Table 3 Stability analysis of equilibria based on Jacobian matrix.
Equilibrium point | Eigenvalues of Jacobian matrix | |||
---|---|---|---|---|
\(\:{\lambda\:}_{1}\) | \(\:{\lambda\:}_{2}\) | \(\:{\lambda\:}_{3}\) | real part sign | |
\(\:{E}_{1}\left(\text{0,0},0\right)\) | \(\:V\left(-{C}_{p}\right)\) | \(\:V\left(-{C}_{h}\right)+V\left({M}_{h}\right)\) | \(\:{P}_{g}+V\left({M}_{g}\right)+{P}_{h}+V\left(-{C}_{g}\right)\) | \(\:(-,U,U)\) |
\(\:{E}_{2}\left(\text{1,0},0\right)\) | \(\:V\left({M}_{p}\right)+V\left(-{C}_{p}\right)\) | \(\:-V\left({M}_{h}\right)-V\left(-{C}_{h}\right)\) | \(\:V\left({M}_{g}\right)-{R}_{h}+V\left(-{C}_{g}\right)\) | \(\:(U,U,U)\) |
\(\:{E}_{3}\left(\text{0,1},0\right)\) | \(\:-V\left(-{C}_{p}\right)\) | \(\:{P}_{h}+V\left({M}_{h}\right)+V\left(-{C}_{h}\right)\) | \(\:{P}_{g}-{R}_{p}+V\left({M}_{g}\right)+V\left(-{C}_{g}\right)\) | \(\:\left(+,U,U\right)\) |
\(\:{E}_{4}\left(\text{0,0},1\right)\) | \(\:{R}_{p}+V\left(-{C}_{p}\right)\) | \(\:-{P}_{g}-{P}_{h}-V\left({M}_{g}\right)-V\left(-{C}_{g}\right)\) | \(\:{P}_{h}+{R}_{h}+V\left(-{C}_{h}\right)+V\left({M}_{h}\right)\) | \(\:(U,U,U)\) |
\(\:{E}_{5}\left(\text{1,1},0\right)\) | \(\:-V\left({M}_{p}\right)-V\left(-{C}_{p}\right)\) | \(\:-{P}_{h}-V\left(-{C}_{h}\right)-V\left({M}_{h}\right)\) | \(\:V\left({M}_{g}\right)-{R}_{h}+V\left(-{C}_{g}\right)\) | \(\:(U,U,U)\) |
\(\:{E}_{6}\left(\text{1,0},1\right)\) | \(\:V\left(-{C}_{p}\right)+V\left({M}_{p}\right)\) | \(\:{R}_{h}-V\left({M}_{g}\right)-V\left(-{C}_{g}\right)\) | \(\:-{P}_{h}-{R}_{h}-V\left(-{C}_{h}\right)-V\left({M}_{h}\right)\) | \(\:(U,U,U)\) |
\(\:{E}_{7}\left(\text{0,1},1\right)\) | \(\:-{R}_{p}-V\left(-{C}_{p}\right)\) | \(\:{P}_{h}+{R}_{h}+V\left({M}_{h}\right)+V\left(-{C}_{h}\right)\) | \(\:{R}_{p}-{P}_{g}-V\left({M}_{g}\right)-V\left(-{C}_{g}\right)\) | \(\:(U,U,U)\) |
\(\:{E}_{8}\left(\text{1,1},1\right)\) | \(\:-V\left(-{C}_{p}\right)-V\left({M}_{p}\right)\) | \(\:{R}_{h}-V\left({M}_{g}\right)-V\left(-{C}_{g}\right)\) | \(\:-{P}_{h}-{R}_{h}-V\left(-{C}_{h}\right)-V\left({M}_{h}\right)\) | \(\:(U,U,U)\) |
\(\:{E}_{9}\left({x}_{1},{y}_{1},{z}_{1}\right)\) | \(\:{\lambda\:}_{1}=-{\lambda\:}_{2}=\) \(\frac{-{R}_{h}*\sqrt{{\text{z}}_{1}*{\text{x}}_{1}*\left(1-{\text{z}}_{1}\right)\left(V\left({M}_{g}\right)-{R}_{h}+V\left(-{C}_{g}\right)\right)*{\left({P}_{g}+{R}_{h}-{R}_{p}\right)}^{2}}}{{P}_{g}*{R}_{h}-{R}_{h}*{R}_{p}+{R}_{h}^{2}}\) | \(\:-N/({P}_{g}*{R}_{h}-{R}_{h}*{R}_{p}+{R}_{h}^{2})\) | \(\:(+,-,+)\) |