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This study presents a compact antenna designed for Internet of Things (IoT) applications, utilizing 
advanced wireless communication technologies. The antenna is designed to operate at dual 
frequencies (2.4 GHz and 6.04 GHz) with 12 multipath T-structured metamaterials. In Mode 1 (D1 OFF), 
the antenna operates at 2.4 GHz with a bandwidth of 80 MHz (2.36–2.44 GHz). In Mode 2 (D1 ON), it 
functions at 6.04 GHz with a bandwidth of 300 MHz (5.9–6.2 GHz). The design employs a commercially 
available FR-4 substrate with a relative permittivity of 4.3 and a loss tangent of 0.025, all within 
a compact size of (0.16λ₀ × 0.12λ₀ × 0.0112λ₀). The antenna radiator integrates a single PIN diode 
(SMP1340-079LF) along with a complete biasing circuit to achieve reconfigurability. The proposed 
design overcomes the conventional limitations by integrating T-structured metamaterials to achieve 
dual-band operation in a compact size. This antenna is ideal for wireless communication applications 
due to its manufacturability, enhanced gain, and low return loss. It is well suited for widely used 
frequency ranges, including Wi-Fi and Bluetooth. The results demonstrate that a miniaturized antenna 
with excellent efficiency has achieved, making it a promising solution for next-generation IoT devices.
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The exponential growth of wireless communication technologies has profoundly transformed modern life, 
enabling real-time connectivity between people, devices, and systems across vast distances. One of the most 
significant technological trends of the past decade is the emergence and rapid expansion of the Internet of 
Things (IoT), a paradigm that envisions the interconnection of billions of smart devices capable of sensing, 
communicating, and processing data autonomously. These devices are expected to operate seamlessly within 
complex and heterogeneous networks, sharing information efficiently while consuming minimal power and 
occupying limited physical space1,2

This growing demand for ubiquitous, intelligent, and low-power connectivity has imposed new requirements 
on the design of wireless communication components, particularly antennas. As the core element responsible 
for transmitting and receiving electromagnetic signals, the antenna must meet several critical criteria in IoT 
systems: compactness, frequency flexibility, low energy consumption, and robust electromagnetic performance 
in dense environments3,4. In portable electronic devices including smartphones, tablets, smartwatches, GPS 
trackers, and medical wearables, the space allocated for the antenna is increasingly constrained. Nevertheless, 
the antenna must still maintain high performance across multiple frequency bands and wireless protocols such 
as Wi-Fi, Bluetooth, Zigbee, and Lora WAN5.

Conventional antenna technologies often fall short when deployed in such demanding scenarios, as they 
typically require trade-offs between size, bandwidth, gain, and efficiency. In addition, the fixed-frequency 
operation of many legacy antennas limits their ability to adapt to dynamic wireless environments where multi-
standard operation and interference mitigation are essential. IoT systems further exacerbate these challenges by 
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requiring support for diverse device densities, adaptive power control, and coexistence within shared spectrum 
environments6,7.

In response to these limitations, metamaterials and metasurfaces have emerged as promising solutions 
in the field of antenna engineering. Metamaterials are artificially structured materials designed to exhibit 
unconventional electromagnetic properties such as negative permittivity and/or permeability, which do not 
exist in naturally occurring substances8. These unique characteristics enable unprecedented control over wave 
propagation, radiation direction, and surface current distribution, opening the door to highly efficient and 
miniaturized antenna designs suitable for integration into IoT-enabled devices9,10.

Furthermore, the advent of Frequency Reconfigurable Antennas (FRAs) has provided a practical pathway to 
address the dynamic requirements of modern communication systems. By integrating reconfigurable elements 
such as PIN diodes, varactor diodes, Micro-Electro-Mechanical Systems) MEMS (switches, or digital tuning 
components, FRAs allow antennas to switch between frequency bands, alter polarization, or modify radiation 
patterns in real-time based on network conditions or device requirements11,12. This capability is particularly 
valuable in IoT networks, where the operating environment may change rapidly, and the need for adaptive 
performance is paramount.

In this study, we propose an innovative antenna structure that combines the advantages of metamaterials 
and reconfigurability to meet the stringent demands of next-generation IoT systems. The proposed design 
incorporates embedded metasurfaces, multi-path configurations, and tunable components to achieve compact 
size, high radiation efficiency, and dynamic frequency agility. The antenna is optimized to operate in frequency 
bands relevant to IoT applications, including 2.4 GHz, 5 GHz, and emerging 6 GHz ranges, ensuring compatibility 
with a wide range of low-power communication protocols13,14.

Compared to conventional antennas, the proposed structure offers several advantages. Its compact form 
factor makes it suitable for space-constrained environments, while its low power consumption supports battery-
powered operation for extended periods. The design’s reconfigurable nature ensures scalability and adaptability 
across different use cases—ranging from smart home automation, environmental monitoring, and agricultural 
sensing, to wearable health devices and industrial IoT (IIoT) platforms15,16. By minimizing signal loss, reducing 
interference, and enhancing spectral efficiency, the antenna design contributes significantly to the realization of 
reliable and high-performance IoT systems.

The next section reviews literature on frequency reconfigurable antennas and metamaterial designs. Ref.17 
presents a printed star-triangular fractal microstrip-fed monopole antenna with a semi-elliptical ground plane 
designed for super-wideband (SWB) applications. Unlike traditional SWB and fractal antennas, this one 
is compact and achieves a VSWR of less than 2 at 2.1, 2.45, 3.2, and 3.5 GHz. Ref.18 describes an extremely 
wideband star-star fractal antenna fed by a microstrip line, incorporating a semi-elliptical ground plane with 
notch loading. This design achieves a bandwidth ratio of 11.31:1 with VSWR values below 2. Ref.19 discusses a 
metamaterial and slot-based fractal antenna designed for multiband operation at 3.5, 5.01, 3.2, and 5.77 GHz, 
featuring an L-shaped slot, a Sierpinski triangle (fractal), and a metamaterial circular split ring resonator (SRR) 
ground plane. Ref.20 proposes a simple, frequency-reconfigurable microstrip patch antenna for multiband 
applications, with a 1.8 mm gap between two patches on the same FR4 substrate. Three RF pin diodes are used to 
modify the antenna’s resonance frequencies, allowing operation at 2.4, 4.26, 4.32, and 4.58 GHz with acceptable 
return loss. Ref.21 introduces a novel reconfigurable sub-6 GHz microstrip patch antenna operating at 3.9 and 
4.9 GHz, which includes a metamaterial (MTM) array and a corresponding printed circuit around a strip line. 
Ref.22 describes a frequency-reconfigurable planar monopole antenna using an FR4 substrate, with operation 
at 2.4, 3.5, 4.7, and 5.8 GHz and radiation efficiency between 73 and 79%, with a VSWR of less than 1.5. Ref.23 
presents a wireless frequency-reconfigurable antenna with a complementary four-split ring resonator (SRR) 
metamaterial, operating at 3.02, 2.34, 5.06, 6.44, and 4.2 GHz, making it ideal for IoT applications. A major 
challenge in antenna design is achieving compact size and extended frequency ranges. This research aims to 
address these issues by leveraging metamaterials, which possess unique electromagnetic properties that enable 
smaller antenna designs. The research concludes with Sections III and IV, which detail the simulated analysis of 
the antenna’s performance.

Materials and methods
Design of the metasurface unit cell
Recent advancements in metamaterials have enabled the design of innovative unit cells with exceptional 
electromagnetic properties. In this study, this work presents a Multi-Path T-Structured Unit Cell with single-
negative characteristics, operating at 12.1 GHz. The unit cell is fabricated using an FR-4 substrate (1.4 mm 
thick) with copper cladding (0.035 mm). At this frequency, it demonstrates a relative permittivity (εr) of − 8 
and a relative permeability (μr) of 17.3. The design utilizes multi-path T-structured elements to enhance 
electromagnetic performance. Figure  1 illustrates the proposed unit cell, and Table 1 details its dimensions. 
Moreover, Table S6 presents a comprehensive comparison with recently published unit cell designs.

Proposed antenna design
Everything from the theory and design of the metamaterial-based RA to its fundamental geometry and switching 
mechanics is addressed here. In order to make the antenna work in two different frequency bands, lumped 
element switch was installed. PIN diode are used to rebuild the measurement setup circuit. Improved operating 
efficiency in the distant field is a direct outcome of using a partial ground plane.

Structural geometry
Figure 2 illustrates an antenna incorporating a set of metamaterial unit cells arranged in a 4 × 3 array, totaling 12 
cells. These cells form the radiating patch in the upper section of the antenna, carefully arranged to enhance or 
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modify performance across specific frequency ranges. The integrated metamaterials consist of small, repetitive 
elements with intricate patterns. The primary purpose of incorporating these metamaterials is to improve 
antenna characteristics, such as frequency control and radiation direction. These cells influence the interaction 
between electromagnetic signals and the material. The inclusion of 12 metamaterial cells enables the antenna to 
operate at two distinct frequencies, rather than a single frequency. This effect arises from the unique design of 
the metamaterial cells, which alter the propagation of electromagnetic waves within the antenna structure, The 
dimensions of the proposed antenna are listed in Table 2.

Parameters Value (mm) Parameters Value (mm)

L1 3.6 W2 2.9

L2 2.29 W3 1.35

L3 1.29 W4 0.5

L4 0.31 W5 0.16

W1 4.78 W6 0.31

W7 0.55

Table 1.  Dimensions of unit cell.

 

Fig. 1.  (a) Multi-path T-structured unit cell (b) Material properties (c) Unit cell absorber.
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Theoretically, effective resonant lengths at required frequencies are computed using the transmission line 
model24. For the selected operating frequency f, the effective permittivity εeff and effective resonant length Lf are 
determined by Eqs. (1) and (2).

	
εeff = εr + 1

2 + εr − 1
2

(
1 + 12

( h
w

))−0.5
� (1)

	
Lf = C

4f
√
εeff

� (2)

The variables in the equations are defined as follows: The symbol C denotes the velocity of light in a vacuum, 
whereas εr indicates the relative permittivity, h denotes the thickness or height of the substrate, whereas w 
denotes patch width.

Result and discussion
The proposed design has been analyzed using CST Microwave Studio 2022. The radiating structure is excited 
through a waveguide port. Performance parameters, including S-parameters, gain, and surface current 
distributions, can be obtained under various conditions within the CST Microwave Studio environment.

Reconfigurability
Figure  3 illustrates the S-parameter characteristics of the proposed antenna across all operational modes. 
Mode 1 (D1 OFF), The antenna operates in a single-band mode centered at 2.4 GHz, with a bandwidth of 80 
MHz (ranging from 2.36 to 2.44 GHz) and an S-parameter value of − 22.2 dB, indicating efficient impedance 
matching at this frequency. Mode 2 (D1 ON) The antenna switches to a single-band mode at 6.04 GHz, achieving 
a bandwidth of 300 MHz (ranging from 5.9 to 6.2 GHz) and an impressive S-parameter value of − 38.79 dB, 
reflecting excellent performance in this mode (Table 3).

Switching techniques
The SMP1340-079LF PIN diode is widely used in switching applications due to its RF characteristics. It behaves 
like a variable resistor and operates efficiently from 10 MHz to 10 GHz. Incorporating PIN diodes into antenna 
systems enables reconfigurability by altering the effective resonant length of the antenna, thereby influencing 
the operating frequency. Depending on the applied configuration, the PIN diodes can function as either open-
circuit or short-circuit elements, with the forward and reverse modes of operation modeled using equivalent 

Parameters Value (mm) Parameters Value (mm)

Ls 20 Ws 15

Lg 8.2 Wf 2.745

Lf 5.5 W1 2

L1 8.4 W2 9

L2 2.4 h 1.4

Table 2.  Dimensions of the planned antenna.

 

Fig. 2.  Geometry of the suggested antenna.
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circuits, as illustrated in Fig. 4. For this study, the Skyworks SMP1340-079LF PIN diode was selected, featuring 
an inductance (L) of 0.7 nH, a series resistance (RL) of 0.85 ohms, and a capacitance (C) of 0.21 pF, making it 
well-suited for the intended application.

The antenna demonstrates excellent impedance matching, with a voltage standing wave ratio (VSWR) 
remaining consistently below 1.18 at all resonant bands. This superior performance ensures minimal reflection 
and efficient power transfer. Figure 5 highlights this capability, showing that the VSWR stays well below the 
standard threshold of 2 across all usable frequency bands, confirming the antenna’s effectiveness in maintaining 
stable and reliable operation (Fig. 6).

Fig. 4.  A PIN diode’s equivalent circuits and its CST model.

 

Modes D1 Frequency band (GHz) S11 (dB)

1 OFF 2.4 − 22.2

2 ON 6.04 − 38.79

Table 3.  Frequencies and modes of antenna.

 

Fig. 3.  Mode 2 (a) Lg = 8.2, (b) L1 = 8.4 mm.
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Biasing circuit
On the same FR-4 substrate, a biasing circuit for the proposed antenna’s PIN diode switch was designed and 
implemented. Figure 7 illustrates the control mechanism, where a bias line connects to a bias pad to activate the 
PIN diode switch as a proof of concept. The switch is connected to the negative terminal of a 3-V DC battery, 
while the positive terminal is directly linked to the bias circuit. This setup enables the switch to control the flow 
of voltage, toggling the diodes ON and OFF. The direct connection of the DC terminal, as shown, makes this 
design adaptable for future applications, such as cognitive radio systems. To protect the PIN diode, specific 
design gaps were incorporated: a 1 mm gap between the bias pad and the ground to accommodate inductors 
(H), and an additional 1 mm gap between two pad lines to place a 1 kΩ resistor (R) for added protection. The 
DC circuit is isolated from the antenna’s feeding line using RF chokes, which block RF signals while permitting 
DC current flow. Key components include a 1 kΩ resistor to regulate and protect the voltage and 47 nH 
inductors for additional stability. Figure 6 presents the measurement results of the reconfigurable monopole 
antenna’s reflection coefficient (S11) using an Agilent Technologies E5071C network analyzer (30 kHz–20 GHz) 
at Al-Nahrain University, Baghdad, Iraq. The antenna operates with a bias current of approximately 2.2 mA 
(calculated using Ohm’s law with a 1 kΩ resistor) and a bias voltage of 3 V, powered by two 1.5-V DURA Cell 
alkaline batteries.

For the inductors (47 nH), the inductive reactance (XL) is calculated as:

	 XL = 2πfL� (3)

where f  at 1 GHz:

	 XL = 2π × 109 × 47 × 10−9 = 295 Ω

At DC (frequency = 0 Hz), the reactance is 0, and the inductor acts as a short circuit, allowing DC to pass freely. 
This can be calculated as:

	 XL = 2π × 0 × 47 × 10−9 = 0 Ω

To determine the current passing through the PIN diode, we use Ohm’s law:

Fig. 5.  (a), (b), VSWR of the suggested antenna in various modes of operation.
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Fig. 7.  Biasing circuit and antenna proposed.

 

Fig. 6.  (a), (b), Practical result of the two modes.
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IR = Vcc − Vdiode

R
� (4)

where V cc = 3 Volts( power supply voltage) and R = 1 kΩ. For example:

	
IR = 3 − 0.8

1000 = 2.2 mA

This ensures that the current passing through the PIN diode remains within the safe operating range to ensure 
its proper functioning.

As for the power consumption in the ON state (D1 ON), the consumed power is calculated using the equation:

	 P = V × I� (5)

	 3 V × 2.2 mA = 6.6 mW

This value represents the power consumed when the PIN diode is activated to switch to the higher frequency 
(6.04 GHz). Regarding the total energy cost, assuming the antenna operates in the ON state (D1 ON) for 50% of 
the time, the average power consumption would be:

	
Pavg = 6.6 mW

2 = 3 mW� (6)

This is a very low value, making the antenna highly suitable for battery-powered applications such as Internet of 
Things (IoT) devices.

Physical interpretation
The operation of the antenna at the frequencies 2.4 and 6.04  GHz depends on the relationship between the 
antenna’s effective length and the electromagnetic properties resulting from its design, including the addition 
of metamaterials. Resonance in the antenna occurs when its effective length is equal to half the wavelength of 
the signal at the resonant frequency. The effective length (Leff) is mathematically determined by the following 
equation24:

	
Lf = C

2f
� (7)

The effective length at 2.4 GHz is 62.5 mm and at 6.04 GHz is 24.8 mm.
Metamaterials perform a crucial role in reducing the effective length of an antenna, allowing it to operate 

at lower frequencies while maintaining smaller physical dimensions. The effective wavelength is modified 
according to the relationship24:

	
λeff = λ

√
εeffµeff

� (8)

Metamaterials with negative values, such as εeff( -8) and μeff (17.3), reduce the effective wavelength, allowing the 
antenna to resonate at desired frequencies with smaller dimensions. When the switch is OFF, the ground plane 
is small, causing surface currents to extend more over the radiating patch and along the edges. This increases 
the effective length, resulting in a lower resonant frequency of 2.4 GHz. Conversely, when the switch is ON, the 
ground plane area increases. The larger ground plane reduces the spread of surface currents across the antenna. 
Instead of extending to the edges, the currents are concentrated within a shorter path. This reduction in the 
effective length leads to a higher resonant frequency of 6.04 GHz.

Far field radiation pattern
In Mode 1, the simulation results show a gain of 3.7 dBi at 2.4 GHz with a radiation efficiency of 95.6%. In Mode 
2, the antenna achieved a gain of 4.82 dBi and a radiation efficiency of 92% at 6.04 GHz. Figure 8 presents the 
simulated radiation patterns of the antenna in both the H-plane and E-plane across the respective frequency 
bands and Fig. 9 illustrates the gain and radiation intensity for both modes.

Surface currents
Figure 10 illustrates the surface current distribution on the antenna’s radiating structure at various frequencies, 
demonstrating how the distribution changes across different operating modes. At 2.4 GHz, the primary radiating 
element shows a surface current density that plays a significant role in radiation. As the frequency increases to 
6.04 GHz, the surface current distribution undergoes noticeable alterations due to the shorter wavelength. At 
this higher frequency, the antenna excites higher-order modes, resulting in more complex and rapid variations 
in the surface currents. These variations create multiple regions of concentrated current density, which influence 
the radiation pattern and overall performance of the antenna at the higher frequency.

Finally, A comparison between the theoretical and experimental results is presented in Table 4, a summary 
of the design as shown in Table 5, and a comparison of the proposed antenna to previously published studies in 
Table 7 (Table 6).
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Conclusion and future work
There is increasing interest in designing compact antennas without compromising performance, particularly 
at lower frequencies crucial for IoT applications. The proposed antenna, with dimensions of 20 × 15 × 1.4 
mm3, operates at 2.4  GHz and 6.04  GHz, achieving reconfigurability through strategically placed PIN 
diodes while maintaining a reflection coefficient below − 10 dB. This compact design addresses the need for 
efficient, space-saving antennas in IoT systems. Despite the good agreement between simulation results and 
theoretical predictions, minor discrepancies were observed. These variations can be attributed to manufacturing 
inaccuracies, slight misalignments of components, and environmental variations such as temperature or 
humidity changes during testing. Addressing these challenges through improved fabrication techniques and 

Fig. 9.  Gain and efficiency pattern at frequencies (a), MODE 1(2.4 GHz), (b) MODE 2 (6.04 GHz).

 

Fig. 8.  The Radiation pattern in the E-plane and H-plane. (a) 2.4 GHz, (b) 6.04 GHz.
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controlled testing conditions could further enhance performance consistency. The integration of metamaterials 
into antenna design enhances performance for a wide range of applications, including communications and 
remote sensing. For IoT, the antenna demonstrates high efficiency and adaptability in constrained spaces. Future 
advancements, such as expanding frequency ranges and integrating AI technologies, could enable autonomous 
operation, minimize electromagnetic interference, and further miniaturize the design to suit wearable devices 

Parameters Simulated Theoretical Observed Deviations

Frequencies (2.4 GHz) 2.4 GHz 2.5 GHz 4.17% shift

Frequencies (6.04 GHz) 6.04 GHz 6.23 GHz 3.15% shift

S11 (2.4 GHz) dB  − 22.2 dB  − 13 9.2 dB (weaker matching)

S11 (6.04 GHz) dB  − 38.79  − 27.3 11.49 dB (weaker matching)

Bandwidth (2.4 GHz) MHz 80 59 26.25%

Bandwidth (6.04 GHz) MHz 300 214 28.7%

Table 4.  Comparison between simulated and experimental results.

 

Fig. 10.  Distribution of current (a) at 2.4 GHz (b) at 6.04 GHz.
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References Antenna size mm3/(λ₀3) Reconfiguration type Frequency bands (GHz) Antenna type No. of switches

Max 
Gain 
(dBi)

32 25 × 25 × 1.6
(0.32 × 0.32 × 0.02) Frequency 3.85/4.14/4.43/4.91/6.01 Rectangular slotted with 

defected ground 3 PIN diodes 4.42

33 40 × 50 × 0.254
(0.22 × 0.27 × 0.001)

Frequency and radiation 
pattern (1.65–2.5)/1.8/2.1 Triangular monopole 2 PIN diodes 2.2

34 20 × 20 × 0.8
(0.21 × 0.21 × 0.008) Frequency 3.22/4.99/7.35/7.26 Slot-based square-shaped 

monopole 1 PIN diode 3.8

35 40 × 40 × 1.5
(0.18 × 0.18 × 0.007) Frequency Continuous tuning (1.4–2.9) Hexagonal patch element 1 Varactor diode 2.4

36 32 × 25 × 0.254
(0.19 × 0.15 × 0.001) Frequency 1.8/1.9/2.1/2.45/3.5 Quarter-wave monopole 

with filtering stub 3 PIN diodes 3.2

37 35 × 25 × 0.254
(0.28λ₀ × 0.20λ₀ × 0.002λ₀) Frequency (2.76–8.21)/2.45/5.8/5.2/8 CPW-fed slotted circular 

patch 1 PIN diode 5.8

38 30 × 30 × 0.13
(0.24 × 0.24 × 0.001) Frequency 2.4/3.5/4 CPW-fed monopole 2 PIN diodes 2.95

38 77 × 77 × 15
(0.61 × 0.61 × 0.21) Frequency 2.4/3.5/4 CPW-fed monopole 2 PIN diodes 7.9

39 28 × 14 × 1
(0.228 × 0.114 × 0.008) Frequency (5.6–4.6)/3.5/2.45 Wave-guide monopole 2 PIN diodes 4

40 30 × 30 × 1.6
(0.41 × 0.41 × 0.021) Frequency 5.2/4.1 Wave-guide monopole 1 PIN diodes 4

23 38 × 21 × 1.6
(0.23× 0.127 × 0.0097) Frequency 3.02, 2.34, 5.06, 1.82, 4.2, 6.44 Wave-guide monopole 2 PIN diodes 2.56

This work 20 × 15 × 1.4
(0.16 × 0.12 × 0.0112) Frequency 6.04/2.4 Wave-guide monopole 1 PIN diodes 4.82

Table 7.  Proposed antenna is contrasted with previously published research.

 

References Resonator type Unit Cell size (mm) Absorption frequency (GHz) Absorption (%) Applications
25 Ring 12 × 12 9.828 99.99 EMI shielding
26 Octagonal Close Ring 8 × 8 6.45, 14.89 99.15, 99.76 Satellite
27 Circular Sector 10 × 10 6.68, 15.41 Over 99 Microwave
28 Gap Coupled Hexagonal 10 × 10 4.27, 5.42, 12.40 99, 98, 81 Microwave
29 Square with Circular Ring 10 × 10 5.35, 7.29, 11.85 82, 67, 93 Microwave
30 Four Quarters of Circle 9 × 9 9.12, 11.34 99.35, 97.81 Microwave
31 Double E-shaped 10 × 10 5.376, 10.32, 12.25 99.9, 99.9, 99.7 EMI shielding

This work Multi-Path T-shape 3.6 × 4.78 12.1 96 Microwave

Table 6.  Comparison of the proposed work with recently published metamaterial.

 

Parameters Antenna

Substrate FR-4

Dimensions (mm) 20 × 15 × 1.4

Operating frequencies (GHz) (2.4, 6.02) GHz

bandwidth (0.08–0.3) GHz

No of operating bands 2

Biasing complexity Bias circuits combine the same antenna

Gain (dBi) 3.7–4.82

VSWR Less than 1.18

Efficiency% 92–95.6

Switch Real switch

Feeding method Microstrip Line

Metamaterial inclusion 4*3-unit cell

Design type Practical

Table 5.  Summary of the design.
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and embedded systems. Future work will focus on improving manufacturing precision, addressing environmental 
challenges, and exploring new applications in healthcare, environmental monitoring, and industrial automation, 
these improvements will enable innovative solutions for wireless communication and IoT systems.

Data availability
Data is provided within the manuscript.
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