained on the most recent data and is responsible 
for making predictions on the incoming data stream. However, when a drift is detected or when the class 
distribution changes significantly, the background ensemble is activated, and the predictions of the current 
classifier are combined with those of the background classifiers to improve accuracy and adapt the concept drift 
and class imbalance. The background ensemble can consist of several classifiers trained on past data and stored 
in memory. These classifiers can be trained using various methods, such as random subspace method, or random 
incremental ensemble. The random subset sometimes may not contain the features which observed the change 
in data distribution. This will cause poor adaptation of the new concept.

The model proposed in this study introduces novel approach for generating feature subset for each classifier 
Ϋ of background ensemble B. The feature subset generated by SAEM will always have the features where the 
change in data distribution has occurred. The background ensemble B  is empty (Ø) initially, once a feature 
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level warning is generated on any of the feature F , it generates a new feature subset Ψ containing the feature on 
which a warning is generated, and the randomly selected features. This new feature subset is used to trains a new 
background classifier Ϋ. Later, if a warning is generated on another feature, a new feature subset is generated 
containing the two features on which warning is generated and the rest features are randomly selected to meet 
the size of the feature subset. In SAEM, background ensemble B contains the classifiers which are trained on 
smartly generated feature subsets.

The performance of ε and B classifiers is compared after (i) an interval of every W  instances; (ii) a feature-
based drift detector generates a drift signal. The ε is updated with the best performing classifiers from both main 
ensemble and background ensemble. A similar approach is used in20, but they train the background ensemble 
on randomly generated feature subsets in parallel to the main ensemble from the beginning. Also, they keep the 
same size (number of classifiers) for the background ensemble as of the main ensemble. Different from20, this 
study adds a classifier to the background ensemble only if there is a drift warning on the feature level. In SAEM 
the background ensemble classifier is trained on a feature subset that must contain the drifted feature which is 
the main limitation of20. Moreover, in SAEM, the number of classifiers in B  is always less the than the size of ε 
if the drift occurs in limited features. The overall working of SAEM is presented in Fig. 2.

Overall, combining the concept of random subspace and incremental ensemble pruning, SAEM generates 
the feature subset which must contain the features which observed the change in data distribution. The core aim 
of the background classifier is to learn the changes, if the subset used to train the background classifier does not 
have those features where actual change has occurred, it cannot achieve the core objective of its building. The 
overall functionality of the SAEM is provided in the algorithms 1 to 6. The symbols used in these algorithms to 
represent different terminologies are given be low in Table 2.

Symbol Description Symbol Description

S Data stream Ṡ: List: samples seen for each class

К: Ensemble size
R
·

:
List: current imbalance ratio of each class

η Feature subset size Ϋ: Learner in background ensemble

W Window size F Feature

Ĭ: Instance ε: Ensemble

Ψ: Feature subset B: Background ensemble

Fw: Warning level for change in feature data DIRC Dynamic imbalance ratio of class C

δw Performance threshold for warning w̄: Class weight

DIRC Cumulative imbalance ration of class C y: Class label

Fd: Drift level for change in feature data Z : Number of classes

δd Performance threshold for drift Ρ: Feature subset pool

m: Number of features Υ′ : Background Learner in main ensemble

Υ: Learner in main ensemble

Table 2.  Symbols descriptions.

 

Stream

Drift control parameters

CIR Cl A IK K’ Speed Seed Width

Stream1 0,30,60,90 100 0.001, 0.001, 0.001, 0.001 1,2,3,4 1 S 5 21 100 K

Stream2 0,30,60,90 100 0.001, 0.001, 0.001, 0.001 1,2,3,4 1 D 5 21 100 K

Stream3 3,6,9,12 21 0.01, 0.01, 0.01, 0.01 1,2,3,1 5000 S 5 21 100 K

Stream4 3,6,9,12 21 0.01, 0.01, 0.01, 0.01 1,2,3,1 5000 D 5 21 100 K

Stream5 10,20,10,20 30 0.01, 0.01, 0.01, 0.01 1,2,1,2 5000 S 5 30 100 K

Stream6 10,20,10,20 30 0.01, 0.01, 0.01, 0.01 1,2,1,2 5000 D 5 30 100 K

Stream7 15,30,15,30 60 0.01, 0.01, 0.01, 0.01 1,2,3,1 5000 S 7 60 100 K

Stream8 10,20,30,40 60 0.01, 0.011, 0.02, 0.02 1,2,3,1 1 D 5 30 100 K

Table 3.  Summary of the data streams. CIR, class imbalance ratio; Cl, classes; A, attributes; I, instances; S, 
static; D, dynamic; K, number of centroids with drift; K′, total number of centroids; Speed, speed of change; 
Seed, sequence of stream; Width, transition period in terms of sample to completely shift from one concept to 
other.
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Algorithm 1.  Smart adaptive ensemble model (SAEM).

Algorithm 2.  Initialization.
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Fig. 3.  Accuracies of all models on 8 data streams.

 

Model

Data stream

S1 S2 S3 S4 S5 S6 S7 S8

SAEM 83.81 84.1 91.15 90.14 88.77 88.17 87.66 88.7

ROSE 79.02 80.25 90.16 89.38 83.36 85.08 77.02 85.63

CALMID 71.01 72.06 88.12 87.3 77.67 79.6 77.47 79.8

KUE 68.14 71.36 75.98 74.26 65.88 64.82 57.39 64.39

AUE 58.66 59.17 74.85 74.14 63.41 64.36 60.79 64.91

AWE 58.44 60.02 74.17 72.56 61.63 62.66 60.67 62.75

Table 4.  Accuracy. Bold values denote the highest (best) performance achieved among all methods for each 
respective datastream.
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Algorithm 3.   Drift detection.

Algorithm 4.  Train background ensemble members.

Model

Data stream

S1 S2 S3 S4 S5 S6 S7 S8

SAEM 78.71 78.72 88.29 86.86 85.25 84.51 85.03 85.14

ROSE 72.59 74.04 90.16 85.93 78.36 80.62 72.22 81.28

CALMID 61.84 63.08 84.27 83.16 70.8 73.32 72.67 73.49

KUE 57.58 62.06 68.01 65.71 54.93 54.32 47.58 52.78

AUE 45.04 45.46 74.85 65.64 51.9 53.83 52.53 54.41

AWE 44.57 46.32 65.19 63.45 49.27 51.4 51.87 51.32

Table 5.  Kappa. Bold values denote the highest (best) performance achieved among all methods for each 
respective datastream.
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Fig. 4.  Kappa of all models on 8 data streams.
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Algorithm 5.   Drift adaptation after interval of every W  instances.

Algorithm 6.  Prediction and incremental learning.

Experiments
In this section we discuss the evaluation components used to validate the proposed model in detail. We first 
discuss the data streams used for the experiments and then discuss the performance metrics used in the 
experiments.
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Data streams
This study proposes an ensemble based adaptive model to address the joint issue of concept drift and class 
imbalance as well as the dynamic class imbalance issue. Therefore, to test the proposed model, we generated 
synthetic multi-class data streams containing different drift types. Each data stream represents a different case. 
Therefore, to know where exactly the drift is occurring and what is the actual number of samples in each class 
i.e., the class imbalance ratio; we simulated different data streams in a way that each stream has two versions, 
the data stream with static imbalance ratio and the data stream with dynamic imbalance ratio. Because we are 
uninformed of the drift location and drift type in real data streams, evaluating the performance of proposed 
model on such data streams is difficult94. As a result, for our investigations, we use synthetically produced data 
streams in which we know the drift locations, drift type, and class imbalance ratio at the time of drift occurrence.

The massive online analysis (MOA)95 framework was used to generate the data streams with different drift types. 
MOA provides different generators for generating data streams. In this study, the RandomRBFGeneratorDrift 
was used to generate different multi-class data streams. The RandomRBFGeneratorDrift is a stream generator 
that generates a stream of instances based on Radial Basis Function (RBF). This generator helps in generating 
concept drift based on the change in the data distribution over time and has been used by26,27,96.

Every generated stream contains 100K samples, after every 25K samples, a new concept replaces the old one. 
The ‘sudden’ and ‘gradual’ drifts are easy to generate using the width (w) property. For sudden, we set w = 1, and 
for gradual w = 5 K, which means during these 5 K instances, the concept will change gradually. The position (p) 
is set as 25 K in all cases, which means it is the center of each drift (i.e., concept drift occurs after every 25 K). 
Table 1 shows the summary of the generated streams. The data stream is generated considering the following 
definition given in90:

“Given data streams X , every instance Xt is generated by a data source or a concept St. If all the data is 
sampled from the same source, i.e. S1 = S2 = · · · =  St = S, we say that the concept is stable. If for any two 
time points i and j  Si ̸= Sj , we say that there is a concept drift.”

The RandomRBFGeneratorDrift class is used to generate different data streams by controlling the following 
parameters. The overall summary of the generated data streams is given in the Table 3. Whereas, The performance 
of the proposed model is measured on five performance measure metrics which are: the Accuracy, Precision, 
Recall, F1 score and Kappa metrics, mostly used in the literature when data is imbalanced17,97. The summary of 
each data stream is given below:

•	 Stream1: Four incremental concepts with varying drift centroid numbers and sudden drifts every 25 K in-
stances. Class imbalance ratio remains constant.

•	 Stream2: Like Stream1 but with dynamic class imbalance ratios, where class proportions change with concept 
shifts.

•	 Stream3: Four incremental concepts with varying drift centroid numbers. Instead of sudden drifts, gradual 
shifts occur over 5000 instances.

•	 Stream4: Same as Stream3 but with dynamic class imbalance ratios, combining concept drift with changing 
class proportions.

•	 Stream5: Focuses on reoccurring drifts with consistent centroid values for alternating concepts, combined 
with gradual drift. Class imbalance is constant, and dimensionality is increased to 30 features.

•	 Stream6: A copy of Stream5 with dynamic class imbalance, examining concept drift with changing class pro-
portions.

•	 Stream7: A complex data stream with 60 features and 7 classes, featuring gradually reoccurring drifts, increas-
ing drift severity, and a constant class imbalance ratio.

•	 Stream8: Similar to Stream7 but with sudden shifts instead of gradual ones and an increasing number of cen-
troids over time, introducing gradual drift. Speed hyperparameter also increases.

Bench marking and parameter setting
The performance of the proposed model SAEM is compared with existing state-of-the-art ensemble approaches. 
These approaches are:

	1.	 Accuracy Weighted Ensemble (AWE)83.
	2.	 Accuracy Update Ensemble (AUE)84.
	3.	 Kappa Updated Ensemble (KUE)85.

Model

Data stream

S1 S2 S3 S4 S5 S6 S7 S8

SAEM 82.7 82.8 89.99 89.01 88.7 87.98 88.07 88.39

ROSE 77.69 78.56 89.14 88.34 83.14 84.94 77.77 85.42

CALMID 69.23 69.49 86.51 85.63 77.22 78.27 76.93 78.54

KUE 67.79 69.98 74.04 72.45 67.5 65.28 60.4 63.72

AUE 56.43 55.52 72.71 72.76 63.93 63.65 60.97 64.34

AWE 56.12 56.34 72.85 71.71 61.46 61.77 63.08 61.98

Table 6.  F1 score. Bold values denote the highest (best) performance achieved among all methods for each 
respective datastream.
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Fig. 5.  F1 scores of all models on 8 data streams.
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	4.	 Comprehensive Active Learning method for Multiclass Imbalanced streaming Data with concept drift 
(CALMID)86.

	5.	 Robust Online Self-Adjusting Ensemble (ROSE)20.

Fair comparison requires all the models to use the same parameters to generate the results. Therefore, this study 
uses the same values for the common parameters such as window size for all the approaches. SAEM and ROSE 
use the feature subset to train the classifier, therefore, for both approaches, the value 0.7 (70% of the total feature 
space) is used for the feature subset size. Another common parameter was the ensemble size which represents 
the number of classifiers in the ensemble. So, for ensemble size, value 10 was set for all the models. The default 
values were used for any additional parameters. The performance of our proposed model SAEM is compared 
with AUE, AWE, KUE, CALMID, and ROSE on eight data streams. Each data stream has four concepts of size 
25 K instances.

Results and discussions
The results are discussed below in a separate sub-section for each data stream. As discussed earlier, each data 
stream is the representation of a separate case.

Accuracy
Table 4 shows the average accuracy of all six models used in the comparison. The analysis of accuracy-based 
performance differences between SAEM and the other models (ROSE, CALMID, KUE, AUE, and AWE) across 
all eight data streams reveals a consistent pattern of SAEM’s superior performance. SAEM surpasses ROSE, 
CALMID, KUE, AUE, and AWE on all data streams, showcasing an average improvement of 4.1%, 8.7%, 
20.1%, 22.8%, and 23.7%, respectively. These results emphasize the effectiveness of SAEM in maintaining high 
accuracy levels, especially during concept drift scenarios, and highlight its robustness across a variety of data 
streams. SAEM’s feature-level monitoring and smart background ensemble training distinguish it as a promising 
approach for addressing concept drift and maintaining model stability in online machine learning applications.

The results are also presented in Fig. 3a–h for each data stream. The x-axis represents the number of instances 
processed in thousands (K), and y-axis represents the accuracy produced in percentage. SAEM produced high 
accuracy compared to the other models for all concepts. SAEM produced high accuracy compared to the other 
models for all concepts. From instance, on stream1 from 1 to 25 K, the accuracies are much more stable, meaning 
there is less fluctuation in the accuracy over the period, compared to other concepts especially the 3rd (50 K to 
75 K) and 4th concept (75 K to 100 K). The reason is, in the first concept the number of centroids with drift 
was zero, so there was no incremental drift, so the performance for the first concept is better and more stable. 
The number of centroids with drift for the 23rd and 4th concept in stream1 is 30,60,90, respectively. This shows 
that the more severity of drift the lesser the accuracy of the model. On stream2 (Fig. 3b) which has dynamic 
class imbalance ratio along with concept drift, results show that SAEM remained the best among all compared 
models.

Like stream1, stream3 also has four incremental concepts with a constant speed of 0.01 (faster than stream1) 
but each concept has a different number of drift centroids which are 3,6,9 and 12, whereas total centroids are 21. 
After every 25 K instances, instead of sudden drift, stream3 introduces a gradual shift (drift) from one concept 
to the other. Due to gradual drift, one concept is shifted to the other over a span of 5,000 instances. So, there 
are four incremental concepts and three gradual drifts. Each concept is generated using a different seed from 
1 to 4, to generate a different sequence of stream. The class imbalance ratio in stream3 is constant over time. 
Different from stream1 and stream2 where the shift among concepts was sudden, which is comparatively easy 
to identify, stream3 is more complex. This shows that it is difficult to cope with the combination of gradual drift 
and incremental drifts in imbalanced data streams.

The results on stream3 (Fig.  3c) show that the SAEM and ROSE produced approximately 97% accuracy 
before the arrival of the first drift. After the arrival of the first drift, an approximately 10 to 15% decrease can 
be seen in accuracy. Later, SAEM and ROSE managed to maintain the performance to a certain level that is 
approximately 90%. On the other hand, the performance of CALMID, KAU, AUE and AWE kept falling from 
the level of 90% to the level of 55%. This shows around 35% decrease in performance which is around 12% 

Model

Data stream

S1 S2 S3 S4 S5 S6 S7 S8

SAEM 84.06 86.13 91.72 91.54 90.66 90.21 89.91 90.66

ROSE 78.2 79.63 90.75 89.84 84.16 86.06 78.86 86.69

CALMID 70.88 71.42 88.19 86.82 78.77 79.39 78.89 79.81

KUE 71.04 73.33 76.82 76.62 72.48 68.71 64.9 69.05

AUE 59.28 58.62 76.42 75.33 66.75 65.41 62.74 66.36

AWE 59.41 60.38 79.08 75.27 65.37 64.49 69.94 65.13

Table 7.  Precision. Bold values denote the highest (best) performance achieved among all methods for each 
respective datastream.
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Fig. 6.  Precision of all models on 8 data streams.
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further decrease after arrival of every new drift. The models are unable to maintain the stability in performance 
as produced by SAEM and ROSE.

The stream5 is focused on the concept of reoccurring drifts. Instead of using different values for drifted centroid 
parameters, stream is generated keeping the same value for the alternative concepts. Such as (10,20,10,20), first 
and third concepts have same values for the parameter which is 10, and second and fourth concept has the 
same values which is 20. Similarly, the seed value is also kept the same for alternative concepts such as (1,2,1,2). 
The results (Fig. 3e) show that the SAEM again produced better results compared to all the other models. Even 
though stream5 has high dimensional data (30 features) compared to the previously discussed data streams 
having 21 features. The SAEM showed stability in reoccurring concepts, but all the other models produced poor 
results in case of reoccurring drift especially for the 4th concept i.e., from 75 K to 100 K instances.

For stream, the results are more likely similar to the results achieved on stream5. However, the change in class 
imbalance ratio has further affected the performance of all models. The second concept and the fourth concept 
are more severe, their effect is clearly visible in the performances of all the models. The results show that the 
SAEM again produced better results compared to all the other models. The stream7 is generated with 60 features 
and 7 classes to test the proposed model on more complex data stream. Stream7 is based on the gradually 
reoccurring drifts which means one concept will shift to other gradually over the span of 5000 instances. For 
stream7 the severity of the drift was also increased by increasing the value of drifted centroids. The SAEM again 
outperformed the existing state-of-the-art models on a data stream which is more complex (Fig. 3g).

SAEM showed far better performance than CALMID, KUE, AUE, and AWE on stream7 as it did on all 
previous data streams. However, the CALMID produced almost equivalent results to the SAEM for one concept 
(50  K to 75  K instances), for the rest concepts SAEM outperformed CALMID. Comparatively, only ROSE 
showed performance closer to the SAEM so far. But for stream7 SAEM produced far better results than ROSE. 
The reason is, SAEM trains new classifiers (for background ensemble) on features that are affected due to drift, 
no matter how complex the data stream is. Whereas the ROSE randomly selects features to train classifiers for 
the background ensemble and in the case of high feature space data stream there is very much possibility that 
the features that are affected because of the drift are not selected for the training of new classifier during the 
concept drift adaptation phase. Hence, the approach proposed in SAEM is to monitor the drift on the feature 
level and train background ensemble classifiers on the data set which must contain the features where the data 
distribution has changed.

The stream8 is generated with 30 features and 5 classes. Here, instead of gradually shifting from one concept 
to another, a sudden shift is applied. Moreover, instead of reoccurring drift, the value of number of centroids in 
every concept is increased over time to introduce a gradual drift. Also, the value of speed hyperparameter has 
increased over the period. For stream8, the number of centroids is increased over time for each concept from 
first to fourth i.e., 10, 20, 30, 40, respectively. SAEM once again produced convincing results on data stream8. 
The KUE, AUE, and AWE produced much better results than they produced on stream7 for at least the first 3 
concepts. The same is the case with ROSE and CALMID, both produced better results for the initial concepts, but 
when the drift severity was high especially at the second and fourth concepts (instances from 25 K to 50 K and 
from 75 K to 100 K), the performances of ROSE and CALMID are severely affected. Whereas SAEM produced 
better results than the other models on all concepts, especially for the last concept, the difference in performance 
of SAEM and other models like ROSE is more visible.

Kappa
Table 5 shows the average kappa values of all six models used in the comparison. The analysis of performance 
based on the kappa metric underscores the consistent superiority of SAEM compared to the other five models 
(ROSE, CALMID, KUE, AUE, and AWE) across all eight data streams. SAEM outperforms ROSE, CALMID, 
KUE, AUE, and AWE on all streams, with average improvements of 4.7%, 11.23%, 26.19%, 28.6%, and 31.14%, 
respectively. These results affirm SAEM’s robust adaptability to concept drift, its capacity to maintain stable 
model performance, and its ability to consistently achieve high kappa scores. The substantial improvements over 

Model

Data stream

S1 S2 S3 S4 S5 S6 S7 S8

SAEM 81.41 79.87 88.33 86.64 86.89 85.9 86.32 86.27

ROSE 77.2 77.56 87.61 86.91 82.18 83.87 76.73 84.22

CALMID 67.7 67.72 84.92 84.5 75.8 77.24 75.1 77.35

KUE 64.12 67.03 70.7 68.79 63.32 61.74 53.7 59.29

AUE 53.94 52.81 76.42 70.52 61.45 62.05 59.38 62.52

AWE 53.29 52.93 67.62 68.79 58.19 59.43 57.35 59.05

Table 8.  Recall. Bold values denote the highest (best) performance achieved among all methods for each 
respective datastream.
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Fig. 7.  Recall of all models on 8 data streams.
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other models reflect the effectiveness of SAEM’s feature-level monitoring and intelligent background ensemble 
training in navigating the challenges of evolving data streams. This emphasizes SAEM’s potential as a valuable 
solution for online machine learning applications where concept drift poses a significant challenge. The results 
are also presented in Fig. 4. The x-axis represents the number of instances processed in thousands (K), and y-axis 
represents the kappa produced in percentage. SAEM produced high accuracy compared to the other models for 
all concepts.

F1 score
The evaluation of performance based on the F1 score metric reveals a consistent and substantial advantage of 
SAEM over the other models (ROSE, CALMID, KUE, AUE, and AWE) across all eight data streams, Table 6. 
SAEM consistently outperforms ROSE, CALMID, KUE, AUE, and AWE on every stream, showcasing average 
improvements of 4.1%, 11.23%, 19.56%, 23.42%, and 24.05%, respectively. This underscores the remarkable 
adaptability and stability offered by SAEM in the face of concept drift. SAEM’s ability to consistently achieve 
higher F1 scores reflects its competence in striking a balance between precision and recall, particularly in 
dynamic and evolving data stream environments. The noteworthy performance enhancements over alternative 
models underscore SAEM’s pivotal role as an innovative solution for the intricate challenges posed by concept 
drift in the realm of online machine learning. The results are also presented in Fig. 5. The x-axis represents the 
number of instances processed in thousands (K), and y-axis represents the F1 score produced in percentage. 
SAEM produced high accuracy compared to the other models for all concepts.

Precision
The assessment of performance in terms of precision metric illuminates a compelling narrative of SAEM’s 
consistent and substantial superiority when compared to the other models (ROSE, CALMID, KUE, AUE, and 
AWE) across all eight data streams, Table 7. SAEM consistently outperforms ROSE, CALMID, KUE, AUE, and 
AWE on each stream, with notable average improvements of 5.1%, 10.1%, 17.74%, 23%, and 21.98%, respectively. 
This underscores SAEM’s exceptional precision in correctly identifying true positives while minimizing false 
positives, a crucial aspect in concept drift scenarios. The significant performance gains exhibited by SAEM 
across various data streams highlight its competence in delivering precise and accurate predictions in dynamic 
and evolving machine learning environments, affirming its status as an innovative and impactful solution for 
addressing the multifaceted challenges of concept drift. The results are also presented in Fig.  6. The x-axis 
represents the number of instances processed in thousands (K), and y-axis represents the precision produced in 
percentage. SAEM produced high accuracy compared to the other models for all concepts.

Recall
The assessment of performance in terms of precision metric illuminates a compelling narrative of SAEM’s 
consistent and substantial superiority when compared to the other models (ROSE, CALMID, KUE, AUE, and 
AWE) across all eight data streams, Table 8. SAEM consistently outperforms ROSE, CALMID, KUE, AUE, and 
AWE on each stream, with notable average improvements of 5.1%, 10.1%, 17.74%, 23%, and 21.98%, respectively. 
This underscores SAEM’s exceptional precision in correctly identifying true positives while minimizing false 
positives, a crucial aspect in concept drift scenarios. The significant performance gains exhibited by SAEM 
across various data streams highlight its competence in delivering precise and accurate predictions in dynamic 
and evolving machine learning environments, affirming its status as an innovative and impactful solution for 
addressing the multifaceted challenges of concept drift. The results are also presented in Fig.  7. The x-axis 
represents the number of instances processed in thousands (K), and y-axis represents the recall produced in 
percentage. SAEM produced high accuracy compared to the other models for all concepts.

Method Accuracy Precision Recall F1 score Kappa

SAEM (Proposed) 1.00 1.00 1.13 1.00 1.13

ROSE 2.13 2.13 1.88 2.00 2.00

CALMID 2.88 3.13 3.00 3.00 2.88

KUE 4.38 4.00 4.81 4.38 4.50

AUE 4.88 5.25 4.50 5.00 4.75

AWE 5.75 5.50 5.69 5.63 5.75

Friedman test results:

X2 (Accuracy): 37.14, p-value: 5.16 × 10–7 (significant at α = 0.05, Reject 
H0)
X2 (Precision): 35.64, p-value: 1.12 × 10–6 (significant at α = 0.05, Reject 
H0)
X2 (Recall): 36.79, p-value: 6.59 × 10–7(significant at α = 0.05, Reject H0)
X2 (F1 score): 35.79, p-value: 1.05 × 10–6 (significant at α = 0.05, Reject 
H0)
X2 (Kappa): 36.36, p-value: 8.06 × 10–7 (significant at α = 0.05, Reject H0)

Table 9.  Mean ranking and friedman test results on accuracy, precision, recall, F1 score, and Kappa. Bold 
values denote the highest (best) performance achieved among all methods for each respective datastream.
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Statistical comparison of models using friedman test
To evaluate and compare the performance of all models across multiple evaluation metrics such as Accuracy, 
Precision, Recall, F1 score, and Kappa, we employed the non-parametric Friedman test. This test ranks each 
model per dataset for a given metric, where a lower mean rank indicates superior performance. Table 9 presents 
the average ranks of each model for all five metrics. In contrast, models such as AWE and AUE received the 
highest mean ranks, reflecting comparatively lower performance.

The proposed SAEM method consistently achieved the lowest mean ranks across all metrics, indicating the 
most robust and consistent performance. Specifically, SAEM scored the top rank (i.e., rank = 1.00 or close) in all 
metrics. In contrast, models such as AWE and AUE received the highest mean ranks, reflecting comparatively 
lower performance. The Friedman test results yielded statistically significant differences among the models 
across all metrics.

All p-values are significantly below the threshold α = 0.05, leading to the rejection of the null hypothesis (H₀), 
which assumes that all models perform equally. These findings confirm that there are statistically significant 
differences in performance among the evaluated models, with SAEM demonstrating clear superiority.

Fig. 8.  The performance comparison on each metric (a–e) and summary (f) on Stream8.
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Findings
Based on the validation experiments conducted eight different data streams, and the performance analysis on 
the five metrics, SAEM outperforms all the other models (ROSE, CALMID, KUE, AUE, and AWE) on all eight 
data streams. SAEM achieved higher accuracy, Kappa, F1-score, precision, and recall values compared to the 
other models. Specifically, SAEM outperformed ROSE on all data streams with an average improvement of 
4.1% in accuracy, 4.7% in Kappa, 4.1% in F1-score, 5.1% in precision, and 3.2% in recall. SAEM significantly 
outperformed CALMID on all data streams with an average improvement of 8.68% in accuracy, 11.23% in 
Kappa, 9.5% in F1-score, 10.1% in precision, and 8.91% in recall. SAEM significantly outperformed KUE on 
all data streams with an average improvement of 20.03% in accuracy, 26.19% in Kappa, 19.56% in F1-score, 
17.74% in precision, and 21.6% in recall. SAEM significantly outperformed AUE on all data streams with an 
average improvement of 22.77% in accuracy, 28.6% in Kappa, 23.42% in F1-score, 23% in precision, and 22.8% 
in recall. Finally, SAEM significantly outperformed AWE on all data streams with an average improvement of 
23.7% in accuracy, 31.14% in Kappa, 24.1% in F1-score, 21.98% in precision, and 25.62% in recall. Therefore, we 
can conclude that SAEM is the best performing approach among the five models evaluated in this study due to 
its Smart Proactive Adaptive Ensemble approach which make it capable of timely concept adaptation and avoid 
performance degradation. Moreover, the overall performance average of all the models over each data stream 
is presented in Fig.  8(a-e) for all performance metrics. The Friedman test confirmed statistically significant 
performance differences among all models across five key metrics. The proposed SAEM method consistently 
achieved the best mean ranks, demonstrating superior and robust performance.

Conclusion
In this research, we proposed SAEM (Smart Adaptive Ensemble Model), a novel framework designed to 
effectively handle two persistent challenges in online machine learning: concept drift and multi-class imbalance 
in non-stationary data streams. Unlike traditional ensemble methods that often rely on randomly selected 
feature subsets, SAEM introduces a feature-level drift detection mechanism to identify features undergoing 
distributional changes. These drifted features are then explicitly used to guide the training of new classifiers, 
which are integrated into a background ensemble, enabling more targeted and adaptive concept evolution.

To address class imbalance, SAEM departs from standard techniques such as re-sampling or misclassification 
weighting. Instead, it employs a dual imbalance monitoring strategy, leveraging both the dynamic imbalance 
ratio (within the current data window) and the cumulative imbalance ratio (over the stream’s history) to assign 
class-wise instance weights. This allows SAEM to respond effectively to evolving class distributions, maintaining 
both short-term responsiveness and long-term balance awareness.

We evaluated SAEM across multiple data streams and benchmarked its performance against several state-of-
the-art ensemble approaches. The results demonstrate consistent and substantial improvements across various 
performance metrics, including average gains of 15.86% in accuracy, 20.35% in Kappa, 16.12% in F1-score, 
15.58% in precision, and 16.42% in recall, underscoring both the effectiveness and practicality of the proposed 
model. Moreover, the Friedman test confirmed statistically significant performance differences among all 
models across five key metrics.

While SAEM excels in adapting to meaningful concept changes, its current approach may be sensitive to 
drifts occurring in less relevant features. As future work, we plan to incorporate feature importance estimation 
to further enhance SAEM’s robustness and ensure its adaptability is focused on semantically significant changes, 
thereby improving both efficiency and interpretability in real-time streaming applications.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
request.
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