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Accurate identification of Mpox is essential for timely diagnosis and treatment. However, traditional 
image-based diagnostic methods often struggle with challenges such as body hair obscuring skin 
lesions and complicating accurate assessment. To address this, the study introduces a novel deep 
learning-based approach to enhance Mpox detection by integrating a hair removal process with an 
upgraded U-Net model. The research developed the “Mpox Skin Lesion Dataset (MSLD)” by combining 
images of skin lesions from Mpox, chickenpox, and measles. The proposed methodology includes a pre-
processing step to effectively remove hair from dermoscopic images, improving the visibility of skin 
lesions. This is followed by applying an enhanced U-Net architecture, optimized for efficient feature 
extraction and segmentation, to detect and classify Mpox lesions accurately. Experimental evaluations 
indicate that the proposed approach significantly improves the accuracy of Mpox detection, surpassing 
the performance of existing models. The achieved accuracy, recall, and F1 scores for Mpox detection 
were 90%, 89%, and 86%, respectively. The proposed method offers a valuable tool for assisting 
physicians and healthcare practitioners in the early diagnosis of Mpox, contributing to improved 
clinical outcomes and better management of the disease.
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Mpox is fast becoming a global concern due to the speed of its spread and symptoms1. This virus shares 
evolutionary commonalities with smallpox and cowpox. Rats and monkeys are significant vectors for the illness2. 
The virus was first discovered in monkeys in 19583 at a lab in Copenhagen, Denmark. In 1970, while attempts 
to eliminate smallpox were ramping up, reports of Mpox emerged in the Democratic Congo4. Infections can be 
transferred by respiratory droplets, saliva, or nasal secretions5. Transmission via animal bites is also possible. 
Patients with Mpox encounter a wide range of pains, weariness, and red lumps on the skin over time6. Despite 
growing reported cases, Mpox has not caused disruptions like COVID-197. The disease outbreak has been more 
devastating in developing countries, especially in Africa8, and the ailment currently has no cure9. However, 
immunization approaches are being used to mitigate the associated risks of Mpox10. The use of technology can 
offer assistance in curtailing or managing the disease. The use of Artificial intelligence (AI) algorithms has the 
potential to improve the treatment of chronic diseases. This study explored the possibility of a Deep learning 
algorithm in diagnosing or detecting Mpox.

The similarity of Mpox with other related diseases like chicken pox makes it more challenging to detect. 
However, lymph node swelling often distinguishes it from other poxes11,12. To diagnose Mpox, medical 
personnel will take a tissue sample from a patient with an active illness in one part of their body. The material 
is subsequently transferred to a lab where polymerase chain reaction (PCR) is used to analyze it13. This 
examination is notoriously time-consuming and costly. The current state of Mpox treatment is hopeless due to 
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the lack of an effective antiviral medication14,15. Researchers must devise a reliable method of diagnosing Mpox 
before proceeding with data collection and a clinical trial. Technology advancements offer more effective ways 
to improve monkey pox care16. Clinical adoption of Machine learning as a valuable decision-making tool has 
increased the ability of doctors to provide safe, accurate, and quick imaging solutions17. For instance, a study by18 
created CAD that showed promise in detecting breast cancer quickly. The potential of emerging technologies 
could also be leveraged in managing the threat of Mpox19.

This study utilized a deep learning approach. Deep Learning is a branch of AI that helps develop models 
by automatically extracting features, training them without human input, and generating output. Medical 
practitioners are already using imaging techniques of many types to aid in the diagnosis of a wide range of 
disorders, from brain cancer to other respiratory ailments like pneumonia TB, and even COVID. Recently, 
image interpretation has been the subject of substantial research20. There are many Mpox cases but not enough 
diagnostic tools. Thus, this is an area that needs attention. The need for more highly trained medical professionals 
has made it challenging to staff every hospital with a specialist. The deep learning model may also help with 
other problems, such as a shortage of RT-PCR kits, unreliable test findings, expensive prices, and lengthy wait 
periods. Researchers have looked into deep learning strategies to discover if machine learning may help build an 
effective triage method for diagnosing Mpox disease21.

The recent global outbreaks of Mpox have highlighted the importance of rapid, accurate diagnostic methods, 
particularly those based on dermatological examinations. Mpox is often characterized by discrete skin lesions, 
making visual diagnosis the preferred method; however, overlapping symptoms with other skin disorders 
might complicate clinical identification. The traditional manual Hair Removal and Skin Lesion Analysis in 
Mpox Detection is labor-intensive and prone to subjective mistakes, highlighting the importance of automated, 
dependable techniques. In this area, deep learning algorithms provide promising answers by allowing for 
efficient lesion identification and categorization. Nonetheless, skin lesion analysis faces major hurdles, including 
differences in lesion appearance, the existence of occlusions such as body hair, and uneven picture quality. 
These difficulties may mask important traits required for an appropriate diagnosis. Also, Despite substantial 
advances in medical image processing, hair removal, and lesion segmentation in dermoscopic images continue 
to pose significant hurdles. Traditional image processing algorithms frequently struggle with the complexity and 
diversity of skin pictures, and many contemporary deep learning approaches either ignore hair artifacts or fail 
to obtain exact lesion boundaries. This gap underlines the critical need for more advanced, robust deep learning 
models that can manage both hair removal and accurate lesion segmentation, boosting diagnostic reliability and 
practical application. Addressing these problems, this work introduces a unique deep learning strategy that uses 
an upgraded U-Net model created specifically for effective hair removal and robust skin lesion segmentation, 
with the goal of improving the precision and reliability of Mpox identification from dermatological images.

Problem statement
The superior learning potential of especially variants of Networks (CNNs) has revolutionized several arenas 
of medical research in recent years. These deep networks can analyze pictures in layers, automatically identify 
prominent characteristics, and learn to determine the ideal task illustrations by training them with vast data. 
The usefulness is constrained, however22, by the essential for massive volumes of data and lengthy training 
using specialized computer resources. Since impartial, uniform medical data might be hard to come by, 
employing accelerators (e.g., GPU, TPU) to speed up the process is a partial solution. Adding new samples 
to an existing dataset by making small adjustments to the current data is known as data augmentation. When 
there is not enough information, researchers often turn to transfer learning23. This technique uses a (CNN) 
model with a dataset and uses that model’s prior knowledge to learn about a new context using a much smaller 
dataset24. Challenges arise when questions of confidentiality and reliability are factored in. In addition, relative 
variability may persuade a bias in the dataset due to the high frequency of Mpox in under-developed African 
countries. This study attempted to leverage the power of algorithms to improve Mpox detection and also support 
previous efforts25 toward harnessing the potential of technology to enhance the timely detection of diseases and 
interventions.

The objective of the research work
This study attempted to detect Mpox using photographs from a recently created collection aptly titled Mpox Skin 
Photographs collection. The key contributions of the study are:

•	 Create a novel picture collection that can train an algorithm to identify Mpox patients from photographs or 
patient’s skin reliably.

•	 Development of an improved U-Net to classify Mpox from fused features.
•	 Early detection of Mpox using deep learning technique.
•	 Presents a model to help health experts to improve treatment outcomes.

Organization of the research work
This paper is organized as follows: The history of the illness and its detection methods are presented in Section 
“Introduction”. In Section “Related works”, we deliberate relevant works of current models that highlight the 
gaps in our knowledge. Section “Related terminologies” provides a comprehensive overview of the available 
pre-trained models, while Section “Materials and methods” explains and illustrates the suggested model. 
Section “Experimentation and results” depicts the validation investigation of the proposed technique using 
current models and discusses the consequences. In Section “Conclusion and future scope”, the consequences 
are obtainable.
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Related works
Sitaula et al.26 conducted a study to test Deep learning models for identifying the Mpox virus. Their model 
showed a precision score of 85.44%, a recall score of 85.47%, an F1 score of 85.40%, and an accuracy score of 
87.13%. The study proved that machine learning models have the potential for the management of Mpox.

Jaradat et al.9 investigated and compared the accuracy of two pre-trained models in recognizing pox. These 
models were MobileNetV2, and EfficientNetB3. To assess the usefulness of the models, several metrics, such as 
accuracy, recall, precision, and F1-score, were utilized. During our tests, the MobileNetV2 model had the best 
levels of accuracy (98.16%), recall (0.96), and precision (0.99), as well as the highest F1-score (0.98). During 
the validation process using a variety of datasets, they achieved the highest level of accuracy, scoring 0.94%. 
Regarding the classification of mpox photos, our research indicates that the MobileNetV2 method is superior 
to the performance of other models presented in the scholarly literature. These findings suggest that machine 
learning technologies may be effective in the early detection of pox. Because our system worked well on both the 
training set and the test set for pox classification, it is probably a helpful tool for efficient clinical diagnosis. This 
is because pox did well on both sets.

The dataset produced by Ahsan et al.27 is now obtainable for transfer from our shared repository on GitHub. 
This provides a more secure manner of accessing and spreading such data to create and deploy machine learning 
models since it allows the dataset to be created using photographs gathered from various open-source and internet 
portals that do not levy any limitations on use, even for profitable reasons. Across the course of two independent 
research, we propose and evaluate an updated version of the VGG16 model. Our initial computational results 
allow us to suggest a model that has the potential to accurately identify Mpox patients with an accuracy of 
971.8% (area under the curve = 97.2) and 880.8% (area under the curve = 0.867), respectively, for Studies 1 and 
2. We use a technique called Explanations, or LIME for short, to explain our model’s prediction and feature 
extraction to shed more light on the peculiarities of the Mpox virus’s emergence.

Haque et al.28 have linked deep-based procedures with a convolutional block attention area of the feature 
maps to the behavior of an image-based classification illness. This was done to do an image-based classification 
of the Mpox sickness. VGG19, Xception, and DenseNet121 are the names of the five deep-learning models that 
we created and evaluated as part of this work. A construction consisting of Xception-CBAM-Dense layers has a 
validation accuracy of 83.89% compared to other models to diagnose human Mpox and other infections.

Alrusaini29 has implemented two different convolutional neural network (CNN) models, GoogLeNet and 
ResNet50, to extract information from the photographs. The photographs were analyzed using the principal 
component method to identify characteristics, and classification system models such as InceptionV3, ResNet50, 
VGG-16, SqueezeNet, and Support Vector Machines were utilized, among others. The results showed that both 
strategies successfully achieved the desired results. Despite this, the VGG-16 model yielded the best results 
(accuracy = 0.96, F1-score = 0.92). The findings of this study add to the growing body of data suggesting that 
AI may be useful in diagnosing Mpox. If authorization is given by the relevant, it can facilitate the quicker and 
more convenient diagnosis of illnesses. When it is developed into a smartphone app, regular people may use it 
to make preliminary diagnoses of themselves before going to a medical professional or a hospital. The study’s 
author proposes broadening the scope of already available picture datasets and undertaking more research into 
the models to provide more reliable statistical evaluations.

Deep learning models pre-trained, including VGG-19, VGG-16, and EfficientNet-B0, were utilized to 
determine whether cowpox, smallpox, or chickenpox cases included Mpox. MobileNet V2 achieved the highest 
accuracy in terms of classification, reaching 99.25%, according to the results of experimental studies conducted 
on both the primary and supplementary datasets. On the other hand, the VGG-19 model was successful in 
accurately classifying 78.82% of the raw data. Since it considered these results, the shallow model performed 
better when smaller image datasets were used. As more data was added, the deep learning models’ weights 
were fine-tuned to provide the best possible results, which led to an increase in the effectiveness of deep neural 
networks.

Altun et al.30 came up with the idea for the hybrid function learning transfer learning model with changeable 
hyperparameters. The MobileNetV3-s model, the EfficientNetV2 model, the ResNET50 model, the Vgg19 
model, the DenseNet121 model, and the Xception model have all been modified to utilize this approach and in 
our research, evaluation, and comparison criteria included the (AUC), accuracy, recall, and loss scores, as well 
as the F1 score. The optimized hybrid MobileNetV3-s model had the greatest performance overall, with a mean 
F1-score of 0.98 and recall of 0.97, respectively. During this study, a custom CNN model was developed using 
convolutional neural networks, hyperparameter optimization, and a hybrid model. The results obtained from 
this model were very impressive. The unique CNN model architecture that we have developed demonstrates the 
efficiency and usefulness of deep learning approaches for classification and discrimination.

Uysal22 has developed a hybrid artificial scheme that can recognize photographs of Mpox lesions on the 
skin. These pictures of skin were obtained from an image repository that is open to the public. The multi-class 
structure of this dataset includes categories of information about chickenpox, measles, Mpox, and normal. It 
can be seen in the original dataset that there is an imbalance in the distribution of the data between the classes. 
This inconsistency was resolved by employing several different strategies for enhancing and processing data. 
After completing these stages, cutting-edge deep-learning models were utilized to look for indications of Mpox. 
For this work in particular, we produced a hybrid model by combining the two deep learning models that 
performed the best with the (LSTM) model. The result was enhanced classification results. The hybrid AI system 
recommended for detecting Mpox achieved an accuracy rate of 87% during testing, and it obtained a score of 
0.8222 on Cohen’s kappa.

Uzun Ozsahin et al.21 showed a study in which they analyzed two digitized skin photographs. One of the 
photos depicted Mpox, while the other one depicted chickenpox. In this particular instance, we employed a 
CNN with a depth of two and four convolutional layers. We used three layers, one each after the additional, third, 
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and layers. Ultimately, we examined how well our model achieved compared to the most advanced deep-learning 
skin lesion detection algorithms currently available. The performance of every DL model was outperformed by 
our proposed CNN model, which achieved an accuracy of 99.60% on the test. In addition, a total score of 99.00% 
was achieved when accuracy, recall, and F1 were all added together. Because of this, Alex Net was able to attain 
a level of accuracy of 98.00%, which was higher than that of any other pre-trained model.

The VGGNet trained with VGG16 and VGG19 achieved the poorest overall, with an accuracy of only 80%. 
Because it is based on an innovative mix of model and image augmentation practices, the CNN model that has 
been proposed is generalized, and it prevents overfitting. Using this method, digital skin photos taken from 
patients with Mpox may be evaluated promptly and with high precision. It has been recommended and evaluated 
that a deep learning-based CNN perfect called MonkeyNet, a modified version of Bala et al.'s24 DenseNet-201 
model, be used. In this study, a deep network was suggested, which attained an accuracy of 93.19% when using 
the original dataset and 98.91% when using the upgraded dataset to diagnose Mpox sickness. This version 
displays the Grad-CAM, which indicates how effective the model is and displays the infected regions in each 
class photo. The proposed approach would not only help to stop the spread of Mpox, but it will also make it easier 
for medical personnel to make an accurate analysis of the sickness at an earlier stage.

Almufareh et al.31 present a way for diagnosing non-contact and non-invasive MPX, in addition to being 
more intelligent and secure than traditional methods by evaluating pictures of skin lesions. This method may 
be found in their work. Deep learning algorithms are utilized in the proposed method to determine whether 
or not skin lesions are positive for MPXV. We use two datasets (MSLD) and Dataset (MSID) to evaluate the 
proposed strategy’s effectiveness in skin lesions caused by Mpox. When comparing the results of several deep 
learning models, sensitivity, specificity, and total accuracy were the metrics that were utilized. The technique 
recommended to identify Mpox has yielded extremely positive results, demonstrating that it can be used broadly. 
Even in undeveloped countries where laboratory facilities are scarce, this ingenious and inexpensive solution has 
the potential to be put to good use.

An ensemble learning-based methodology is proposed by Pramanik et al.32 to determine whether skin 
lesions in photographs contain the Mpox virus. Initially, we evaluate three pre-trained base learners to acquire 
the best possible performance on the Mpox dataset. These three base learners are Inception V3, Xception, and 
DenseNet169. In addition, we feed the probabilities derived from these deep models into our ensemble system 
in the form of inputs. We present a Beta function-based normalization scheme of probabilities to combine the 
outcomes to learn an effective aggregation followed by the ensemble. This is done to achieve the goal of learning 
a compelling combination. Using a methodology known as five-fold cross-validation and a lesion available 
to the general public, the system is subjected to a comprehensive test. The model received average scores of 
93.39 for accuracy, 88.91 for precision, 96.78 for recall, and 92.35 for F1 overall. Yasmin et al.33 are working to 
find a solution to this problem by developing a diagnostic model for Mpox through the application of image-
processing procedures. To achieve this goal, many data augmentation procedures have been utilized to remove 
the likelihood of the perfect overfitting. After cleaning the data, we used the transfer-learning method to input 
it into six distinct Deep Learning (DL) models. After analyzing each model’s precision, recall, and accuracy 
performance matrices, we selected the one that provided the best overall results. “PoxNet22” was proposed as a 
solution to improve upon the model that PoxNet22 is superior to other methods of Mpox classification because it 
achieves perfect scores on all three measures of precision, recall, and accuracy. When it comes to classifying and 
diagnosing Mpox sickness, medical professionals will find the findings of this study to be quite helpful.

Ariansyah et al.34 provide an image classification that may be utilized to identify the symptoms of the 
Mpox strategy to model pictures. This approach was built on a Network architecture and included VGG-16 
transfer learning. A model developed on one dataset may be adapted to another with the help of a transfer 
learning technique. Because of this, the model could gain knowledge from the previous data and then apply that 
knowledge to the new data. Researchers have recommended employing deep learning to anticipate new data 
because it is so excellent at spotting patterns in images that are similar to one another. As a direct result of this, 
the VGG-16 model can achieve a highly acceptable 83.333% accuracy at the epoch of 15.

REN and Emrullah35 have attempted to identify Mpox using photo datasets available on Kaggle by utilizing 
Convolutional Neural Network models. The models are referred to by their names, which are EfficientNetB3, 
ResNet50, and InceptionV3. The findings from the three models show that resNet50 achieves the highest 
performance levels overall. The accuracy of resNet50, 94.000%, makes it the most accurate model. It is possible 
to evaluate the usefulness of the models along four different aspects. Some of the terms that are commonly used 
for them are precision, recall, F1, and accuracy. These models demonstrate that it is feasible to classify Mpox 
accurately. Therefore, these prototypes can be utilized for the projects now being worked on.

Farouk and Abd Elaziz36 have attempted to employ various models in artificial intelligence to help many 
medical professionals categorize Mpox. Deep learning (DL), an area of intelligence, has been suggested as a 
potential solution to this problem. To improve the data and draw out more features for the suggested model, 
certain VGG16 and Inception models are applied. While (SVM) was used for classification, Particle Swarm 
Optimization (PSO) was used for feature selection and optimization of the neural network’s parameters. Both of 
these methods were used in conjunction with one another. In the end, the model was evaluated using a confusion 
matrix, which showed that although the VGG16 model had an accuracy of 85%, the new accuracy had grown to 
94.5% following enhanced PSO. The model’s accuracy increases to 90.2% once improved PSO is adopted, from 
75.2% in the Inception state when it was first used. These findings can help classify Mpox instances and diagnose 
those patients. It is common knowledge that maintaining good hygiene, avoiding contact with animal faeces, and 
being vaccinated to strengthen one’s immune system effectively prevent disease transmission.
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Research gap
If we want to lessen the sum of resources wanted for dispensation without losing the relevant feature dataset, a 
feature extraction approach that extracts novel features from the original dataset is highly useful. As a bonus, 
feature extraction can cut down on the amount of unnecessary features for a specific research project. Early 
features undergo a stunning metamorphosis into more significant characteristics when they are subjected to 
feature extraction. To reduce the high dimensionality vector, feature extraction is used to generate new features 
dependent on the original set. Algebraic transformation is used in the transformation process, and optimization 
criteria are used to determine the final form37. In addition, feature extraction can manage crucial data while 
confronting problems with many dimensions38. These dimensionality reduction methods preserve the relative 
distance among features and the underlying potential structure of the original data to minimize the sum of 
information lost during the feature translation process39. Compared to feature selection approaches, feature 
extraction is more robust against overfitting and yields accurate classification results. However, sometimes the 
data description is lost in specific datasets, and the cost of this operation is high40. Techniques now demonstrate 
conclusively that pre-trained models may serve as feature extraction models. However, only a single model 
is considered for feature extraction. However, the study also considered an ensemble of pre-trained feature 
extraction and classification models. Furthermore, current models are considered part of the hair removal 
process in skin photos. This is a crucial pre-processing step in improving categorization. Because hair in photos 
might mislead the model to incorrectly label cases of Mpox as healthy and prevent an appropriate diagnosis, to 
prevent this, researchers thought of using a deep learning model to filter out hair before using the image. As a 
result, the study successfully diagnosed Mpox and improved the classification accuracy rate relative to previous 
models.

Related terminologies
A technique used in deep learning and machine learning, transfer learning replicates the results of one model in 
another. By reusing a model that has already been trained for a different purpose, we can address all or part of a 
problem. In transfer learning, machines apply their knowledge to make more accurate predictions in unrelated 
tasks. The most notable advantages of transfer learning are its short training time, improved neural network 
performance, and lack of need for massive volumes of data. The state- that we have chosen is briefly described 
below.

VGGNet
Andrew Zisserman and Oxford University introduced the VGGNet CNN architecture in 2014. To create it, we 
deepened the publicly available CNN architecture to 16 or 19 layers, thus the names VGG-16 and VGG-19.There 
are 138 parameters in the VGG-16 architecture and 144 million in the VGG-19. A total of 13 convolutional layers 
make up the VGG-16 model. VGG uses a smaller filter size (3 3) than other methods. Its effective receptive field 
is equivalent to a single 77 convolutional layer. Layers make up the VGG-19 model. Different implementations 
of VGGNet use two 4096-channel layers and a further 1000-channel layer to prepare for 1000 labels.

ResNet
In 2015, Kaiming Huang established ResNet. Each framework layer is then decided from the residuary 
function by referencing its input layer, which is the concept behind it. With a reduced error rate of 3.57%, 
this network triumphed in the 2015 ILSVRC competition. At this stage, the ResNet model is optimal, and 
further improvements in accuracy are possible. We have utilized ResNet-18 and ResNet-101, all of which have 
been explicitly pre-trained for this purpose. The fundamental design of these networks is outlined in Table 1. 
The network takes in data at a 224-by-224 input size. The first convolutional layer and the last three layers are 
attached in the specified topologies. The depth of a deep network may be adjusted by increasing the number of 
its internal convolution layers.

Layer name ResNet-18 ResNet-50 ResNet-101 Size of output

Conv1 7 × 7, 64-Stride 2
3 × 3 = -max pool, Stride 2

7 × 7, 64 Stride 2
3 × 3 max pool, Stride 2

7 × 7, 64 Stride 2
3 × 3 max pool, Stride 2 112 × 112

Conv2_x [■(3 × 3,256@3 × 3,256)] × 2 [■(1 × 1,256@3 × 3,256@1 × 1,1024)] ×  6 [■(1 × 1256@3 × 3,256@1 × 1,1024)] ×  23 14 × 14

Conv3_x [■(3 × 3,512@3 × 3,512)] × 2 [■(1 × 1,512@3 × 3,512@1 × 1,2048)] ×  3 [■(1 × 1512@3 × 3512@1 × 1,2048)] ×  3 7 × 7

Conv4_x
[

3 × 3,64
3 × 3,64

]
× 2

[
1 × 1,64
3 × 3,64

1 × 1,256

]
× 3

[
1 × 1,64
3 × 3,64

1 × 1,256

]
× 3 56 × 56

Conv5_x
[

3 × 3,128
3 × 3,128

]
× 2

[
1 × 1,128
3 × 3,18

1 × 1,512

]
× 4

[
1 × 1,128
3 × 3,128
1 × 1,512

]
× 4 28 × 28

Pooling Average pooling

FC Fully connected

Softmax Softmax

Table 1.  The RestNet-18, 50 and RestNet-101 constructions.
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GoogLeNet
CNN, developed by Google using the Inception framework, is called GoogLeNet. The ILSVRC 2014 competition 
was won by GoogLeNet (Inception V1). The 6.67% mistake rate it attained is almost as low as the human 
performance judges must now evaluate for competitions. The network may pick from various convolution filter 
blocks thanks to the Inception module. The maximal max-pooling layer with stride 2 is occasionally used to 
halve the grid’s resolution by the Inception network. GoogLeNet has 22 deep CNN layers in its design but only 
4 million parameters, down from 60 million in AlexNet. Four separate branches grow out of it at the same time. 
Convolution layers are utilized in the first three levels with kernel sizes of 1, 3, and 5 pixels, respectively. Using 
a window size of 11, two intermediary branches in the input channel can be convolved to simplify the frame. 
Each of the four branches is given sufficient padding to ensure the inputs and outputs have identical heights and 
widths. When the output from each branch is connected, an inception block is formed. There are over 6.8 million 
tunable values within it. Six convolutional layers, three 11 (for dimensionality reduction), three 33, and four 77 
convolutional layers are included in the GoogLeNet architecture’s nine inception blocks, along with four layers 
of max-pooling, two levels of normalization, average pooling, and an FC layer. All convolution layers use the 
ReLU activation function, while the FC layer employs drop regularisation. In the last layer, we employ a softmax 
function.

Inception-ResNet-v2
This network is a variation of Inception-v3 that incorporates elements of the ResNet architecture. Batch 
normalization is only implemented in the Inception-ResNet-v2 standard layers. Residual modules can expand 
the networks’ depth and the sum of inception blocks. One stem block (6 convolutional blocks) and three 
inception sets (max pooling layer) comprise the Inception-ResNet-v2 architecture. There are five modules and 
seven convolution blocks in the first layer. Two depletion blocks with unique convolutional layers, average 
pooling layers, and FC layers, as well as ten inception modules with five convolution blocks in the first block and 
five inception units with four blocks in the third and final block. The function is used at the output layer.

Inception-v3
Standardization for the side head layer, improved label smoothing, and the use of auxiliary classifiers to further 
broadcast label info across the network are all features of the CNN architecture of the Inception series that are 
also present in this network. To train, Inception-v3 employed 1,000,000 photos from thousands of classes in the 
ImageNet datasets. Inception v3 achieved an accuracy of over 78.1% on the ImageNet dataset. This structure 
represents the culmination of several theories developed by many scientists throughout time. Convolutional 
layers, average pooling layers, maximum pooling layers, concatenation layers, dropout layers, and FC layers are a 
few of the symmetric and asymmetric building elements that comprise the architecture. Since it is well suited for 
activation input, the design extensively uses the batch norm distribution norm. Softmax is used to determine the 
loss. Both the number of learnable limits and the degree of network complexity have been reduced in this model.

Materials and methods
Dataset
As a result of its fast spread, Mpox has caused public health issues in more than 65 countries. Stopping its fast 
development requires prompt clinical identification. Many biochemical assays, including (PCR) tests, are not 
readily available41. Although, using computer vision techniques, Mpox can be detected by looking at pictures of 
skin lesions. However, at present, no such data is available. Thus, the “Mpox Skin Lesion Dataset (MSLD)” was 
sourced from Kaggle and is publicly available at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​n​a​f​​i​n​5​9​/​M​​p​o​x​-​s​k​​i​n​-​l​e​s​i​o​n​-​d​a​
t​a​s​e​t. The study acknowledges that Chickenpox and Measles lesions visually resemble Mpox lesions (specifically 
the rash and pustules in the early stages). As a of this resemblance, we included images of Chickenpox and 
Measles in the Mpox classification task—not because those diseases are Mpox, but to help the classifier learn to 
distinguish between similar-looking skin conditions. Thus, the dataset includes 228 total images: 102 images are 
labeled as Mpox (positive cases). At the same time, 126 images are labeled as other skin lesions, which include 
Chickenpox and Measles (negative or non-Mpox cases). Including these similar diseases makes the classifier 
more robust. It ensures that the model learns not just to recognize Mpox but also to differentiate it from visually 
similar diseases. The images of actual Mpox cases used in the study are shown in Fig. 1

Data preprocessing using
This study employs a data augmentation approach for preprocessing and a deep learning model for hair removal.

Augmentation technique
The ImageDataGenerator from the Keras image processing package is used to upsurge the extent of the dataset. 
The ImageDataGenerator function allows various manipulations, including mirroring, flipping, and resizing. The 
ImageDataGenerator facility is described in42. The picture data in this work is enhanced using the parameters 
listed in Table 2. As proposed in43, the generator and facility types are randomly picked. Images that have been 
enhanced using Image Generator or another tool are saved here so that the process may be repeated easily. After 
processing, there was a 14-fold increase in the number of photographs. There are 1428 images in the “Mpox” 
category and 1764 in the “Others” category.

Algorithm 1 shows the algorithm for data augmentation procedures used in this study.
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Algorithm 1.  For Code Augmentation.

Hair removal process using deep learning model
We provide a reconstruction loss function and discuss our proposed deep-learning model for removing hair 
from the input photos. We have developed and proposed a convolutional encoder-decoder architecture to 
remove hair from input pictures. Figure 2 shows the construction of a 12-layer model. To train our model, we 

Generator Kind Facility

Width shift Up to 2%

Fill mode Reflective

Horizontal flip True

Rotation range arbitrarily 0–45°

Zoom variety 2%

Height shift Up to 2%

Shear range 2%

Table 2.  Data augmentation procedures used in this study.

 

Fig. 1.  Mpox Images adapted from Kaggle dataset49.
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employ picture pairings consisting of a hairless reference image and an image with synthetic hair. The result is a 
hair-free version of the rebuilt image. The network uses our suggested loss function during training to determine 
how well the output picture compares to the hairless reference. We then detail the suggested model and loss 
functions for this important job.

Our model begins with an encoder network as its initial component. The output is a concealed characteristic, 
and the input size is 512 by 512 by 3. In its search for these traits, the encoder often disregards background noise. 
We want the network to disregard the hair as background noise and provide a picture of smooth skin as its 
output. A decoder, which attempts to fill in the blanks in the model’s high-level feature representation, is located 
in the model’s second layer. The final product is a skin-hair-free, 512-by-512-by-3 replica of the original image. 
There are two blocks in both the encoder and decoder. To lower the spatial resolution, the encoder uses a down-
sampling operation performed by a two-stride 3 3 convolution on the output of the first block and the output of 
the second block, respectively.

In contrast, the decoder up-samples the feature map in each block using a 3 × 3 deconvolution with 2 × 2 
strides in each dimension. The up-sampled output is then joined with the feature map from the encoder’s layer 
with the same resolution through a skip link. As a result, the decoder’s ability to restore visual information is 
enhanced. The combined data is then subjected to a convolution with three identical terms. The feature map is 
then convolved by three times the sum of output channels in the final block. This design was selected because we 
want to see how well autoencoders perform as a denoising solution, which is why we use them. Our little data 
suggests that a smaller network is better suited to learn the task at hand successfully.

Reconstruction loss function  The network is instructed in its learning by a criteria called the loss function, 
which is a numerical representation of the model’s faults. It is calculated by comparing the network’s prediction 
to the matching hairless Ground Truth (GT) picture. Several different loss functions have been put to use in 
picture restoration projects. The (MSE) and the (MAE) are examples of common types of loss. The disparity be-
tween the two pictures’ corresponding pixels is the sole determinant of these metrics. Since a pixel’s noise should 
be treated equally from the inaccuracy of its adjoining pixels, the results may need more quality from a human’s 
perspective. Other loss measures, such as the (SSIM) and the Multiscale Structural Similarity Metric (MSSSIM), 
dependent on local brightness, contrast, and structure, have been proposed to address these shortcomings.

Inspired by the findings of Liu et al. in44, we suggest capturing the best aspects of the loss functions that assess 
statistical variables locally combined with losses to create outcomes that appeal to a human observer.

This leads us to the following definition of our reconstruction loss:

	 Lrec = aLforgrond
1 + βLbackground

1 + γLcomposed
2 + δLSSIM + λLtv � (1)

where α, β, γ; δ and λ are linear mixture weights that characterize the renovation loss function. Due to the high 
cost of doing a grid search and the large sum of searchable parameters, we decided on a random hyperparameter 

Fig. 2.  The architecture of the proposed network.
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search. Here is how we did it: We ran our model 10 times, each giving each weight a random value between 0 
and 10.

The term Lforgrond
1  is the L1 distance among the original and the forecast of the network only among those 

pixels fitting to the hair areas.
Next, background estimates the L1 distance among the network’s forecast only among the contextual pixels, 
which is for regions.
Then, Lcomposed

2  computes the L2 limited to the hair areas but standardizes over all pixels rather than just 
the number of hair pixels. The loss function is computed using the SSIM metric for the entire picture, thus 
the name LSSIM.Last but not least, we utilize a total variation to ease the change in projected values for hair 
patches based on their surroundings.

Features extraction using deep learning model
After the photos have been preprocessed, features are extracted using one of five distinct pre-trained models 
and then fused into a single form before being passed on to the classifier. Pre-trained models are described in 
the section on related terminology, where the fusion process is also discussed. In pattern recognition, here is 
where the spotlight shines brightest. Fusion of characteristics from many levels or branches. Concatenation 
and summing are two distinct techniques that can be used to conduct feature fusion. We use the (CSID) fusion 
method to establish connections between the feature vectors we have chosen in the matrix. Equation (2) provides 
an assessment of the merged features:

	
χo,p = minξo,p

∥∥∥∥∥Ol −
Qt∑

p=1

ht,p ∗ ξt,p −
Mo∑

m=1

lo,p ∗ ξo,p

∥∥∥∥∥
2

2

+ ♢0

Qt∑
p=1

∥ξt,0∥11� (2)

This operation endures till all pairs are associated. χo,p is the last fused vector. The fused features from the five 
pre-trained models serve as input to the encoder part of the improved U-Net architecture.

Classification using improved U-Net architecture with VGG-16
Two- and three-dimensional U-Net modified models45–50 have been used in research on Mpox. The fundamental 
capability of U-Nets to generate pixel-wise masking for each duplicate object is the driving force behind their 
use. By assigning each pixel in each image to one of two categories—positive or negative—the goal is to notice 
and identify the positions and forms of various items in the image. In this way, the model establishes a region-
wise boundary as interest. The Dense blocks’ contributions to feature mapping in the enhanced U-Net counters 
the vanishing gradient issue in convolutional blocks. To improve model stability and performance, the proposed 
change (a) uses dense-convolutional blocks rather than convolutional sampling, which increases feature re-
usability; (b) employs (c) incorporates Batch Normalisation (BN) layers in dense blocks. Tensor Processing Unit 
(TPU) environments are used to develop these models. It is an ASIC, or application-specific integrated circuit, 
developed for a particular purpose and built to scale computationally. It was utilized to make model preparation 
more effective, cutting down on training time by a factor of 10, and it operates ten times quicker than GPUs.

U-Net design has contributed much to the development of biomedical image processing. Encoder, bottle-
neck, and decoder are the three components that make up U-Net’s entire architecture. The first step is to feed 
the photos into the encoder. A 256-by-256 grid served as the input. Downsampling occurs in the encoder due 
to the usage of convolution and pooling. As a result of this processing, the original image size is decreased, but 
the spatial characteristics are preserved. Images are downsampled many times before being fed into a deep 
neural network. A decoder receives the pictures as input. The pictures are scaled up by the decoder, which 
employs upsampling methods. Upscaling photos often requires a deconvolution technique. Jump links connect 
the upsampling and downsampling nodes. Following upsampling operations, the network produces a picture 
containing feature masks. The optimizer, which minimizes the loss, updates the model weights with a batch 
scope of 32.

	
loss

(
h, h̃

)
= −

C∑
i=1

h̃(i)log(h(i))� (3)

where h̃(i) is the likelihood of the ith class. Classification (C) was binary: either positively or negatively labeled 
areas. Here is how to use the Adam optimizer to refresh weights and bias:

Booting of weights:

	 ρx ← 1, ρy ← 1, x ← 0, y ← 0� (4)

Inform rubrics for Adam Optimizer:
Where

	 ρx ← βxρx� (5)

	 ρy ← βyρy � (6)

	 x ← βxx + (1 − βx) ∇xJ � (7)
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	 y ← βyy + (1 − βy) (∇zJ ⊙ ∇xJ)� (8)

	
z ← z − a

(
x√

y + ϵ

√
1 − ρy

1 − ρx

)
� (9)

x, y represent vectors, respectively; βx and βy  characterize exponential decay charges for the moment vector, 
correspondingly; ρx and ρy  refer to learning rates time decay factor, correspondingly, which are similar to 
momentum and connected to the updates; α represents the learning rate (Eq. 9); ∇xJ  characterizes the gradient 
of the cost function, J; ϵ is a considerable value taken to avert separation by zero illness (Eq. 9); ⊙ mentions 
multiplication (Eq. 8) and the processes under the root are also handled element-wise (Eq. 9).

The (LR) was set to 1 × e−4 in this procedure. The sum of epochs was set to 40 per fold.
The enhanced U-Net consists of input and output layers an Encoder, Skip connections, and a Decoder. 

Upsampling and downsampling are used to create the encoder and decoder zones. Figure  3 depicts the full 
design architecture. In our improved U-Net, we incorporated dense blocks into the encoder to enhance feature 
reuse and gradient flow, inspired by the DenseNet architecture. For the decoder, we utilize a modified version 
of the VGG-16 model as a backbone for upsampling and refinement of features, leveraging its well-established 
ability to extract and preserve semantic information. While this configuration is indeed unconventional, it 
attempted to improve standard decoder designs in our application context. The layers from VGG-16 used in the 
decoder include layers such as conv3_1, conv4_1, conv5_1] adapted for upsampling via transposed convolutions. 
A layer and a batch normalization (BN) layer with a ReLU activation function make up the dense blocks. For the 
decoder part, we used VGG-16 architecture. The VGG-16 is used as a backbone within the U-Net framework, 
which receives the concatenated feature maps from the fused models. This is accomplished by imagining the 
pre-training of the aforementioned architecture in Fig. 3.

A few blocks shortened the encoder section of the current VGG-16 model. The pre-trained model was missing 
its first few layers. Horizontal and vertical edges are detected in the first layer of the perfect. The model becomes 
more sophisticated as one travels further into the network, making feature extraction easier. For nested layers, 
we use concatenation skip connections. With dense blocks, accessing many feature channels in the network’s 
final layers is possible while maintaining small models and high feature re-usability. Transpose layers, as seen in 
decoder blocks, increase the dimensionality of feature maps. The model is fed the segmentation map produced 
at the end as the region to be predicted in the output region. Finally, the model employs a softmax layer to 
determine whether a pixel has a Mpox.

Experimentation and results
Python 3.7.0 was used for our investigations, with the deep learning basis implemented in PyTorch 1.2.0.

Data splitting: The dataset was divided into 70% training, 15% validation, and 15% testing sets, ensuring 
class balance across all splits.

Parameter tuning: Hyperparameters such as learning rate, batch size, and regularization weight were 
optimized using a grid search on the validation set.

Convergence criteria: Training was stopped early if the validation loss did not improve for 10 consecutive 
epochs (early stopping), with the best model weights retained.

Fig. 3.  Proposed architecture: improved U-Net.
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Training duration: On average, training took approximately 3 h per fold using an RTX2060 graphics 
processing unit (GPU) with 6 GB of RAM and an AMD CPU R7-4800 with 2.9 GHz and 16 GB of RAM. with 
convergence typically achieved within 40–50 epochs.

Performances metrics
We utilized the measures of accuracy characteristics (AUC), F1 score (F1), precision (P), recall (R), and average 
precision (AP) to gauge how well our model performed. The e-Time, or average training time per epoch, was 
used to calculate the computational cost of training. Using Eq. (10), we can get the precision:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (10)

where TP characterizes a positive result, TN a result, and FN a negative result.
Equation (11) may be used to determine the level of accuracy:

	
P recision = T P

T P + F P
� (11)

The recall is intended by the subsequent Eq. (12):

	
Recall = T P

T P + F N
� (12)

The F1 is intended by the subsequent Eq. (13):

	
F 1 = 2 P recision ∗ recall

P recision + recall
� (13)

The AUC curves evaluate the false positive and true positive rates at various cutoffs. Precision at each threshold 
is weighted equally, which is how AP summarises a precision-recall curve.

Validation analysis of proposed classifier
Table 3 represents the analysis of a proposed classifier based on 60–40. The analysis of the ResNetmodel reaches 
an Acc value of 0.8346, an AUC rate of 0.8745, an F1 score value of 0.8085, a precision value of 0.8210, a recall 
value of 0.7964, and an AP value of 0.7431, respectively. Also, the VGGNet model reaches an Acc value of 0.8478, 
an AUC value of 0.8851, an F1 score value of 0.8187, a precision value of 0.8562, a recall value of 0.7844 and an 
AP value of 0.7661, respectively. In the next Swin Transform model reaches an Acc value of 0.8477, an AUC value 
of 0.8807, an F1 score value of 0.8284, a precision value of 0.8187, a recall value of 0.8383 and an AP value of 
0.7572, respectively. The U-Net model reaches an Acc value of 0.8479, an AUC value of 0.8913, an F1 score value 
of 0.8263, a precision value of 0.8263, a recall value of 0.8263, and an AP value of 0.7590, respectively. Moreover, 
the Improved U-Net model reaches an Acc value of 0.8688, an AUC value of 0.9058, an F1 score value of 0.8503, 
a precision value of 0.8503, a recall value of 0.8503 and finally, an AP value of 0.7886, respectively.

Table 4 signifies that the Comparative Analysis of the proposed classifier is based on 70–30. The analysis of 
the ResNetmodel reaches an Acc value of 0.8482, an AUC rate of 0.8797, an F1 score value of 0.8095, a precision 
value of 0.8151, a recall value of 0.8041, an AP value of 0.7339 respectively. After the VGGNetmodel reaches an 

Model Acc AUC F1 Precision Recall AP

ResNet 0.8482 0.8797 0.8095 0.8151 0.8041 0.7339

VGGNet 0.8451 0.8649 0.8162 0.8506 0.7844 0.7618

Swin transform 0.8583 0.8787 0.8333 0.8599 0.8084 0.7791

U-Net 0.8688 0.9058 0.8503 0.8503 0.8503 0.7886

Improved U-Net 0.8766 0.9135 0.8563 0.8750 0.8383 0.8044

Table 4.  Comparative Analysis of proposed classifier based on 70–30.

 

Model Recall Acc AUC F1 Precision AP

Swin transform 0.8383 0.8477 0.8807 0.8284 0.8187 0.7572

U-Net 0.8263 0.8479 0.8913 0.8263 0.8263 0.7590

ResNet 0.7964 0.8346 0.8745 0.8085 0.8210 0.7431

VGGNet 0.7844 0.8478 0.8851 0.8187 0.8562 0.7661

Improved U-Net 0.8503 0.8688 0.9058 0.8503 0.8503 0.7886

Table 3.  Analysis of proposed classifier based on 60–40.
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Acc value of 0.8451, an AUC value of 0.8649, an F1 score value of 0.8162, a precision value of 0.8506, a recall 
value of 0.7844, and an AP value of 0.7618respectively. Next Swin Transformmodel reaches an Acc value of 
0.8583, an AUC value of 0.8787, an F1 score value of 0.8333, a precision value of 0.8599, a recall value of 0.8084, 
and an AP value of 0.7791respectively.U-Netmodel reaches an Acc value of 0.8688, an AUC value of 0.9058, 
an F1 score value of 0.8503, a precision value of 0.8503, a recall value of 0.8503, and an AP value of 0.7886, 
respectively. Finally, the Improved U-Netmodel reaches an Acc value of 0.8766, an AUC rate of 0.9135, an F1 
score value of 0.8563, a precision value of 0.8750, a recall value of 0.8383, an AP value of 0.8044, respectively.

Table 5 above represents the experimental analysis of the proposed classifier based on 80–20. In an 
experimental analysis of the ResNetmodel reaches an Acc value of 0.8482, an AUC value of 0.8797, an F1 score 
value of 0.8095, 0.8151, a recall value of 0.8041, and an AP value of 0.7339, respectively. Next, the VGGNetmodel 
reaches an Acc value of 0.8241, an AUC value of 0.8446, an F1 score value of 0.8069, a precision value of 0.7778, a 
recall value of 0.8383, and an AP value of 0.7229, respectively. The Swin Transform model reaches an Acc value of 
0.8451, an AUC value of 0.8649, an F1 score value of 0.8162, a precision value of 0.8506, a recall value of 0.7844, 
and an AP value of 0.7618, respectively. U-Net 0.8661 model reaches an Acc value of 0.8904, an AUC value of 
0.8440, an F1 score value of 0.8625, a precision value of 0.8263, and an AP value of 0.7888, respectively. While 
the Improved U-Netmodel reaches an Acc value of 0.8871, an AUC value of 0.9088, an F1 score value of 0.8693, 
a precision value of 0.8827, a recall value of 0.8563, and an AP value of 0.8189, respectively. Figure 4 depicts the 
accuracy level in comparison to the various models. Figures 5 and 6 highlight the graphical representation of 
the proposed model in terms of AUC and F1 score analysis, respectively. Similarly, Fig. 7 indicates the model 
precision, while Fig. 8 shows the analysis of the classifier in terms of recall, and Fig. 9 depicts the graphical 
comparison in terms of AP.

Validation analysis of proposed hair removal technique
Table 6 signifies that the Analysis of DL is based on Multiclass classification. The analysis of the LR model 
reaches an accuracy of 0.8864 ± 0.0028, a precision value of 0.8604 ± 0.0032, a recall value of 0.8748 ± 0.0041, and 
an F1-score value of 0.8675 ± 0.0032 respectively. DNN model reaches an accuracy of 0.8977 ± 0.0033, a precision 
value of 0.8693 ± 0.0055, a recall value of 0.8890 ± 0.0029, and an F1-score value of 0.8790 ± 0.0040 respectively. 
After that, the MLP model reaches an accuracy of 0.7197 ± 0.0025, a precision value of 0.6364 ± 0.0044, a recall 
value of 0.6730 ± 0.0038, and an F1-score value of 0.6542 ± 0.0034 respectively. AE model reaches an accuracy 
of 0.8335 ± 0.0020, a precision value of 0.7870 ± 0.0029, a recall value of0.8158 ± 0.0030, and an F1-score 
value of 0.8011 ± 0.0024 respectively. CNN model reaches an accuracy of 0.9021 ± 0.0039, a precision value of 
0.8941 ± 0.0047, a recall value of 0.8778 ± 0.0049, an F1-score value of 0.8859 ± 0.0046 respectively.

Table 7 represents the analysis of the DL model based on Binary classification. The analysis of the LR model 
reaches an accuracy of 0.8933 ± 0.0029, a precision score of 0.8656 ± 0.0039, a recall value of 0.8795 ± 0.0037, and 
an F1 score of 0.8725 ± 0.0035 respectively. DNNmodel reaches an accuracy of 0.8990 ± 0.0063 0029, a precision 
value of 0.8791 ± 0.0065, a recall value of 0.8833 ± 0.0079, and an F1 score of 0.8812 ± 0.0069 respectively. Next, 

Fig. 4.  Accuracy Comparison.

 

Model Acc AUC F1 Precision Recall AP

ResNet 0.8482 0.8797 0.8095 0.8151 0.8041 0.7339

VGGNet 0.8241 0.8446 0.8069 0.7778 0.8383 0.7229

Swin Transform 0.8451 0.8649 0.8162 0.8506 0.7844 0.7618

U-Net 0.8661 0.8904 0.8440 0.8625 0.8263 0.7888

Improved U-Net 0.8871 0.9088 0.8693 0.8827 0.8563 0.8189

Table 5.  Experimental analysis of proposed classifier based on 80–20.
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MLPmodel reaches an accuracy of 0.7355 ± 0.0028 0029, a precision value of 0.6453 ± 0.0047, a recall value of 
0.6850 ± 0.0045, and an F1 score of 0.6646 ± 0.0038 respectively. AEmodel reaches the accuracy of 0.8438 ± 0.0064 
0029, a precision value of0.8004 ± 0.0095, a recall value of 0.8254 ± 0.0072, and an F1 score of 0.8127 ± 0.0081, 
respectively. Then, CNNmodel reaches an accuracy of 0.9179 ± 0.0044 0029, a precision value of 0.9083 ± 0.0059, 
a recall of worth 0.8917 ± 0.0057, and the F1 score of 0.8992 ± 0.0053 respectively.

Quantitative segmentation results
We evaluated the segmentation performance of our U-Net-based model on a subset of the dataset with ground 
truth lesion annotations as can be seen in Table 8 based on the following metrics:

Fig. 6.  F1-score analysis.

 

Fig. 5.  Graphical representation of the proposed model in terms of AUC.
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•	 IoU (Intersection over Union): Measures the overlap between the predicted segmentation and the ground 
truth.

•	 Dice score: A harmonic mean of precision and recall, widely used in medical image segmentation.

These results demonstrate that the U-Net architecture achieves strong segmentation performance, supporting its 
use as an effective feature extractor in our pipeline.

Discussion
The study presented a model for the detection of Mpox. The proposed model would contribute to the efforts 
towards combating the disease using technology and improving the accuracy of Mpox illness diagnosis 

Fig. 8.  Analysis of classifier in terms of recall.

 

Fig. 7.  Validation based on precision.
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by combining a hair removal process with an improved U-Net model. The modified U-Net model was 
subsequently used to diagnose Mpox disease with increased precision, making use of the hair-free images’ 
superior segmentation capabilities. The study found that including the hair removal process in the diagnostic 
pipeline considerably improved performance metrics like accuracy, sensitivity, and specificity when compared 
to traditional models that did not include this preprocessing step. The study contributes to the field of medical 
imaging by proposing a more reliable and effective method for early Mpox detection, which can potentially 
improve diagnostic outcomes and patient care. Future work could explore the adaptation of this technique for 
other skin-related diseases and conditions, further broadening its applicability.

Metric Mean + Std Dev.

IoU 0.76 ± 0.08

Dice score 0.85 ± 0.06

Table 8.  Segmentation performance of the U-Net-based model on a subset of the dataset with ground truth 
lesion annotations.

 

Models Accuracy Recall Precision F1 score

LR 0.8933 ± 0.0029 0.8795 ± 0.0037 0.8656 ± 0.0039 0.8725 ± 0.0035

DNN 0.8990 ± 0.0063 0.8833 ± 0.0079 0.8791 ± 0.0065 0.8812 ± 0.0069

MLP 0.7355 ± 0.0028 0.6850 ± 0.0045 0.6453 ± 0.0047 0.6646 ± 0.0038

AE 0.8438 ± 0.0064 0.8254 ± 0.0072 0.8004 ± 0.0095 0.8127 ± 0.0081

CNN 0.9179 ± 0.0044 0.8917 ± 0.0057 0.9083 ± 0.0059 0.8992 ± 0.0053

Table 7.  Analysis of DL model based on Binary classification.

 

Models Accuracy Precision Recall F1 score

LR 0.8864 ± 0.0028 0.8604 ± 0.0032 0.8748 ± 0.0041 0.8675 ± 0.0032

DNN 0.8977 ± 0.0033 0.8693 ± 0.0055 0.8890 ± 0.0029 0.8790 ± 0.0040

MLP 0.7197 ± 0.0025 0.6364 ± 0.0045 0.6730 ± 0.0039 0.6542 ± 0.0034

AE 0.8335 ± 0.0020 0.7870 ± 0.0029 0.8158 ± 0.0030 0.8011 ± 0.0024

CNN 0.9021 ± 0.0039 0.8941 ± 0.0047 0.8778 ± 0.0049 0.8859 ± 0.0046

Table 6.  Analysis of DL based on Multiclass classification.

 

Fig. 9.  Graphical Comparison in terms of AP.
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Conclusion and future scope
Leveraging state-of-the-art architectures and transfer learning strategies, we introduce the open-source MSLD 
dataset for lesion analysis and conduct an initial feasibility study. This work proposes a novel convolutional 
neural network (CNN)-based method for removing hair artifacts from input images, utilizing an encoder-
decoder architecture proven effective in similar reconstruction tasks. A key highlight of our design is the 
integration of skip connections, which significantly enhance data retrieval. To extract and merge features, we 
employ pre-trained CNN models. These fused features are input into a custom classifier—an improved U-Net 
model enhanced with VGG-16—for Mpox detection. Despite the limitations of a small dataset, the encouraging 
outcomes from fivefold cross-validation suggest promising potential for AI-assisted preliminary analysis of 
Mpox. The MSLD dataset and our methods aim to support the development of remote, scalable analytic tools, 
which are particularly valuable in areas where traditional testing (like PCR or microscopy) is inaccessible. 
Furthermore, we are preparing to launch a web application prototype, allowing individuals to conduct at-
home preliminary screenings for Mpox and seek early medical intervention when necessary. Our proposed 
methodology is efficient, cost-effective, and adaptable, enabling rapid deployment by healthcare providers 
without the need for specialized laboratory equipment. This opens possibilities for real-time patient screening, 
particularly for those presenting early symptoms of Mpox.

However, the study is not without limitations. The dataset size is relatively small and may not represent 
broader diversity across race, gender, and geographic location. Future work should include more heterogeneous 
samples to enhance the reliability of results across different populations. Additionally, while pre-training on 
ImageNet provided a strong starting point, training with a lesion-specific dataset could further improve model 
accuracy and generalizability. Lastly, because the dataset primarily comprises web-scraped images, it lacks 
critical metadata that could enrich the analysis. Expanding the dataset with well-annotated samples is essential 
for achieving robust and generalizable conclusions.

Data availability
Data will be provided upon sufficient request by corresponding author.
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