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Artificial intelligence, scientific computing, and probabilistic computing use random sampling to 
approximate solutions to various problems, with larger models requiring a substantial quantity 
of random numbers. To generate the required vast quantity of random numbers at high rates, we 
explore so-called “coinflip” devices, which are stochastic microelectronic devices ideally capable of 
independently generating random bits with a tunable weight at a high rate. However, coinflip devices 
are inherently analog and demonstrate nonidealities, like temperature dependence and drift, that can 
introduce determinism into the outputs. We present important considerations for building systems 
of multiple coinflip devices to produce high-quality bitstreams with low error and little dependency 
on previous bits. Using tunnel diodes as coinflip devices, we implement a control loop to adapt 
to temperature dependence and generate fair bitstreams with each device. While this can lead to 
dependencies between bits in a single bitstream, we demonstrate that combining results generated 
in parallel with individual tunnel diodes can produce fair and unpredictable bitstreams. The suitability 
of these bitstreams for use in probabilistic computing is then demonstrated through a Monte Carlo 
approximation of π.

Random sampling is an often overlooked, yet pervasive, component of many computing workloads. In machine 
learning, random sampling is used in initialization of network parameters1,2, regularization of learning3,4, and 
stimulating generative models5,6. In stochastic computing, streams of random bits are sampled with different 
probabilities of 1 and combined through digital operations to produce a stream with a probability that is a 
function of the input probabilities7. In biology8, finance9, and physics10, random sampling is used to approximate 
solutions using Monte Carlo methods. Generating large amounts of random numbers for sampling more complex 
applications can be a computationally intensive process. For example, in scientific computing when simulating 
high-energy particle collisions, generating uniform random numbers can consume between 30−50% of CPU-
time11. Due to the pressing need for efficient random number generators, we look towards systems of single-
device true random number generators (TRNGs), called coinflip devices, to generate random bits efficiently, 
quickly, and in parallel11.

Coinflip devices use physical noise or stochastic quantum behavior to switch between two states, such as 
high and low resistances or voltages. Ideal coinflip devices are compact, consume little energy per bit, switch at 
high speeds, and are unpredictable but with a weight that can be tuned to different probabilities of 1. Notable 
examples of potential coinflip devices include magnetic tunnel junctions (MTJs)12,13, diffusive memristors14, 
single photon avalanche diodes15–18, and tunnel diodes19–21. MTJs, for example, can generate random bits for as 
little at 0.1pJ per sample12 by switching between high and low resistive states. Devices are usually either physically 
stimulated by some current or electric field to randomly adopt one of two states before being evaluated (e.g. 
tunnel diodes19) or the state of the device flips occasionally over time and is sampled intermittently (e.g. MTJs13). 
These sequences of analog values are interpreted as digital states, i.e. 1’s and 0’s (heads and tails). Bitstreams can 
then be partitioned into multi-bit slices to form integers by taking N sequential bits from a bitstream for an N-bit 
integer or used directly in probabilistic computing. These integers are expected to be uniformly distributed for 
a fair coin with a probability p of heads (also written as P(H)) of p = 0.522. We call this probability the “weight” 
of a coin or coinflip device. From a uniform distribution, algorithms such as rejection sampling can be used to 
generate more complicated distributions such as a Gaussian distribution23.
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Whereas here we focus on the TRNGs for use in otherwise conventional computations, coinflip devices have 
much in common with p-bits and probabilistic computing. Many p-bits are built from coinflip devices24–27, 
which can be processed through analog or digital means for probabilistic computing28,29 or can even augment 
low quality PRNGs to generate high quality samples30.

However, while they generate digital outputs, coinflip devices are analog by nature and subject to 
nonidealities and variation. For example, the stochastic behaviors of diffusive memristors (random delay time) 
and tunnel diodes (random high or low voltage) can vary with temperature14,19. Sampling bits from devices with 
a fair weight despite variation requires compensation or control electronics. Furthermore, it is important to 
understand the practical implications of integrating multiple coinflip devices into a single system. If the behavior 
of one device can deterministically affect other devices, this can have deleterious effects on the ability of the 
system to generate high quality random samples with high throughput. In this work, we examine the random 
bit generation capabilities of multiple coinflip devices integrated into a single system, using a tunnel diode (TD) 
as our representative coinflip device. We use a control loop to adapt to variation with temperature that causes 
deterministic behavior and maintain a fair coin, which can be generalized to adapt to other forms of variation. 
Furthermore, we examine dependencies of the probability of 1 on previous results and other devices, finding that 
sampling devices out-of-phase and combining results from multiple devices with an XOR operation (similarly 
to previous works31–34) can substantially improve sampling quality. Finally, using experimentally collected bits 
from our system of coinflip devices, we demonstrate performance in a probabilistic computing application 
with a Monte Carlo approximation of π. While it is vital for TRNGs used in cryptography to maintain certain 
strict standards such as those outlined in the NIST Statistical Test Suite35, the requirements for probabilistic 
computing may differ significantly. For example, certain PRNGs that fail these NIST statistical tests may still 
produce statistically identical results to TRNGs that pass all tests36. It is for this reason that we examine the 
ability of our coinflip devices to generate uniform distributions and perform accurate Monte Carlo simulations. 
Results for the NIST Statistical Test Suite and the NIST SP 800-90B IID track Most Common Value Estimate test 
for estimating entropy can be found in the supplementary materials for context. Our work demonstrates that 
multiple TRNGs can be controlled and processed to overcome both device-to-device variation and changes in 
operating conditions to produce high-quality random samples for a probabilistic computing application.

Results
Tunnel diodes are degenerately-doped PN junctions with a very narrow depletion region, allowing carriers 
to tunnel through at low forward biases37. Tunneling current increases with voltage initially, but peaks and 
begins decreasing as fewer and fewer states are available for the carriers to tunnel into, creating a region of 
negative differential resistance. The current then increases with voltage again as thermionic emission takes 
effect, demonstrating standard diode behavior38. Driving a current through the device near the peak tunneling 
current (PTC) will cause the voltage across the device to either remain low or stochastically flip to a higher bias, 
representing tunneling current and thermionic emission current, respectively19. A low voltage is interpreted as a 
logical 0 or “tails” and a high voltage as a logical 1 or “heads”. This stochastic behavior is attributed to trap filling 
in the band gap19. The probability of a high voltage increases for currents approaching the PTC and is 1 above 
the PTC. This behavior is seen in P(H) vs. current pulse magnitude in Fig. 1a.

We designed a system for generating random bitstreams with discrete, off-the-shelf TDs on a battery-powered 
printed circuit board (PCB). A diagram of the system is shown in Fig. 1c. Full details on circuit operation are 
outlined in the “Methods” section. This system pulses the TDs with current that has a magnitude corresponding 
to a P(H) of 0.5 in the middle of the sigmoidal curve in Fig. 1a. P(H) can be tuned by increasing or decreasing 
current magnitude along this curve.

However, despite calibrating the TD to a fair weight initially, current pulses of a constant magnitude very 
quickly lead to deterministic behavior, producing all 1’s or 0’s as shown in Fig. 1d. Change in temperature causes 
the PTC to vary over time, affecting P(H)19. The change in PTC over a range of temperatures for a TD is shown 
in Fig. 1b. PTC can vary by up to around 200 nA per degree K, and P(H) is very sensitive to current, with about 
500 nA difference between P (H) = 1 and P (H) = 0. Therefore, a very small change in temperature can cause 
a radical shift in P(H) for the TD. Although a feedback mechanism is recommended in Bernardo-Gavito et 
al. (2017)19, it is not fully analyzed in the text. We compensate for the shifting PTC by implementing a digital 
control loop in the data collection system, adjusting the current magnitude based on calculated P(H) of the 
bitstream. We call the process of controlling the TD to be fair “retuning”. The details of this control loop are 
outlined in the “Methods” section.

Retuning single TDs can lead to deterministic behavior
We collect 32M bits with the PCB, sampling continuously. We calculate P(H) for retuning by averaging together 
bits in disjoint windows of 32 bits as they are generated, but we calculate P(H) from disjoint windows of 320 
bits (or 10 retuning windows) when plotting. P(H) for a single, retuned TD is shown in Fig. 2a. Compared to 
an untuned TD, this bitstream’s P(H) is tightly distributed around 0.5 despite variations due to temperature or 
noise. This indicates that our bitstream produces an approximately even number of 1’s and 0’s over the span of 
several retuning windows. However, this is insufficient evidence of randomness, as predictable patterns can 
appear in bitstreams with even numbers of 1’s and 0’s, such as a simple square wave that flips each cycle. A fair 
and random coin should have a 50% chance of heads or tails at any time, regardless of previous results35.

To determine how random our fair bitstream is, we start by checking for a dependency on previous bits. 
Compactly, if bm = 1 is a bit in our stream, we want to know what the probability that a future bit is also heads, 
or P (bm+n = 1|bm = 1) for n ∈ {1, . . . , N}. To calculate this for each n, we iterate through a section of our 
bitstream, and whenever we encounter a 1, we look n bits forward in the stream for n ∈ {1, . . . , 250}( although 
250 is an arbitrary choice and any value of N would work). If any of these bits are also 1, we increment the 
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corresponding counter. Once we have gone through the bitstream, we divide the counters by the total number of 
1’s encountered. More information on this computation can be found in the “Methods” section.

We calculate this probability, which we call the “dependency”, for a single TD with retuning and plot the 
results in Fig. 2b. P(H) is shown to be higher than 0.5 given an initial result of heads and decreases linearly 
with each subsequent flip until 32 bits after the initial result. P(H) is below 0.5 at this point and abruptly begins 
increasing again before eventually settling near 0.5. Note that this abrupt change in trajectory for P(H) happens 
a full retuning window of 32 bits after the initial heads. TD collection is retuned after a retuning window, which 
causes this change in slope. Further experiments (shown in the supplementary material) show that changing the 
retuning window length Lretune results in a corresponding change to the position of this point. These results 
indicate that our bitstream is not only more predictable than a random coin, but that the retuning algorithm 
plays a part in this dependency.

The dependency of our TD, which shows that a result of heads is more likely to be followed by another heads, 
is manifested in the length and number of streaks of 1’s and 0’s that appear in the bitstream. Intuitively, if a coin 
is more likely to produce the same result than it is to switch, we can expect longer streaks of both states. We 
count all streaks of 1’s exactly of length N for N from 1 to 40. A streak of 1’s exactly of length N is any section of 
the bitstream that is comprised of a 0, followed by N consecutive 1’s, and then another 0. An exception to this 
would be a streak that starts at the beginning or finishes at the end of the bitstream, which would not have a 
starting 0 or ending 0, respectively. We then compare these counts for each N to their expected values, which are 
dependent on the total length of the bitstream. Figure 2c shows the counted streaks for our bitstream, which are 
overwhelmingly higher than expected. Notably, a jump at 32, the value of Lretune, suggests that many retuning 
windows are full of only 1’s. We speculate that this could be attributed to retuning steps that are too large, causing 
subsequent windows to be filled with all 1’s or all 0’s.

To combat dependencies and suppress “streaky” behavior, previous works32,33,39 have used XOR gates in 
TRNGs. For a bitstream with an unfair weight, XOR operations on sequential bits, also known as a temporal XOR, 
have been shown to reduce the error40. Unfortunately, while this works well for bitstreams with no dependencies 
and unfair weight, bitstreams with dependencies can result in larger error40, disqualifying this method for 
increasing the unpredictability of our bitstreams. Nevertheless, we compute the temporal XOR throughout the 
bitstream as in Fig. 2d and plot the dependency after one, two, and three operations in Fig. 2e. After the temporal 
XOR, the error is quite large, but the dependency is also eliminated. While subsequent temporal XOR operations 
gradually reduce the error, each one divides the length of the bitstream in half.

Fig. 1.  (a) P(H) measured empirically over 10,000 flips vs. the amplitude of the current pulse through the TD 
at room temperature. Error bars here represent the standard deviation over 100 trials, which are notably wider 
near 0.5. (b) Peak tunnel current of a TD vs. the ambient temperature. (c) Our system for stimulating TDs 
and detecting stochastic results. VEN  enables the current mirror, which drives a IREF  through the load and 
reflects it through the tunnel diode. VT D  is compared to VT H  to digitize the result into a 1 or 0. (d) P(H) for a 
single TD while the control loop is on (green) and after it is turned off (magenta). P(H) begins to drift before 
maxing out at 1.
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Multiple devices sampled simultaneously can be correlated
Instead of a temporal XOR, other works have used the XOR of parallel TRNGs, also known as a bit-wise 
XOR31–34. We again take 32M bits, but this time from each of three TDs, labelled TD0, TD1, and TD2, which 
are pulsed simultaneously. Rather than computing temporal XOR operations like we did with the individual TD 
bitstreams, we perform bit-wise XOR operations on bitstreams from multiple TDs as in Fig. 3d. Our expectation 
of the results would be that the individual TDs are producing bits independently, and their bit-wise XOR should 
remove the dependency as occurred in Fig. 2e without a substantial increase in error due to having no correlation.

Figure 3a and b show the distributions of P(H) for a single TD and the bitstream resulting from the XOR of 
two TDs, respectively. The distributions show that the average value of P(H) is significantly lower than 0.5 and 
closer to 0.3 instead, indicating that the individual TDs are correlated40, causing substantial error.

To illustrate the cause of this correlation, we collect random bits from two TDs and incrementally delay the 
pulse to one TD (TD1) with respect to the other TD (TD0). Initially, both TD0 and TD1 are pulsed simultaneously 
for 30 µs, and we collect 500k bits in this manner, computing the correlation between the two bitstreams at the 
end. We then add a 5 µs delay to TD1’s pulse such that the two pulses overlap in time for 25 µs. Another 500k 
bits are collected, and the process is repeated, delaying TD1 by an additional 5 µs such that the two pulses 
overlap in time for 20 µs and computing the correlation between the bitstreams. We repeat an additional 10 
times until TD1’s pulse starts a full 30 µs after TD0’s pulse has ended and we have 12 correlations recorded.

The median of six trials are plotted in Fig. 3c, and the inset figure visually shows the overlap mentioned. When 
the rising or falling edges of the pulses occur approximately concurrently, such as when the pulses completely 
overlap or one pulse ends as the other begins, the correlation’s magnitude is higher. When the falling edge of the 
first pulse occurs in the middle of the second pulse, this causes a large negative correlation. These results could 
indicate that the correlation is as a result of cross-talk in the PCB causing one TD’s behavior to affect the other. 
Another possibility is that the overlap of the pulses in time increases the likelihood that shared noise in the PCB, 
such as in the power rail, might cause the TDs to exhibit similar behavior. Moreover, as the delay between the 
pulses increases such that they have “negative” overlap (a gap between the pulses), the correlation converges 
towards 0.

Fig. 2.  A single TD with retuning: (a) P(H) over time is controlled to stay around 0.5. (b) The dependency, 
or P(H) for n bits given an initial result of heads. (c) Counted streaks of 1’s (magenta points), compared to 
the expected number of streaks of exactly length N (black dashed line). (d) A temporal XOR of a single TD, 
computed by taking the XOR of pairs of sequential bits as they are produced and creating a new bitstream of 
half the length. (e) P(H) over time given an initial result of heads. Results are shown for a single TD as well as 
the TD after one, two, and three temporal XOR operations.
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Cross-device XOR operations lead to high-quality TRNG behavior
We take 32M bits from each of the three TDs, now pulsed out-of-phase with a gap of 15 µs between pulses to 
different TDs, and compute a bit-wise XOR between two TDs and all three TDs. We note that the data shown 
in Fig. 2 was from TD0 in this collection. The weight of TD0, TD1, and TD2 are all exactly 0.5 with a negligible 
error. Previously, temporal XOR operations on TD0 had weights of 0.4421, 0.4814, and 0.4934 for one, two, 
and three XOR operations, respectively. Comparatively, the weight of the bit-wise XOR of TD0 and TD1 when 
pulsed simultaneously was 0.311, which increased to 0.5086 after an additional bit-wise XOR with TD2. Now, 
with the TDs pulsed out-of-phase with a gap of 15 µs between pulses to each TD, the weights from two and 
three combined TDs are 0.4902 and 04997, respectively. While the first two methods consumed three TD bits to 
generate one high quality random bit, the latter method achieves a comparable weight by consuming two bits to 
generate one high quality bit. Consuming an additional bit gives the resulting bitstream a lower error than the 
other two methods. Looking at the dependency curves in Fig. 3e, both bitstreams produced from the bit-wise 
XOR of multiple TDs have eliminated dependency on previous bits, with a P(H) given an initial heads that is 
relatively flat. Furthermore, the error is minimal in the case of the XOR of two TDs and nearly nonexistent in 
the case of the XOR of three TDs.

The counted streaks of exactly length N for each individual TD and the XOR of two and three TDs are plotted 
in Fig. 3f. The bit-wise XOR of two TDs is sufficient to significantly reduce the amount of overcounted streaks of 
1’s. The additional XOR with TD2 reduces these further, conforming very closely to the line of expected values. 
As these data points are plotted with a logarithmic y-axis, the cluster of points at the bottom of the plot are off 
by just a few streaks, for example counting two streaks of 27 in a bitstream of millions of bits when much less 
than one are expected. While this method of pulsing individual TDs one at a time can be inefficient, decreasing 
the throughput of high quality bits by a factor of 3, we address this issue by recommending a pipelined pulsing 
method later in this work.

A system of TDs is suitable for Monte Carlo approximations
To see these bitstreams in action, we partition them into N-bit integers and generate distributions of 500k 
integers each. These distributions are expected to be uniform for an ideal coin22. We choose N = 8 and plot 
the distributions for three distributions: one from a single TD’s bitstream, one from a single TD’s bitstream after 
three temporal XOR sweeps, and one from the bit-wise XOR of three individual TDs. P(int) is the probability of 
sampling a given integer. These distributions are shown in Fig. 4a–c. The spikes at 0 and 255 for the single TD’s 
distribution can be attributed to its streaky behavior, as many 8-bit samples are all 0’s or all 1’s. However, the 

Fig. 3.  (a) P(H) distribution for a single TD. (b) P(H) distribution for the bit-wise XOR of two TDs, pulsed 
simultaneously. (c) Correlation versus overlap between individual pulses to two TDs. A negative value for 
overlap indicates a gap between the two pulses. The results indicate that a gap between pulses consistently 
results in lower correlation (magnitude) than pulsing TDs simultaneously. The insert demonstrates pulse 1 to 
TD0 (orange) and pulse 2 to TD1 (blue) with an overlap in time (gray). (d) A bit-wise XOR of multiple TDs, 
computed by taking the XOR of a single bit from multiple TDs in parallel to produce a new bitstream of the 
same length. (e) Dependency curves for each TD and bit-wise XOR operations on multiple TDs. (f) Counted 
streaks for each TD and bit-wise XOR operations on multiple TDs.
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distributions for the TD after three temporal XOR operations and the bit-wise XOR of three TDs are both very 
uniform. The former has a slight bias to lower numbers, which reflects the bitstream’s slightly lower weight of 
0.4904, indicating more 0’s. The latter, with a weight of 0.4997, is very flat, with almost equal probability at each 
number.

For a more robust test of these distributions, we use them in a Monte Carlo approximation of π. We sample 
pairs of numbers from a distribution, square and add them, and divide the number of pairs > 2552 by the total 
number of pairs41,42. This should approximate π/4, which we multiply by 4 to compare to π.

500k 8-bit integers were sampled from each bitstream. These were split into groups of 2k integers. We then 
ran 250 trials with 1k pairs of 8-bit integers used to approximate π. The mean and standard deviation of these 
results are recorded in Table 1.

Based on the results in the table, the bit-wise XOR of three TDs has the closest approximation of π as well 
as the smallest standard deviation. The bit-wise XOR of two TDs also achieves a closer approximation than the 
three temporal XOR operations on a single TD. Moreover, this is accomplished by consuming only two TD 
bits for every output bit, compared to the temporal XOR operations which consume three TD bits for every 
output bit. This implies that combining bitstreams could be a more efficient method of generating high quality 
bitstreams than post-processing a bitstream from a single source.

Bitstream Mean approx. of πππ Std. dev. of approx.

TD0 2.8635 0.1680

TD0, 1 XOR 3.4201 0.1393

TD0, 2 XOR 3.2610 0.1234

TD0, 3 XOR 3.2027 0.1099

XOR(TD0,TD1) 3.1619 0.0702

XOR(TD0,TD1,TD2) 3.1461 0.0541

Pipelined 3.1499 0.0541

Table 1.  Approximations of π.

 

Fig. 4.  The distribution of 8-bit numbers generated from: (a) TD0. (b) TD0 after 3 temporal XOR 
operations. (c) the bit-wise XOR of TD0, TD1, and TD2. Distributions for TD1 and TD2 can be found in the 
supplementary materials. (d) Diagram of pipelined TDs. Each bx represents a bit collected during cycle x, 
which are buffered until an XOR operation with bits collected by other TDs during other cycles. Results of 
pipelining bits from TDs pulsed simultaneously: (e) P(H) over time is distributed around 0.5. (f) P(H) for n bits 
after an initial heads. (g) Counted streaks of 1’s, compared to the expected number of streaks of exactly length 
N.
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Pipelining XOR reduces correlation without sacrificing throughput
A system where no two devices can be pulsed simultaneously to avoid correlation would be limited in throughput. 
Crucially, avoiding an XOR of bits collected simultaneously may significantly reduce correlation. If we were 
to pipeline bit collection with coinflip devices, we could consider the XOR of bits collected simultaneously a 
data hazard due to their correlation in the same way that we consider simultaneously executing dependent 
instructions in a CPU a data hazard. In Fig. 4d, we portray a pipeline of three TDs, each producing a bit at every 
cycle. This allows the system as a whole to continue generating a random bit every cycle rather than every three 
cycles.

Bits can be buffered in a shift-register after being measured from a TD. On cycle 2, three bits are available 
for an XOR operation: b0 from TD0, b1 from TD1, and b2 from TD2. In the next cycle, the XOR of b1 from 
TD0, b2 from TD1, and b3 from TD2 is computed. This continues each cycle, and a new bit is computed from 
the XOR of bits taken from three TDs on different cycles. Pipelining allows TDs to be pulsed simultaneously 
while computing an XOR on bits from different cycles to prevent correlation. Thus, we are able to both minimize 
correlation between devices and eliminate self-dependency of the bitstream through XOR operations.

Taking bits collected from three TDs simultaneously, we simulate this pipeline by circular-shifting one 
bitstream by one and another bitstream by two before computing a bit-wise XOR. The resulting bitstream’s P(H) 
over time, counted streaks, and dependency curve are shown in Fig. 4e–g. These show similar results to the XOR 
of three TDs pulsed out-of-phase. The correlation between TDs is not only reduced through pipelining, but the 
XOR of the three TDs mitigates the self-dependency as well, as shown in Fig. 4f. Furthermore, using the same 
uniform distribution sampling and π approximation technique with 250 trials of 1k integer pairs, this bitstream 
approximates π as 3.1499 with a standard deviation of 0.0541.

While some systems, including stream-based stochastic computing systems7, may desire coinflip devices 
tuned to other values of P(H), our work shows that control loops can introduce dependency and other pathologies. 
Furthermore, while XOR operations reduce bias from a fair coin, there is not an equivalent digital operation 
currently known for reducing bias from other values of P(H). One potential method of sampling a coin with a 
different value of P(H) is to sample from a uniform distribution, as we did in our Monte Carlo approximations, 
and compare the sample to the desired P(H), producing a 1 when the sample is < P (H). Sampling an N-bit 
integer from a uniform distribution and comparing to P(H) could be accomplished by sampling N fair coins in 
parallel to minimize any sacrifices to throughput. Therefore, although a coin cannot be tuned to an unfair weight 
and improved through a digital operation as a fair coin can, our efforts toward achieving a high quality fair coin 
can also benefit efforts to design systems of coins with unfair weights.

Discussion
In this work, we explored integration of stochastic devices into a high quality TRNG, using TDs as representative 
devices. We show that a control loop can compensate for non-idealities like thermal drift in PTC. This control 
loop is able to maintain a bias near that of a fair coinflip but introduces dependency into the bitstream that results 
in long streaks of 1’s and 0’s. Through bit-wise XOR operations of independent TDs, we are able to mitigate 
dependency without sacrificing desired weight of the bitstream. Furthermore, while potential nonidealities in 
our system introduce correlation between individual devices pulsed simultaneously, we found that pulsing TDs 
out-of-phase results in sufficient independence. We recommend pipelining so that devices can be sampled in 
parallel while performing XOR operations only on uncorrelated samples.

Some of these concepts, such as the use of a feedback mechanism for maintaining fair coinflips32,43 and 
performing bit-wise XOR operations on many lower quality TRNGs31–34 have been used in TRNG designs 
before. However, this work shows that an active control loop can even assist simple single-device TRNGs in 
producing high quality and fair bitstreams. We have also shown experimentally that bit-wise XOR operations 
can overcome second-order nonidealities in device statistics other than weight, such as dependency on previous 
results that cause long bitstreaks.

While other coinflip devices such as the MTJ are not as sensitive to temperature variations as TDs (depending 
on collection method13), control loops could potentially be utilized to adapt to other sources of variation such 
as device-to-device variation or unexpectedly noisy operating conditions. Alternatively, they can be used 
to compensate for relaxed fabrication or operating constraints, such as fabricating MTJs that are less robust 
to temperature or using stochastic reading instead of stochastic writing for lower power consumption13. 
Furthermore, systems experiencing a high degree of correlation between coinflip devices might consider 
pipelining to improve fairness without sacrificing throughput.

Ultimately, we built a true random number generator from nonideal, off-the-shelf components and found 
that these measures were sufficient to generate random samples suitable for a Monte Carlo approximation of 
π. The use of control loops and digital operations between devices was shown to be capable of sampling from 
a uniform distribution, a vital step toward many powerful Monte Carlo simulation techniques. We look to 
the future and envision large arrays of integrated coinflip devices with control logic, buffers, and XOR gates 
that facilitate low power, high throughput generation of trillions of random bits per second for use in artificial 
intelligence, stochastic computing, scientific computing, and other vital applications.

Methods
Data collection system
Our data was collected with a custom PCB designed in KiCAD. We used MP1103 tunnel diodes from M-Pulse 
Microwave Inc. To sample a TD, a Microchip Technology ATmega328P microcontroller sends a pulse (VEN ) to 
a Texas Instruments CD74HC4050 buffer, which drives the pulse across a resistive load to generate a reference 
current (IREF ). This load consists of an Analog Devices AD5175 rheostat (or potentiometer) in parallel and 
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series with SMD resistors. An Analog Devices ADL5315 current mirror reflects the reference current through 
the TD. The voltage across the TD (VT D) is compared to an intermediate voltage between the high and low 
states (the threshold voltage, or VT H ) by a Analog Devices LT1116 comparator to determine the state of the TD. 
The microcontroller reads and then writes the result to an SD card on the PCB. The entire module is placed in a 
large metal box during collection to mitigate the influence of external noise sources. Our ability to collect data 
in noisier environments is limited by the dynamic range of our potentiometers and number of TDs integrated 
on the PCB, but a system with sufficient range should be able to comfortably adapt to sources of noise such as 
wireless signals and vibrations. For details regarding robustness of TRNGs to more intense noise like ionizing 
radiation, see Martín et al.44. Bits are collected continuously, and P(H) is determined by averaging together bits 
in disjoint windows of 32 as they are produced.

To compensate for the shifting PTC, the potentiometer’s resistance can be controlled by the microcontroller 
using a proportional control loop. If P (H) > 0.5 or < 0.5, the potentiometer can be set to higher or lower 
resistance, respectively. In the proportional controller, the process variable is P(H) for the TD and the control 
variable is the magnitude of the current pulses. The output bits of the TD are averaged over 32 flips to produce 
the empirical P(H), which is passed through the controller equations

	 e = 0.5 − P (H), � (1)

	 i = i + kpe, � (2)

where e is the error signal and i is the magnitude of the current for sampling the TD. The parameter kp is the 
proportional feedback gain, set to 8 × 10−9 in our controller. The length of the window over which the P(H) is 
estimated (Lretune), as well as the constant kp, were chosen through a sweep of the search-space.

Tuning the TD control loop
We searched Lretune ∈ {16, 32, 64, 128} and kp ∈

{
1 × 10−9, 2 × 10−9, 4 × 10−9, 8 × 10−9, 16 × 10−9}

 
to find the optimal controller parameters. After collecting 500k bits with each configuration of Lretune and kp, 
we plotted P(H) and dependency curves for each TD. P(H) and dependency curves for TD0, TD1, and TD2 
are shown in the supplementary materials. We identified a trade-off between fairness (weight near 0.5) and 
dependency (deviation of P(H) from 0.5 given an initial heads). While P(H) seems to improve with increased kp 
and decreased Lretune for all TDs, it can increase dependence in some cases. Notably, TD2 demonstrates this the 
most for kp = 16 × 10−9 and Lretune = 16, where P(H) is tightly distributed around 0.5, but the dependency 
curve oscillates significantly around 0.5. We chose Lretune = 32 and kp = 8 × 10−9 as these values resulted in 
an acceptable trade-off between fairness and dependency.

Data selection and analysis
When pulsing multiple TDs simultaneously, the current required for a fair weight decreased compared to that 
of the TDs pulsed sequentially. Consequently the resistance required to maintain a fair coin went outside of the 
operating range of the potentiometers, causing P(H) to increase to 1. Eventually, the control variable returned 
again to the potentiometer’s operating range, and P(H) returned to its narrow margin around 0.5 (refer to the 
potentiometer value and P(H) over time shown in the supplementary materials). Our analysis used the 32M bits 
collected after the control variable returned to the potentiometer’s operating range. To ensure fair comparison 
between this data and data collected from sequentially pulsed TDs, we used the same slice of 32M bits from the 
sequentially pulsed bitstream. Data was read from the SD card and analyzed by a MATLAB script.

Calculation of expected streaks of 1 and dependency of a bitstream
Assume we have a bitstream of M bits and want to find the number of streaks of 1’s of exactly length N. This 
value, which we will call Y, is calculated by

	
YN = δ1 + δM +

M−N−1∑
i=2

δ(bi, . . . , bi+N ),� (3)

where δ is 1 if the given window of bits is all 1’s with a 0 on either side, written as bi−1 = 0, bi+N+1 = 0, and 
bi = . . . = bi+N = 1, but is 0 otherwise. The term δ1 represents the corner case of the first N bits, which have 
no preceding bit, and it is 1 if b1 = . . . = bN = 1 and bN+1 = 0, but is 0 otherwise. The term δM  represents 
the corner case of the last N bits, which have no succeeding bit, and it is 1 if bM−N = . . . = bM = 1 and 
bM−N−1 = 0, but is 0 otherwise. Assuming independence of the bi’s, the expected value of each term in the 
summation is equal to the probability that the term is 1. Therefore, the expected value of YN  is

	 E(YN ) = 2(1 − p)pN + (M − N − 2)(1 − p)2pN .� (4)

The first term represents the two corner cases, and the second term represents the summation. We can calculate 
the expected value of YN  for all N from 1 to the length of the bitstream, M, but this value quickly decreases to be 
much lower than 1, even for a very large M. For 32M bits, the expected value for streaks of exactly length 23 is 
slightly less than 1 and continues to decrease to approximately 0 for streaks of 30 or longer.

To calculate the dependency of a bitstream, we examined windows of length n after every 1 appearing in a 
bitstream. The bit-wise average of all such windows produces the effective probability of encountering a 1 within 
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n bits of an initial 1. For the sake of a manageable data array size, we took a slice of 100K bits from the bitstream 
and chose n = 250 for our analysis.

Data availability
Data from the tunnel diodes will be made available upon reasonable request to the corresponding authors and 
pending organizational approval.

Code availability
Code, including the MATLAB script used for processing bitstream data and relevant microcontroller code, is 
available upon reasonable request to the authors and pending organizational approval.
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