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The main protease (MPro) of SARS-CoV-2 plays a crucial role in viral replication and is a prime target for 
therapeutic interventions. Phytochemicals, known for their antiviral properties, have been previously 
identified as potential MPro inhibitors in several in silico studies. However, the efficacy of these remains 
in question owing to the inherent flexibility of the MPro binding site, posing challenges in selecting 
suitable protein structures for virtual screening. In this study, we conducted an extensive analysis of 
the MPro binding pocket, utilizing molecular dynamics (MD) simulations, principal component analysis 
(PCA) and free energy landscape (FEL) to explore its conformational diversity. Based on pocket volume 
and shape-based clustering, five representative protein conformations were selected for virtual 
screening. Virtual screening of a library of ~ 48,000 phytochemicals suggested 39 phytochemicals as 
potential MPro inhibitors. Based on subsequent MM-GBSA binding energy calculations and ADMET 
property predictions, five compounds were advanced to cell-based viral replication inhibition assays, 
with three compounds (demethoxycurcumin, shikonin, and withaferin A) exhibiting significant 
(EC50 < 10 μm) inhibition of SARS-CoV-2 replication. Our study provides an understanding of 
the binding interactions between these phytochemicals and MPro, contributing significantly to 
the identification of promising MPro inhibitors. Furthermore, beyond its impact on therapeutic 
development against SARS-CoV-2, this research highlights a crucial role of proper nutrition in the fight 
against viral infections.

As the world marks four years since the onset of the COVID-19 pandemic, we continue to grapple with the 
devastating impact of this global health crisis caused by the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), first reported in Wuhan, China, in late 20191,2. As per the latest data from World Health 
Organization, (https://data.who.int/dashboards/covid19/cases?n=c, as of 22 January 2024), the global death 
toll from COVID-19 has now exceeded 7 million, and the disease continues to claim hundreds of lives daily. 
The onset of 2024 marked a deadly surge in COVID-19 cases, with over 1 million new cases and above 8000 
deaths reported in the past month alone, highlighting the persistent threat posed by the virus. Although there 
are several highly efficient vaccines authorized for SARS-CoV-2 in the USA and other nations, the number 
of approved small-molecule COVID-19 drugs remain limited to remdesivir (e.g., Veklury), baricitinib (e.g., 
Olumiant), and nirmatrelvir/ritonavir (e.g., Paxlovid). Other approved medications, such as hydroxychloroquine 
and ivermectin, gained considerable attention based on initial in vitro and clinical evidence. However, these 
were rendered ineffective in subsequent clinical trials3,4.

In the pursuit of effective drug development strategies against SARS-CoV-2, researchers are exploring a 
diverse range of approaches, including investigating plant-derived compounds that have a rich history of use 
in traditional medicine for combating viral infections5–10. Phytochemicals, chemicals synthesized by plants 
demonstrate vast scaffold diversity and structural complexity, which enable these molecules to interact with high 
specificity to a wide range of biological macromolecules. Unique chemical features in phytochemicals can provide 
distinct advantages for their effectiveness as interventions. For instance, high rigidity due to a large number of 
chiral centers, often enable phytochemicals to disrupt protein-protein interactions11. However, identifying the 
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bioactive component within plant extracts is a cumbersome process. Usually, plant-derived natural product 
screens involve a library of botanical extracts containing complex mixtures of molecules; this complexity is 
often unsuitable for traditional target-based efficacy studies12. Recognizing this challenge, application of 
cheminformatics has emerged as a highly promising strategy. Computational techniques offer a powerful toolset 
for identifying potential molecular targets, synergistic effects, partial agonist/antagonist activities, off-target 
interactions, and the intricate mechanisms13 of action associated with phytochemicals in extracts. Thereby, 
adding a layer of convenience in facilitating experimental validation and potentially streamlining the process of 
discovering novel therapeutics.

The application of cheminformatics to pinpoint active phytochemicals within complex botanical blends 
hold immense potential for advancing nutritional product development. This newfound insight could guide 
designing extraction strategies to ensure the presence and abundance of key bioactive markers within the final 
extracts. Large phytochemical databases, combined with cutting-edge computational methods, offer a robust 
toolkit for achieving this, ultimately fine-tuning the production of nutritionally efficacious products.

The protein MPro is a homodimer of two protomers, with each protomer comprising domain I (residues 
8-101), domain II (residues 102–184), and domain III (residues 201–303)17–21 (Fig. 1). A long loop (residues 
185–200) connects domains I and II with III. Domains I and II form an active site consisting of S1’, S1, S2, 
and S4 subsites22. The catalytic residues His41 and Cys145 form a portion of S2 and S1 pockets, respectively. 
His41 forms a crucial hydrogen bond with a water molecule, facilitating interactions with the side chains of 
Asp187 and His16423. Asp187 is further stabilized through a salt-bridge to Arg4023. This intricate arrangement 
allows His41 to function as a base, extracting a proton from the catalytic Cys145 side chain and activating it 
for a nucleophilic attack and cleavage of the overlapping polyproteins pp1a and pp1ab into 16 non-structural 
proteins. This cleavage releases the functional polypeptide for viral replication and transcription15,16.

The pursuit of MPro inhibitors, whether synthetic or plant-derived, as potential antiviral agents against the 
virus, has been the focus of extensive research. One of the primary challenges in targeting MPro stems from the 
inherent plasticity of its active site. Molecular dynamics (MD) simulations of SARS-CoV-2 and SARS-CoV MPro 
proteins have identified differences in shape and size24,25, of the binding site, despite the active site residues being 
identical. This conformational flexibility arises largely from 12 distant residues that differ between SARS-CoV-2 
MPro and SARS-CoV MPro26; SARS-CoV-2 MPro exhibit increased structural flexibility and plasticity27. These 
remote residues play a pivotal role in the dynamic plasticity of the binding site, exerting substantial influence 
on inhibitor binding affinity and specificity. Thus, delineating the conformational changes of the binding site is 

Fig. 1.  Structure of SARS-CoV-2 MPro. [Left] Cartoon representation of one protomer showing three domains: 
Domain I (blue, residues 8-101), Domain II (yellow, residues 102–184), and Domain III (green, residues 
201–303). The catalytic residues His41 and Cys145 are shown as sticks. [Right] Surface representation of the 
substrate-binding pocket with key subsites (S1, S1’, S2, and S4) that serve as binding locations for inhibitors.
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important for selecting suitable target structures for virtual screening. Therefore, prior to virtual screening, we 
sampled ensembles of binding site pockets produced from MD simulations and compared pocket volumes and 
shapes. These comparisons identified novel, pharmacologically relevant binding-pocket conformations (that 
may not be readily apparent in experimental structures) for virtual screening.

Considerable efforts have been directed towards the development of inhibitors targeting the SARS-CoV-2 
MPro, with a particular focus on substrate-based inhibitors. These inhibitors form covalent bonds with the 
nucleophilic thiolate of the catalytically active Cys145 residue of protein28a strategy commonly employed in 
inhibiting various viral and non-viral proteases. Despite their efficacy in blocking the protein’s binding site, 
covalent inhibitors raise safety concerns due to potential off-target effects and prolonged effects29,30. Interestingly, 
certain noncovalent inhibitors, such as 23R, have shown high selectivity compared to their covalent counterparts 
like GC376, making them promising candidates31. In our study, we employed structure-based virtual screening 
of phytochemical libraries against diverse binding site pockets of MPro to identify potential noncovalent 
phytochemical inhibitors. Specifically, we utilized the CMAUP14 database, which contains approximately 48,000 
small-molecule phytochemicals, representing the largest library of plant-derived molecules. During our in-silico 
screening process, we prioritized well-characterized phytochemicals to ensure precise molecular characterization 
and enhance the translational potential of our findings.

Results
Stability analysis of MPro protein during MD simulation
To evaluate the structural stability and dynamic behavior of the apo form of MPro during the 300 ns molecular 
dynamics (MD) simulation, we analyzed the root-mean-square deviation (RMSD) of the protein at both the 
global and domain-specific levels. As shown in Fig. 2A, the global RMSD of the Cα atoms, calculated relative to 
both the initial simulation frame and the crystallographic structure, exhibited a three-phase trend over the 300 ns 
simulation. During the first 100 ns, the RMSD gradually increased, reaching a local maximum of approximately 
0.25–0.28 nm. A sharp decrease in RMSD was observed between 100 and 120 ns, with values dropping as low 
as ~ 0.11–0.12 nm for the first frame reference and ~ 0.13–0.14 nm for the crystal structure reference. Following 
this transition, the RMSD gradually increased and stabilized, fluctuating within a range of approximately 0.17–
0.23 nm for the remainder of the trajectory. The close overlap between the two RMSD profiles indicates that the 
overall structure of MPro was maintained after the initial relaxation phase.

To delve deeper into the protein’s stability profile, we investigated the RMSD of Cα atoms of each domain 
(Fig. 2B). This domain-specific analysis provides a detailed view of the differential stability across the protein’s 
structural regions. Domain II exhibits stability throughout the entire trajectory, maintaining low RMSD values 
typically below 0.13 nm while Domain I shows intermediate flexibility, with RMSD values generally ranging 
between ~ 0.10–0.18  nm. In contrast, Domain III demonstrates pronounced conformational flexibility, 
particularly during two distinct periods (75–100 ns and beyond 225 ns), where RMSD values exceed 0.30 nm. 
These heightened fluctuations in Domain III represent significant conformational transitions that may be 
relevant to the protein’s function.

The pocket residues exhibit a distinct RMSD profile that generally parallels the motion of Domain I—where 
several of these residues are located—with subtle deviations observed during specific intervals, particularly 
within the first 50 ns and around 250 ns. This suggests that local conformational changes influence the binding 
site independently of broader domain motions. Further analysis of conformational dynamics reveals a nuanced 
relationship between Domain III and the protein’s binding pocket. Domain III shows peak flexibility between 
75-100ns, coinciding with the onset of pocket residue stabilization that persists until ~ 220ns. After 220ns, both 
regions initially show increased fluctuations, but pocket residues stabilize around 260-270ns while Domain III 
continues to fluctuate. These observations reveal a complex allosteric relationship where Domain III appears to 
trigger binding pocket stabilization, though additional factors likely regulate pocket dynamics independently of 
Domain III’s state.

To gain insights into the flexibility of the residues during simulations, the RMSF (Root Mean Square 
Fluctuations) analyses of the backbone and sidechain atoms of MPro protein was subsequently performed. As 
shown in Fig. 2C, a significant difference in RMSF values was observed between the backbone and sidechain 
atoms. The sidechain atoms showed fluctuations approximately between 0.10 and 0.40 nm, while the backbone 
atoms displayed more limited fluctuations in the range of 0.05 to 0.20 nm.

Domain III showed the greatest side chain flexibility across its structure, supporting our RMSD findings that 
indicated substantial conformational changes in this domain during the simulation. Domain I also exhibited 
considerable side chain mobility, especially between residues 40–70 – a region containing the first catalytic 
residue, His41, as well as several residues contributing to the S2 and S4 binding pockets. Among these, the highest 
fluctuations were observed for Thr24-25, Glu47, and Tyr54. In contrast, Domain II displayed moderate side 
chain flexibility, with several distinct peaks observed along its sequence, including notable fluctuations around 
residues 140–160—a region that contains the second catalytic residue, Cys145, as well as residues forming the 
S1 and S2 pockets. The RMSF plot revealed that side chain atoms of most pocket-forming residues in Domain 
II showed relatively low flexibility, except for Asn142. This limited flexibility is likely due to the formation of β 
sheets, as previously reported35. The loop region between Domains II and III showed variable flexibility, with 
prominent peaks corresponding to Arg188, Gln189, Thr190 and Ala191. RMSF values for these residues ranged 
from 0.20 nm to 0.40 nm. Notably, Asn142, Arg188, and Gln189 have previously been reported32–34 to play a 
crucial role in adapting to different ligand structures and sizes, facilitating the recognition and binding of various 
inhibitors. Interestingly, Tyr154 located at the distal side of the binding site showed the highest fluctuations with 
an RMSF value of 0.35 nm. This underscores the pivotal role of specific flexible residues in dictating the flexibility 
of MPro needed for ligand binding.
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Fig. 2.  Structural stability and flexibility analysis of SARS-CoV-2 MPro during 300 ns MD simulation. (A) 
Global RMSD of Cα atoms compared to initial frame and crystal structure, showing distinct conformational 
phases. (B) Domain-specific RMSD revealing differential flexibility: Domain II remains stable, Domain I shows 
moderate flexibility, Domain III exhibits pronounced conformational changes, and pocket residues display 
temporal correlation with Domain III movements. (C) RMSF analysis comparing backbone and sidechain 
atom flexibility.
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Collectively, our stability analyses show that MPro is a dynamic system with domain-specific mobility, 
suggesting potential allosteric communication between Domain III and the binding pocket. The observed 
flexibility across domains and key pocket residues indicates that MPro relies on conformational plasticity rather 
than rigidity to perform its proteolytic function and bind diverse ligands.

Principal component analysis and free energy landscape
To elucidate the essential dynamics governing the function of MPro, we performed Principal Component Analysis 
(PCA) on the 300 ns molecular dynamics trajectory. PCA helps us identify the most important movements 
within the protein structure that contribute to its functional states. Figure  3A displays the time-colored 
trajectory illustrating progressive transitions through different regions of conformational space. The distribution 
reveals multiple populated regions in the PC1-PC2 subspace, suggesting the protein samples a diverse ensemble 
of structures that may represent functionally relevant states. The first two principal components captured a 
substantial portion (38.6%) of the overall variance (Supplementary Fig. S1A), with PC1 accounting for 21.0% 
and PC2 contributing 17.6% of the total motion.

Free Energy Landscape (FEL) analysis, projected onto PC1 and PC2, was used to quantify the free energy 
barriers between conformational basins and to provide a clearer picture of the system’s functional dynamics. In 
general, the FEL shows us how much energy it takes for MPro to transition between different shapes or states. Our 
analysis reveals a rugged energy surface with three well-defined basins corresponding to distinct conformational 
states (Fig. 3B, left). The global minimum (Basin 1) represents the dominant ensemble with subtle substates, 
while Basin 2 (intermediate transition state-like) and Basin 3 (higher-energy metastable) underscore the 
conformational plasticity of the system. The estimated energy barriers between Basin 1 and Basin 2 (~ 3–6 kcal/
mol) were relatively low, while transitions between Basin 3 and the other basins encounter moderately higher 
barriers (~ 6–12  kcal/mol), suggesting accessible conformational exchanges between the metastable states, 
facilitating functional adaptability. The bifurcated nature of the global minimum highlights a finely tuned energy 
landscape, allowing MPro to maintain stability while permitting subtle structural variation.

To connect the energetic insights with structural features and our previous findings on domain-specific 
dynamics, we examined representative structures from each energy basin. The conformations shown in Fig. 3B 
(right panel) highlight that transitions primarily involve rearrangements in loop regions that form or surround 
the binding pockets. Such shifts may be significant, as they could influence how the protein engages with potential 
inhibitors. Importantly, residues 46–50 in the lowest-energy basin (Basin 1, shown in steel blue) displayed a short 
helical segment emerging within a previously disordered loop, indicating stabilization of secondary structure 

Fig. 2.  (continued)
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Fig. 3.  Conformational analysis of SARS-CoV-2 MPro. (A) PCA projection onto the first two principal 
components (PC1 and PC2) showing major protein motions during the 300 ns simulation, with points colored 
by simulation time progression (blue→purple). (B) [Left] FEL revealing three major conformational states 
(Basins 1–3), where deeper blue regions represent energetically favorable conformations. [Right] Structural 
overlay of representative conformations from each basin (Basin 1: steel blue, Basin 2: plum, Basin 3: golden), 
highlighting regions with significant conformational differences.
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in this favorable energetic state. Structural variations near the catalytic regions are consistent with our earlier 
observations of domain-specific mobility and point to potential effects on ligand accessibility and binding site 
flexibility.

Residue contribution analysis (Supplementary Fig. S1B) identified key regions driving the observed 
conformational transitions. Along PC1, most residues exhibited moderate displacements (~ 1.5 Å), while PC2 
revealed more substantial shifts (~ 2.5 Å). The largest movements in both components were seen in residues 
within or near the binding pocket, notably Asn53–Leu57, Gly138–Ser139, Tyr154. Additionally, several residues 
in Domain III showed high mobility along PC2, reinforcing their strategic location and potential role in 
substrate recognition and binding site plasticity, which is consistent with our earlier observations of allosteric 
communication between Domain III and the active site.

Pocket dynamics analysis
The significant conformational heterogeneity revealed by PCA and FEL analyses, particularly in residues 
shaping the binding pocket, emphasized the need to consider structural diversity when selecting conformations 
for docking-based virtual screening. To further investigate how binding site geometry varies across these states, 
we performed a pocket dynamics analysis using volume-based clustering. POVME36,37 was used to compute 
the binding site volumes from 60 frames, sampled every 5 ns during the 300 ns MPro simulation. These frames 
were sampled at 5 ns intervals during the 300 ns simulation. Active site pocket volumes ranged from 190 to 498 
Å3with surface areas varying between 188 and 380 Å2 during the MD simulations. The active site volumes in our 
study were slightly greater than previously reported38,39 likely due to the expansion of subsite pockets and the 
formation of new pockets within the active site.

The POVME clustering workflow classified the binding sites within the sampled frames into five clusters, 
each representing frequently observed pocket shapes. The representative structure from each cluster is shown 
in Fig. 4. Differences between the binding site shape in each cluster originate from the opening or closing of 
regions that constitute the active site. For Clusters 1 through 4, a gradual widening of the S1 pocket is observed; 
however, this widening coincides with a concurrent reduction in the pocket’s depth, resulting in a shallower 
S1 pocket configuration (shown in Fig. 4A-D). In Cluster 5, the shape and size of the S1 subsite is decreased 
significantly compared to the other clusters (shown in Fig. 4E). The S2 subsite, on the other hand, maintained 
its small size in all conformations, with a portion of it being deeply embedded and thus inaccessible for ligand 
binding. New subsites, termed the S2’ subsite, emerged adjacent to the S1’ subsite in structures corresponding 
to Clusters 1, 3, 4, and 5 (shown in Fig. 4A, C-E). The S1’ pocket showed the least divergence when compared 
to the average pocket geometry, retaining a consistent shape in Clusters 1–3 but appearing markedly smaller 
in Clusters 4 and 5. Among all subsites, S4 exhibited the most pronounced dissimilarity in shape across all five 
clusters, highlighting its structural plasticity.

Molecular docking
The CMAUP database14 was screened to identify phytochemicals capable of binding to each of the five active site 
conformations of MPro. We identified nearly 500 phytochemicals with docking scores above − 7.5 kcal/mol across 
five protein conformations. This criteria for the docking score cutoff was based on the docking scores observed 
for reported small-molecule MPro inhibitors40–42. Among the conformations, Cluster 3 emerged as the most 
favorable binding site, with approximately 200 compounds scoring above the set threshold. Whereas Cluster 5 
was the least favorable with, only 25 compounds meeting the criterion.

Table 1 lists the 20 phytochemicals with high docking scores across all five conformations. Additional details 
of the phytochemicals, including structure, PubChem ID, and the plant sources are listed in Supplementary 
Table 1. From these phytochemicals, we identified four aglycones and sixteen glycosides. Aglycones are of 
particular interest as they typically harbor the pharmacological or biological moiety, whereas the glycosidic 
bonds primarily affect properties like solubility, stability, and bioavailability.

The four identified aglycones were shimobashiric acid C (SAC), salvianolic acid L (SAL), AHDPH, and 
shikonin. Figure 5 shows their binding modes in their most favorable protein conformations. SAC, SAL, and 
AHDPH bound most strongly to Cluster 3 conformation (scores of -10.5, -13.3, and − 11.6 kcal/mol, respectively), 
while shikonin preferred Cluster 5 (score − 9.5 kcal/mol).

For SAC, a complex molecule with a cyclobutane core and multiple hydroxyphenyl groups, one hydroxyphenyl 
group fits in the S2 while the others interact with the peripheral residues of the S1, S4, and newly formed S2’ 
pocket (Fig. 5A-B). The key interactions of SAC include a pi-pi interaction with the catalytic residue, His41 and 
hydrogen bonds with several residues including Cys44, Glu166, Asp187, Gly143, Ser144, Cys145, and Gln189.

SAL consists of a naphthalene core with multiple 3,4-dihydroxyphenyl groups, and a 3-(3,4-dihydroxyphenyl) 
propanoic acid moiety connected via a carboxyethyl linker. As depicted in Fig.  5C-D the dihydroxyphenyl 
groups occupy the S1’, S1, and S4 pockets, while the naphthalene ring interacts with S2’ pocket. The compound 
forms six hydrogen bonds with protein residues, including Cys44, Gly143, Cys145, His164, Glu166, Arg188, 
and Gln192. In the case of AHDPH, S1 and S2 pockets remain unoccupied, while S1’ and S4 accommodate its 
dihydroxyphenyl groups. Key interactions include hydrogen bonds with four residues, Thr26, Arg188, Gln192 
and Glu 166 (Fig. 5E-F).

For shikonin, the naphthalene ring fits the narrow S4 pocket, with its hydroxy groups interacting with charged 
pocket residues—Glu166, Asp187, Arg188, and Gln189, while its pentyl chain interacts with the hydrophobic 
residues forming the S2 pocket (Fig. 5G-H).

Considering the metabolic cleavage of glycosides to aglycones in the body, we also investigated their 
corresponding metabolites (Table  2). These metabolites (aglycones) exhibited moderate binding with most 
preferring specific comformations, except for quercetin that showed good binding to all conformations with 
a docking score >= 7.0  kcal/mol. Several aglycones, including dihydrocaffeic acid, brevifolincarboxylic acid, 
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Fig. 4.  Binding pocket conformations of SARS-CoV-2 MPro identified through volume-based clustering. (A-
E) Surface representations of representative structures from five distinct clusters (Clusters 1–5), showing the 
variable geometry of the binding site. The catalytic residues His41 (pink) and Cys145 (green) are highlighted, 
with binding subsites (S1, S1’, S2, S2’, S4) labeled in red.
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DDHH, pinoresinol, kaempferol, luteolin, isoharmnetin, pectolinarigenin, and secoisolariciresinol preferentially 
bound to at least two conformations with a docking score > = 7.0 kcal/mol. Hesperetin and eriodictyol bounded 
favorably with the first conformation, while hydroxytyrosol preferred the third conformation. Gallic acid, and 
caffeic acid exhibited a low docking score across all conformations compared to its glycoside. Some of these 
aglycones have been previously reported for their anti-SARS-CoV-2 activity43–47.

In addition to examining the top 20 phytochemicals and their respective metabolites, we extended our 
analysis to include four phytochemicals that exhibited high docking scores for at least one protein conformation. 
These included cynarin, demethoxycurcumin, hexahydrocurcumin, and withaferin A (Table 3).

Cynarin scored well with Cluster 1 and 3, where its docking scores exceeded − 9.0 kcal/mol. As shown in 
Fig.  6A-B, the dihydrocyclohexane core of the molecule occupies the S1 pocket, the carboxylic acid group 
interacts with S1’ site, and one of the two hydroxyphenyl groups occupies the S4 pocket. The other hydroxyphenyl 
group, although not positioned within the S1’ pocket, interacts with the residues forming the pocket. The key 
interactions include Thr26, Asn142, Gly143, Glu166, and Thr190.

Demethoxycurcumin exhibits a docking score of approximately − 8.0  kcal/mol when binding to the 
representative protein conformation of Cluster 2, the highest among other protein conformations. As shown in 
Fig. 6C-D, the hydroxyphenyl group occupies the region between the S2 and S1’ pockets, with the S2 pocket fits 
the hepta-1,6-diene-3,5-dione bridge. The hydroxy-3-methoxy group of the phytochemical effectively occupies 
the S1 pocket. This binding mode forms hydrogen bonds with Thr26, Leu141, Ser144, and Gly143.

Hexahydrocurcumin had its highest binding score (~ 10.0 kcal/mol) when interacting with the representative 
conformation of Cluster 3. As shown in Fig. 6E-F, one hydroxymethoxyphenyl groups of the phytochemical 
occupies the S2-S4 pocket, interacting with Glu166, Asp187, and Thr190. The second hydroxymethoxyphenyl 
group fits into the S1 pocket, interacting with Gly143 and Cys145. Interestingly, despite the structural similarity 
between the two curcumin derivatives, their predicted affinities toward specific protein conformations and their 
adopted binding orientations are distinct.

Withaferin A preferred the representative structure of Cluster 5 conformation, binding with a docking score 
of -8.4 kcal/mol. The dihydropyran ring and the hydroxymethyl substituent of the molecule occupy the S4 pocket, 
while the main cyclic structure of withaferin A (oxapentacyclooctadec-4-en-3-one) interacts with the S2 and S1’ 
sites of the binding pocket. Crucial interactions included residuesThr26, Asn119, and Glu166. (Fig. 6G-H).

MM-GBSA prediction
To improve the accuracy of our inhibitor binding predictions, the initially identified 39 phytochemicals were 
rescored based on binding energies calculated with Prime/MM-GBSA. For these binding energy calculations, 

Phytochemical Name

Docking scores

Conformation 1 Conformation 2 Conformation 3 Conformation 4 Conformation 5

1,3,6-Tri-O-Galloyl-Beta-D-Glucose -7.6 -8.8 -11.1 -7.5 -10.1

2’-Acetylacteoside -8.6 -9.5 -12.1 -13.4 -7.6

2’’-O-Acetylrutin -10.3 -9.6 -12.2 -10.8 -10.4

*AHDPH -8.1 -9.0 -11.6 -7.5 -9.0

Balanophotannin E -7.5 -11.0 -12.9 -9.9 -8.4

**DDHHG -9.7 -8.3 -10.9 -11.3 -8.6

***DHMMP-TRTH-TMMO-Chr-One -9.7 -10.5 -10.7 -9.1 -9.9

Eriodictyol 7-O-Sophoroside -12.6 -9.3 -10.0 -11.1 -10.0

Forsythiaside -10.3 -12.6 -14.3 -14.6 -9.2

Hyperin 6’’-[glucosyl-(1->3)-rhamnoside] -9.7 -10.9 -15.9 -12.1 -11.9

Kaempferol 3-(3R-glucosylrutinoside) -10.0 -10.6 -12.0 -11.1 -8.5

Luteolin 7-rutinoside -9.8 -9.4 -14.4 -12.0 -9.9

Narcissin -9.7 -10.5 -10.7 -9.1 -9.9

Pectolinarin -8.9 -7.7 -13.9 -8.5 -7.5

Plantagineoside C -9.4 -10.3 -13.3 -10.4 -9.3

Quercetin 3-glucoside2’’-gallate -7.8 -9.2 -12.1 -10.6 -7.5

Quercetin-3-o-rutinose -12.2 -11.0 -11.1 -11.5 -11.4

Salvianolic Acid L (SAL) -9.1 -8.2 -13.3 -11.3 -7.6

Shikonin -8.1 -8.4 -8.6 -8.9 -9.5

Shimobashiric Acid C (SAC) -8.2 -8.7 -10.5 -9.6 -10.2

Table 1.  Top phytochemicals with high Docking scores (in kcal/mol) across all five MPro conformations. 
*AHDPH = (3R,5R)-3-Acetoxy-5-Hydroxy-1,7-Bis(3,4-Dihydroxyphenyl)Heptane. **DDHHG 
= (3R,5R)-3,5-Dihydroxy-1-(3,4-Dihydroxyphenyl)-7-(4-Hydroxyphenyl)-Heptane 3-O-Beta-
D-Glucopyranoside. ***DHMMP-TRTH-TMMO-Chr-One = 5,7-Dihydroxy-2-(4-Hydroxy-3-
Methoxyphenyl)-3-[(2 S,3R,4 S,5 S,6R)-3,4,5-Trihydroxy-6-[[(3R,4R,5R,6 S)-3,4,5-Trihydroxy-6-Methyloxan-
2-Yl]Oxymethyl]Oxan-2-Yl]Oxychromen-4-One.
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Fig. 5.  Binding modes of top-scoring non-glycoside phytochemicals with SARS-CoV-2 MPro. Left panels 
(A, C,E, G) show 3D surface representations of the binding pocket with compounds in stick format; right 
panels (B, D,F, H) display 2D interaction diagrams. Binding subsites (S1, S1’, S2, S2’, S4) are labeled in 
red. Compounds shown: (A-B) SAC binding to Cluster 3 conformation, (C-D) SAL binding to Cluster 3 
conformation, (E-F) AHDPH binding to Cluster 3 conformation, and (G-H) Shikonin binding to Cluster 5 
conformation.
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the protein-ligand conformation with the highest docking score was selected. Table  4 summarizes the MM-
GBSA energies for the selected 20 phytochemicals (Table  1), their corresponding aglycones (Table  2), and 
phytochemicals exhibiting strong docking scores for at least one protein conformation (Table 3), a total of 39 
phytochemicals. The MM-GBSA energy calculations revealed that the binding mode of all the phytochemicals 
was primarily driven by negative ΔG values for ΔGcoulomb, ΔGhbond, ΔGlipo, ΔGpacking, and ΔGvdw. These scores 
indicate the presence of attractive Coulombic interactions, hydrogen bonding, and strong hydrophobic 
interactions, including lipophilic and van der Waals forces. However, the positive ΔGcovalent and ΔGsolv_GB 
scores suggest that covalent bond formation and binding of the phytochemicals in an aqueous environment are 
energetically unfavorable.

Among the selected phytochemicals, Forsythiaside had the best calculated binding energy, ΔGbind = 
-82.2 kcal/mol. Luteolin 7-rutinoside ranked second with a ΔGbind value of -80.2 kcal/mol, followed by quercetin 
3-glucoside 2”-gallate and hyperin 6’-[glucosyl-(1 > 3)-rhamnoside] with a ΔGbind value of approximately 
− 76.0 kcal/mol. All of these molecules also showcased high docking scores above − 12.0. kcal/mol.

Pinoresinol, one of the metabolites of forsythiaside exhibited the highest binding energy of ~ -59.0 kcal/mol 
among all the aglycones studied. It also showcased a significant docking score of -8.7 kcal/mol. Secoisolariciresinol 
was the second-best aglycone with a binding energy of -53.8 kcal/mol, followed by kaempferol. Overall, the 
binding energy calculations aligned well with the computed docking scores of top 20 phytochemicals (Table 1), 
except for SAC and kaempferol 3-(3R-glucosylrutinoside), which deviated with relatively low binding energies 
(ΔGbind < -40 kcal/mol), despite securing high docking scores across all protein conformations. Cynarin, while 
displaying a significantly high docking score for the first protein conformation, exhibited a low binding energy 
value (ΔGbind = -36.1 kcal/mol). Additionally, the aglycones luteolin and quercetin demonstrated lower binding 

Phytochemical Name

Docking scores

Conformation 1 Conformation 2 Conformation 3 Conformation 4 Conformation 5

Cynarin -10.7 -5.7 -9.4 -3.9 -6.9

Demethoxycurcumin -5.9 -8.0 -6.9 -5.8 -4.9

Hexahydrocurcumin -3.4 -4.7 -9.9 -7.1 -5.6

Withaferin A -3.9 -4.8 -7.4 -4.6 -8.4

Table 3.  Phytochemicals with high Docking scores (in kcal/mol) for at least one MPro conformation.

 

Glycoside Name Metabolite

Docking scores

Conformation 1 Conformation 2 Conformation 3 Conformation 4
Conformation 
5

1,3,6-Tri-O-Galloyl-Beta-D-Glucose Gallic acid -5.8 -5.3 -5.8 -6.3 -5.4

2’-Acetylacteoside/Forsythiaside Caffeic acid -4.9 -4.3 -4.0 -5.5 -4.4

2’-Acetylacteoside/Forsythiaside Dihydrocaffeic acid -5.3 -6.0 -8.2 -8.0 -6.3

2’-Acetylacteoside/Forsythiaside Hydroxytyrosol -4.8 -4.3 -7.5 -6.7 -5.0

2’’-O-Acetylrutin/ Hyperin 6’’-[glucosyl-
(1->3)-rhamnoside]/ Quercetin 
3-glucoside2’’-gallate/ Quercetin-3-o-
rutinose

Quercetin -7.8 -7.2 -7.3 -7.6 -7.0

Balanophotannin E Brevifolincarboxylic acid -6.4 -6.4 -8.0 -7.1 -6.7

Balanophotannin E Gallic acid -5.8 -5.3 -5.8 -6.3 -5.4

**DDHHG ****DDHH -7.5 -6.5 -10.2 -6.8 -6.5

***DHMMP-TRTH-TMMO-Chr-One Hesperetin -7.0 -5.7 -6.5 -5.2 -5.3

Eriodictyol 7-O-Sophoroside Eriodictyol -7.0 -5.6 -6.4 -6.7 -6.7

Forsythiaside Pinoresinol -5.0 -6.2 -8.7 -7.8 -6.0

Kaempferol 3-(3R glucosylrutinoside) Kaempferol -7.0 -5.4 -7.9 -5.1 -5.5

Luteolin 7-rutinoside Luteolin -7.3 -6.6 -8.0 -6.9 -5.4

Narcissin Isoharmnetin -7.3 -5.9 -7.0 -5.9 -6.1

Pectolinarin Pectolinarigenin -7.0 -5.8 -7.6 -5.4 -3.7

Plantagineoside C Secoisolariciresinol -7.8 -5.5 -8.8 -7.3 -6.7

Table 2.  Docking scores (in kcal/mol) of metabolites for the top phytochemicals. **DDHHG 
= (3R,5R)-3,5-Dihydroxy-1-(3,4-Dihydroxyphenyl)-7-(4-Hydroxyphenyl)-Heptane 
3-O-Beta-D-Glucopyranoside. ***DHMMP-TRTH-TMMO-Chr-One = 5,7-Dihydroxy-2-
(4-Hydroxy-3-Methoxyphenyl)-3-[(2 S,3R,4 S,5 S,6R)-3,4,5-Trihydroxy-6-[[(3R,4R,5R,6 S)-
3,4,5-Trihydroxy-6-Methyloxan-2-Yl]Oxymethyl]Oxan-2-Yl]Oxychromen-4-One. 
****DDHH = 3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane.
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Fig. 6.  Binding interactions of SARS-CoV-2 MPro and phytochemicals with high docking scores in at least 
one protein conformation. Left panels (A,C,E,G) show 3D surface representations of the binding pocket with 
compounds in stick format; right panels (B, D,F, H) display 2D interaction diagrams. Binding subsites (S1, 
S1’, S2, S4) are labeled in red. Compounds shown: (A-B) Cynarin binding to Cluster 1conformation, (C-D) 
Demethoxycurcumin binding to Cluster 2 conformation, (E-F) Hexahydrocurcumin binding to Cluster 3 
conformation, and (G-H) Withaferin A binding to Cluster 5 conformation.
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energies (ΔGbind = -39.4 and − 36.4 kcal/mol, respectively), although they showcased moderate docking scores 
in at least one protein conformation.

We studied the protein-ligand interaction analysis of the top ten phytochemicals based on docking scores 
and MM-GBSA energies. The heatmap illustrated in Fig. 7 highlights the significance of specific binding site 
residues, including His41, Asn142, Gly143, Cys145, Met165, Glu166, Arg188, and Glu189, in stabilizing the 
phytochemicals within the binding site. These residues formed van der Waals and Coulombic interactions with 
at least five out of the ten phytochemicals, emphasizing their crucial role in ligand binding.

Bioavailability prediction
To gain insights into the bioavailability of the selected phytochemicals, we conducted an in silico ADMET study 
using ADMET Predictor by Simulations Plus48. This calculation generates a ADMET Risk score that reflects 

Phytochemical Name ΔGbind ΔGcoulomb ΔGcovalent ΔGhbond ΔGlipo ΔGpacking ΔGsolv_GB ΔGvdW

1,3,6-Tri-O-Galloyl-Beta-D-Glucose -63.8 -45.1 7.4 -5.3 -15.3 -2.2 48.3 -51.5

2’-Acetylacteoside -59.0 -30.9 8.2 -4.4 -20.8 -2.2 41.9 -50.9

2’’-O-Acetylrutin -53.3 -43.3 14.5 -5.7 -11.7 -3.1 47.1 -51.3

*AHDPH -58.3 -27.4 3.9 -5.0 -15.1 -2.2 29.9 -42.5

Balanophotannin E -70.9 -57.1 17.4 -5.5 -15.9 -1.5 43.0 -51.3

Brevifolincarboxylic acid -40.0 -14.3 0.0 -2.3 -9.5 -2.3 18.2 -29.7

Caffeic acid -26.8 11.3 3.8 -2.2 -8.1 -0.2 -13.5 -17.9

Cynarin -34.1 -2.6 7.6 -5.2 -13.1 -1.8 18.2 -37.1

****DDHH -49.9 -27.4 1.9 -3.4 -11.1 -2.2 22.2 -29.9

**DDHHG -70.2 -51.9 6.1 -5.8 -12.4 -1.5 32.8 -37.4

Demethoxycurcumin -57.2 -39.5 6.0 -2.8 -12.3 -0.3 27.6 -35.9

***DHMMP-TRTH-TMMO-Chr-One -54.9 -32.1 5.9 -4.0 -11.0 -3.0 24.5 -35.2

Dihydrocaffeic acid -41.1 -26.1 1.0 -2.7 -9.6 -0.8 17.3 -20.2

Eriodictyol -35.5 -32.2 3.6 -3.2 -4.6 -1.3 29.1 -26.9

Eriodictyol 7-O-Sophoroside -60.6 -50.5 5.8 -6.7 -13.1 -1.4 44.9 -39.7

Forsythiaside -82.2 -55.0 6.9 -6.0 -18.4 -0.8 39.4 -48.2

Gallic acid -24.5 11.8 4.3 -2.8 -6.1 -0.3 -15.7 -15.7

Hesperetin -43.1 -33.1 3.5 -3.2 -5.9 -1.3 26.2 -29.3

Hexahydrocurcumin -67.6 -40.4 3.9 -3.8 -16.4 -1.7 27.5 -36.7

Hydroxytyrosol -54.9 -35.2 1.4 -3.7 -14.7 -0.9 15.9 -17.7

Hyperin 6’’-[glucosyl-(1->3)-rhamnoside] -76.6 -59.1 8.4 -8.8 -15.0 -1.9 36.0 -36.1

Isoharmnetin -47.2 -22.8 0.7 -2.4 -7.5 -2.8 21.7 -34.1

Kaempferol -52.6 -34.1 1.1 -2.9 -4.7 -2.3 24.8 -34.5

Kaempferol 3-(3R-glucosylrutinoside) -35.4 -21.1 14.6 -5.5 -12.8 -0.9 27.7 -37.3

Luteolin -39.4 -33.7 2.8 -3.3 -4.0 -1.4 26.6 -26.5

Luteolin 7-rutinoside -80.2 -58.1 7.0 -6.6 -12.5 -2.5 39.0 -46.5

Narcissin -56.0 -42.0 20.4 -3.0 -15.4 -2.4 34.7 -48.4

Pectolinarigenin -45.1 -27.2 6.3 -3.1 -6.9 -2.8 21.2 -32.5

Pectolinarin -71.1 -45.6 8.0 -5.4 -14.1 -2.9 37.3 -48.2

Pinoresinol -59.1 -34.4 4.7 -4.2 -13.7 -2.8 22.2 -31.0

Plantagineoside C -62.3 -41.1 5.5 -6.3 -17.5 -2.3 32.1 -32.8

Quercetin -36.4 -32.8 2.9 -3.3 -4.5 -1.3 28.9 -26.3

Quercetin 3-glucoside2’’-gallate -76.7 -61.6 13.2 -6.9 -11.9 -3.0 51.1 -57.5

Quercetin-3-o-rutinose -45.3 -38.8 3.1 -5.8 -8.4 -1.9 44.4 -37.8

Salvianolic Acid L (SAL) -42.1 25.3 11.3 -5.2 -24.2 -2.4 2.7 -49.6

Secoisolariciresinol -53.8 -32.6 6.9 -4.0 -11.0 -3.0 25.5 -35.5

Shikonin -52.9 -25.8 6.9 -2.8 -15.1 0.0 19.8 -35.9

Shimobashiric Acid C (SAC) -39.0 2.0 8.3 -7.2 -5.0 -1.5 -1.3 -34.4

Withaferin A -51.8 -19.8 4.0 -1.7 -14.1 0.0 22.6 -42.8

Table 4.  Prime MM_GBSA energies (in kcal/mol) of phytochemicals. *AHDPH = (3R,5R)-3-Acetoxy-
5-Hydroxy-1,7-Bis(3,4-Dihydroxyphenyl)Heptane. **DDHHG = (3R,5R)-3,5-Dihydroxy-1-(3,4-
Dihydroxyphenyl)-7-(4-Hydroxyphenyl)-Heptane 3-O-Beta-D-Glucopyranoside. ***DHMMP-TRTH-
TMMO-Chr-One = 5,7-Dihydroxy-2-(4-Hydroxy-3-Methoxyphenyl)-3-[(2 S,3R,4 S,5 S,6R)-3,4,5-Trihydroxy-
6-[[(3R,4R,5R,6 S)-3,4,5-Trihydroxy-6-Methyloxan-2-Yl]Oxymethyl]Oxan-2-Yl]Oxychromen-4-One. 
****DDHH = 3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane.
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potential compound liabilities based on 20 rules within three Risk models (Absn_Risk, CYP_Risk, and Tox_
Risk) of their ADMET Predictor. Additionally, the ADMET Risk score models pharmacokinetic properties 
termed fraction unbound (fu) and high-steady-state volume of distribution (Vd). Each Risk score is paired with a 
mnemonic Code list that identifies the rules that have been violated. Of the 39 phytochemicals predicted to bind 

Fig. 7.  Interaction energy heatmaps between MPro residues and top ten phytochemicals. (A) Van der Waals 
interaction energies (green scale) and (B) Coulombic interaction energies (red scale). Values shown are in kcal/
mol, with more negative values (darker colors) indicating stronger interactions. Several residues, including 
His41, Gly143, and Glu166, form strong interactions with multiple phytochemicals.
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strongly to MPro, ten had ADMET Risk scores of < = 1 (Table 5). On the other hand, six phytochemicals, including 
1,3,6-Tri-O-galloyl-beta-D-glucose, 2-acetylacteoside, quercetin 3-glucoside2’’ -gallate, balanophotannin E, 
SAL, and SAC had problematic ADEMT Risk scores exceeding 6.

We calculated absorption and bioavailability characteristics of these phytochemicals using three human 
clearance models (liver microsomes, hepatocytes, and systemic) at a dose of 100 mg for an immediate release 
tablet and observed significant variability in the calculated pharmacokinetics parameters (Table 5). Out of 39 
phytochemicals examined, 20 exhibited high absorption (%Fa) and minimal metabolism or elimination in the 
liver during the first-pass effect (%Fb). A slight decrease in %Fb values were observed in the hepatocytes for 
some of these phytochemicals, suggesting that a portion of the compound is subject to metabolism.

In addition to absorption and bioavailability estimations, we calculated phytochemical plasma half-life 
(T-half) in humans and cell permeability (Madin-Darby canine kidney; MDCK), the latter serving as an estimate 
for intestinal epithelial absorption (Table 5). Demethoxycurcumin, shikonin, SAC, and withaferin, demonstrated 
an extended plasma half-life, surpassing 7 h. Phytochemicals with low ADMET risks also exhibited high MDCK 
permeability, except for secoisolariciresinol and DDHH.

Cytotoxicity and viral replication assay
We performed cell-based antiviral assay to evaluate the inhibitory effects of five highly performing phytochemicals 
(demethoxycurcumin, hydroxytyrosol, kaempferol, shikonin, and withaferin A) on SARS-CoV-2 replication. 
These compounds were selected based on their high overall performance in terms of docking score (above 
− 7.5 kcal/mol for at least one protein conformation), MM-GBSA binding energy (ΔGbind > -50 kcal/mol), and 
ADMET properties. Glycosides were excluded from the viral replication assay as their metabolic modification 
in the body would render the results less relevant. Although pinoresinol and hexahydrocurcumin fulfilled the 
criteria for top-performing molecules, meeting the specified factors, we opted not to include them in the study 
due to their current unavailability for immediate testing.

Viral assay demonstrated the SARS-CoV-2 replication inhibitory activity of three compounds, 
demethoxycurcumin (EC50 = ~ 8.8 µM), shikonin (EC50 = ~ 10 µM), and withaferin (EC50 = ~ 2.8 µM) 
(Fig. 8). In contrast to shikonin and withaferin, demethoxycurcumin showed no apparent cytotoxicity. These 
phytochemicals exhibit desirable physicochemical properties essential for drug development.

All of the three compounds adhere to Lipinski’s rule of five, a guideline for orally bioavailable drug 
development. Specifically, their molecular weights are under 500 g/mol, their Log P values are below 4, they 
possess five or fewer hydrogen bond acceptors with three or less hydrogen bond donors. These compounds 
are soluble in organic solvents. In DMSO, the solubility of demethoxycurcumin, shikonin, and withaferin A is 
10.0, 11.0, and 5.0 mg/ml, respectively49–51. Shikonin and withaferin A are sparingly soluble in aqueous buffer. 
Additionally, the stability of these compounds exceeds 2 years under appropriate storage conditions, specifically 
when stored at -20 °C49–51. Taken together, the bioactivity and favorable chemical properties of these compounds 
make them promising candidates for further drug development initiatives.

The inhibitory effects of these three compounds against MPro were previously speculated52–59however, the 
referenced studies primarily relied on computational or enzyme-based assays. Our study presents a robust cell-
based antiviral data, providing a more direct and clinically relevant perspective on the inhibitory potential of 
these compounds against SARS-CoV-2 replication.

While our findings contribute to the ongoing discussion on effective viral inhibition potential of 
demethoxycurcumin, shikonin, and withaferin A, we also recognize the necessity for further research to 
elucidate the intricate mechanisms underlying this inhibition. Our work adds valuable insights to this evolving 
dialogue, underscoring the importance of continued investigation in this area.

Discussion
Plant-derived natural product reservoir harbors a distinctive wealth of ‘bioactive’ molecules, spanning 
broader chemical diversity than synthetic libraries60. Interestingly, phytochemicals are structurally optimized 
by evolution, to serve specific biological functions. Among these functions is the regulation of endogenous 
defense mechanisms against microorganisms such as viruses and bacteria61. Additionally, the utilization of 
phytochemicals in traditional medicine could offer valuable insights into their effectiveness and safety. These 
characteristics elevates the importance of phytochemicals for antiviral and antibacterial interventions, revealing 
fresh avenues for exploration. Our study aimed to identify phytochemicals capable of inhibiting SARS-CoV-2 
MPro protein, using a phytochemical database comprising ~ 48,000 compounds. In the current literature 
landscape of studies on virtual screening for SARS-CoV-2 phytochemical inhibitors, researchers predominantly 
rely on relatively small molecule libraries, typically comprising hundreds or thousands of compounds62,63or 
concentrate on a limited number of medicinal plants64–66 that are traditionally known for its antiviral activity. 
Therefore, the utilization of significantly large database widens the scope of our investigation and markedly 
enhances the probability of identifying novel MPro inhibitors.

MPro is a challenging target due to its inherent plasticity mediated by allosteric residues. The high flexibility 
of MPro alters the characteristics of its binding pocket subsites, leading to diverse packing modes for inhibitors. 
This variation is evident from over 600 experimental structures of MPro deposited in the protein data bank67. 
Our PCA and FEL investigations provided quantitative evidence of this conformational plasticity, revealing that 
MPro explores a diverse ensemble of structural states during simulation. Structural comparison of representative 
conformations from different energy basins showed that variations predominantly occur within loop regions 
proximal to the binding pocket. Importantly, the catalytically important residues in these regions exhibited 
significant spatial displacements, directly influencing pocket geometry and ligand-binding capacity. To 
investigate the ensemble of binding site conformations adopted by the protein we integrated MD simulations 
with pocket shape-based clustering approach for conducting virtual screening. Since performing docking on 
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Table 5.  ADMET prediction of phytochemicals.
Red hues signify improved predictive scores, and blue hues represent poorer predictive scores for three 
clearance models.
RotB = rotatable bonds; HBD = H-bond donors; HBA = H-bond acceptors; ch = charge; Kow = lipophilicity; 
Peff = permeability; Sw = water solubility; fu = fraction unbound; Vd = volume of distribution; CL = high 
microsomal clearance.
%Fa = fraction absorbed; %Fb = fraction bioavailable.
*AHDPH = (3R,5R)-3-Acetoxy-5-Hydroxy-1,7-Bis(3,4-Dihydroxyphenyl)Heptane.
**DDHHG = (3R,5R)-3,5-Dihydroxy-1-(3,4-Dihydroxyphenyl)-7-(4-Hydroxyphenyl)-Heptane 3-O-Beta-D-
Glucopyranoside.
***DHMMP-TRTH-TMMO-Chr-One = 5,7-Dihydroxy-2-(4-Hydroxy-3-
Methoxyphenyl)-3-[(2 S,3R,4 S,5 S,6R)-3,4,5-Trihydroxy-6-[[(3R,4R,5R,6 S)-3,4,5-Trihydroxy-6-Methyloxan-
2-Yl]Oxymethyl]Oxan-2-Yl]Oxychromen-4-One.
****DDHH = 3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane.

 

Scientific Reports |        (2025) 15:22840 16| https://doi.org/10.1038/s41598-025-05907-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


MD simulations generated hundreds of thousands of protein conformations is computationally demanding, 
employing pocket-based filtering allows the selection of representative protein structures that capture the full 
range of conformational diversity observed in the binding site.

While numerous in silico studies on MPro inhibitors have been conducted, our study stands out as one of the 
few that not only investigated the ensemble of binding site conformations but also conducted in-depth analysis of 
the changes in the binding site geometry. This approach yielded novel insights into the restructuring of binding 
site pockets during MD simulations. For example, we observed a dual pattern in the binding site pockets: the 
S2 and S4 pockets exhibited shifts, transitioning from two distinct pockets to a single, larger pocket, while 
simultaneously, the area and volume of the S4 pocket increased. Additionally, we noted the opening of the S2 
pocket and the formation of new accessible subsites. Some of the structural features of the binding sites observed 
in our analysis have been captured in experimental structures of M[Pro68–70. Our study also corroborated two 
crucial features: the conformational changes in the S2 pocket and the formation of distinct subsites other than 
S1, S1’, S2, and S4, which have been previously studied71,72. This underscores the importance of considering 
binding site dynamics in drug design approaches, as these conformational changes can significantly impact 
inhibitor binding and efficacy.

Table 5.  (continued)
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While our analysis provided valuable insights, a potential avenue for further enhancement would be to 
extend the length of the MD simulation and expand the number of protein conformations used for pocket-
based clustering. Enriching the dataset could yield more comprehensive understanding of the intricate dynamics 
governing the MPro binding site, thereby facilitating an improved selection of potential drug candidates.

In line with the variations observed during pocket-based clustering analysis, virtual screening against the 
representative structures yielded a striking divergence in the landscape of high-performing phytochemicals; 
around 1% of the phytochemicals in the dataset showed potential binding across all examined MPro pocket 
conformers. A majority of molecules with high docking scores belonged to the class of flavonoid glycosides. 
This observation was consistent with previous reports73 on insilico studies of natural products, although the 
structural basis for their potency compared to other phytochemical classes remain unclear. In this study, we 
assessed 20 phytochemicals with high docking scores across all protein conformations and four phytochemicals 
that displayed high docking scores for at least one conformation. Some of the phytochemicals identified in 
our study, such as luteolin, quercetin, pectolinarin, and pinoresinol have been extensively studied for its MPro 
inhibitory bioactivity through structure-based studies74–77. Whereas phytochemicals previously reported to 
exhibit high docking scores for MPro, such as myricetin78epicatechin gallate79glycyrrhizic acid80chlorogenic 
acid81and naringenin82did not perform well in our studies. This discrepancy could be attributed to the 
database utilized in our study, which included a significantly larger number of molecules. It’s possible that our 
expanded database contains molecules better suited to efficiently bind MPro, leading to difference. Interestingly, 
a prior in silico analysis83 that utilized the same database to screen for MPro inhibitors also did not identify 
these phytochemicals. However, there was a difference in high-performing molecules. While our investigation 
predominantly identified flavonoids and their subgroups as high-performing molecules, the previous study 
predominantly highlighted terpenoids and their derivatives as MPro inhibitors. This variation may stem from our 
consideration of five different conformations of the protein, capturing the full range of conformational diversity 
observed in the binding site.

Given the likelihood of metabolic transformations of glycosides within the body, we examined the binding 
capabilities of the aglycones of these glycosides. This study showed a consistent superiority of glycosides over 

Table 5.  (continued)
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Fig. 8.  Antiviral activity and cytotoxicity of phytochemicals against SARS-CoV-2. (A) Dose-response curve 
for Remdesivir (control), showing viral inhibition (blue) and cell viability (red), EC50 = 3 µM. (B) Evaluation 
of Shikonin (EC50 = 10 µM), Demethoxycurcumin (EC50 = 8.8 µM), and Withaferin A (EC50 = 2.8 µM). 
FA denotes the fraction of cells affected; GRI represents the predicted compound response at an infinite 
concentration.
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their aglycone counterparts in terms of docking scores, signaling a pivotal role for glycosylation in increasing 
the score of binding calculations. Moreover, this observation accentuates the importance of investigating 
phytochemical metabolites to ensure efficacy, especially in the case where parent compounds that are prone 
to biotransformation. By examining metabolite-protein interactions, the likelihood of overlooking potential 
therapeutic benefits originating from these modified forms can be minimized, concurrently highlighting 
potential reductions in bioactivity among the resultant metabolites.

Among all the phytochemicals identified in the virtual screening process, seven are reported here for the first 
time for their MPro binding tendency. These include hyperin 6’-[glucosyl-(1 > 3)-rhamnoside], balanophotannin 
E, plantagineoside C, SAC, AHDPH, brevifolincarboxylic acid, and secoisolariciresinol. However, the ADME 
profiles and bioavailability of these phytochemicals generally fall within the moderate to poor range, except 
for AHDPH, brevifolincarboxylic acid and secoisolariciresinol, which exhibit more favorable attributes. For 
forthcoming investigations, it would be interesting to explore the impact of these molecules on MPro inhibition 
and SARS-CoV-2 replication. This exploration could uncover their significance in combating the virus and could 
potentially yield novel insights for future therapeutic approaches. Consistent with previous computational and 
enzyme-based studies52–59three molecules—demethoxycurcumin, shikonin, and withaferin A—demonstrated 
high MPro inhibition activity in our docking analysis and were further experimentally validated for their 
inhibitory bioactivity against SARS-CoV-2 replication. By focusing on pure, well-characterized phytochemicals, 
we addressed the critical challenge of identifying bioactive components within complex plant extracts, 
demonstrating a more precise approach to natural product-based drug discovery.

While our computational framework has yielded valuable insights into potential MPro inhibitors, we 
acknowledge its inherent limitations in fully capturing the biological complexity of physiological systems. In 
silico models, by design, simplify key processes such as metabolism, tissue distribution, off-target interactions, 
and immune modulation. For example, predicted binding affinities may be altered by serum protein binding, 
enzymatic degradation, or membrane transport—factors not fully accounted for in our simulations. Furthermore, 
the dynamic interplay between inhibitors and the conformational ensemble of MPro within a host cellular context 
introduces additional layers of complexity.

Despite these limitations, integrating computational predictions with in vitro validation strengthens 
confidence in our findings. Notably, the best-performing phytochemicals—demethoxycurcumin, shikonin, and 
withaferin A—have established safety profiles and a history of traditional use, providing a meaningful biological 
context. Although some cytotoxicity was observed at higher concentrations, these data offer a promising 
starting point for future optimization. Moving forward, in vivo studies will be critical to confirm efficacy and 
pharmacokinetics, and to bridge the gap between bench and bedside. Collectively, this integrative approach 
enhances both the efficiency and translational potential of our natural product-based antiviral discovery pipeline.

Methods
Molecular dynamics simulation
The protein structure of MPro protein was obtained from the Protein Data Bank84 (PDB code: 5R80). Two 
independent molecular dynamics simulations of the ligand unbound protein were carried out utilizing the 
GROMACS 5.0.7 software85. The force field used for the protein was CHARMM3686. The models were immersed 
in a dodecahedron box with dimensions 5.0777 × 5.069 × 3.672  nm, containing TIP3P87 water molecules. 
Subsequently, two chloride ions, twelve, and four sodium ions were added to model 1, 2, and 3, respectively 
to achieve neutrality of the system. Periodic boundary conditions and a 2 fs time step were employed for each 
simulation. Particle Mesh Ewald88 (PME) was employed to treat long-range electrostatic interactions, and a 
cutoff of 0.9 nm was used for non-bonded interactions. Combination of steepest descent and conjugate gradient 
methods of energy minimization (EM) were used to remove steric clashes and to minimize the interaction forces. 
EM was achieved in four steps89. In Step 1 the protein and ligand were restrained, in Step 2 the protein heavy 
atoms and ligand were restrained, in Step 3 the protein main chain was restrained and in Step 4, unrestrained EM 
was performed. Unrestrained minimization was carried out until convergence where the maximum atomic force 
was < 100 kJ/mol–nm. The minimized structures were first gradually heated to 300 K in the NVT ensemble for 
20ps using a position restraint of 1000 kJ/mol-nm constant force on the proteins. The systems were equilibrated 
under NPT (isobaric-isothermal) ensemble by 200ps by gradually decreasing the position restraint force to 
700, 400, and then to 100 and finally to 10 kJ/mol–nm and then equilibrated for an additional 2 ns without 
any restraints. A production run for 300 ns were carried out under the NPT ensemble. The temperature was 
maintained at 300 K with the Berendsen weak coupling method90. Bond lengths were constrained using the 
linear constraint solver (LINCS) algorithm91 and the van der Waals cutoff was at 1.4 nm. The trajectories were 
sampled every 10ps for analysis in production dynamics. Molecular visualization and analysis were performed 
using VMD92 and UCSF Chimera package93.

Principal component analysis and free energy landscape
PCA was performed using GROMACS85 to characterize the dominant motions of apo MPro during the 300 
ns molecular dynamics trajectory. The trajectory was first RMS-fitted to the backbone atoms of the reference 
structure to remove global translational and rotational motions. A covariance matrix of atomic positional 
fluctuations was computed using gmx covar, focusing on Cα atoms. The resulting eigenvectors and eigenvalues 
were analyzed using gmx anaeig, and the first two principal components (PC1 and PC2), which captured the 
largest variance in atomic displacements, were selected for further analysis.

To explore the conformational landscape, a two-dimensional FEL was generated based on the projection 
along PC1 and PC2. The gmx sham utility was employed to construct a 2D histogram and compute the relative 
free energy surface by applying Boltzmann inversion:
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	 ∆ G = −kBT ln (P )

where ΔG is the free energy, kB is the Boltzmann constant, T is the temperature, and P is the normalized 
probability of each bin in the PC1–PC2 space. The FEL enabled identification of distinct conformational 
basins, and representative structures from local energy minima were extracted for structural comparison and 
downstream analyses.

Pocket volume analysis
POVME 3 36 software was utilized for characterizing pocket volumes and shapes of ensembles of binding pockets 
from molecular dynamics simulation.

The volume of the active site is calculated by first defining the binding pocket region. The coordinates of 
Cβ atom of residue 165 located at the center of the active site was considered as the point of inclusion with 8 Å 
radius. Subsequently, the user-specified inclusion region encompassing all the binding-pocket conformations 
of the trajectory is filled with equidistant points spaced at 1.0 Å. The program then removes all the points that 
are close to the receptor alpha carbon atoms and leaves the points that are positioned within the pockets. Two 
algorithms, gift wrapping, and Akl-Toussaint heuristic are used to define the convex hull of receptor atoms near 
the inclusion sphere; any points outside the convex hull are then removed. Lastly, to remove the isolated patches 
of points lying outside the primary pockets or the pockets not contiguous with the primary pockets are removed. 
POVME scripts (binding_site_overlap.py and cluster.py) were used to calculate the similarity of the pockets 
from all protein conformations, to measure the binding site overlap, and to perform hierarchical clustering.

Structure-based virtual screening
Protein and ligand Preparation
The representative protein structures derived post clustering was prepared for docking utilizing the “Protein 
preparation wizard” tool in Schrödinger suite94. The protocol included, the removal of water molecules and 
cofactors, rectifying misidentified elements, introducing hydrogen atoms, determining bond orders, and 
optimizing hydrogen bonds. Hydrogen bond assignment was done using PROPK at pH 7.0, the orientation of 
hydroxyl groups, side chain amide groups of Asn and Gln, and the charge state of His residues were optimized. 
The protein structures were minimized to an RMSD limit from the starting structure of 0.3 Å using the OPLS3 
force field95. The prepared proteins were subsequently utilized for grid creation using the “Receptor Grid 
Generation” panel within the Glide module of the Schrödinger suite96. Binding site was defined by selecting key 
residues located at the subsites.

The library of phytochemicals was prepared using Schrödinger’s Maestro LigPrep tool97which involved 
applying the OPLS4 force field, optimizing the structures, and incorporating hydrogen atoms. Additionally, 
Epik, integrated into the process, was utilized to assign probable protonation states within a pH range of 7 ± 2 
and determine tautomeric forms for each compound.

Molecular docking
Virtual screening was performed using Glide program96. A ligand-flexible docking of prepared ligands to the 
binding sites of five protein conformations was performed at two different levels, standard precision (SP) and 
extra precision (XP) using Virtual Screening Workflow protocol of GLIDE.

MM-GBSA prediction
The examination of the protein and ligand complexes’ free binding energies was carried out by utilizing the 
MM-GBSA (Molecular Mechanics, the Generalized Born model, and Solvent Accessibility) tool of Schrödinger. 
To determine the optimal binding energy the Prime module within the Schrödinger software was employed. 
Solvation model VSGB 2.098 and OPLS-AA force field95 was used for the calculations. Additionally, the protocol 
incorporates physics-based modifications catering to π-π interactions, hydrophobic interactions, and self-
contact interactions involving hydrogen bonding.

ADMET and bioavailability prediction
The SMILES (Simplified Molecular-Input Line-Entry System) strings for phytochemicals were imported into 
ADMET Predictor v11.048. Physicochemical and pharmacokinetic properties were predicted using quantitative 
structure-activity relationship (QSAR) models within AP11.0. For a comprehensive understanding of the model 
specifications, validation, and performance, please refer to the AP11.0 user manual and relevant publications99,100.

Cytoxicity assay
The compounds selected for cytotoxicity and viral replication testing were carefully selected based on its purity 
and reliability from reputable suppliers. Hydroxytyrosol (purity: 98.78%), shikonin (purity: 99.79%), and 
demethoxycurcumin (purity: >= 99.0%) were procured from MedChemExpress ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​m​e​d​c​h​e​m​e​x​p​r​e​
s​s​.​c​o​m​​​​​)​.​​

Kaempferol (purity: 99.7%) and withaferin A (purity: 96.0%) were sourced from ChromaDex ​(​​​h​t​t​p​s​:​/​/​w​w​w​
.​c​h​r​o​m​a​d​e​x​.​c​o​m​​​​​)​.​​

Vero cells were seeded using a multiDrop combi liquid dispenser (Thermo) into 384-well plates at a 
density of 500 cells/well suspended in 50 µL of media. Cells were allowed to recover and fully attach overnight 
(approximately 16 h), at which point library compounds were dispensed into wells using an Echo 550 acoustic 
dispenser (Labcyte). A total of six final concentrations where tested (50 µM, 25 µM, 12.5 µM, 6.25 µM, 3.125 
µM, and 1.5625 µM) and wells were back filled with DMSO such that all wells contained a fixed ratio of DMSO. 
Compounds were incubated with cells for 1 h prior to addition of virus and then for an additional 24 h, then fixed 
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with 10% formalin, permeabilized 0.1% Triton X-100, washed, and stained for SARS-CoV-2 N protein using a 
specific antibody (Sino Biological # MM05) and fluorescently labelled secondary antibody. Cells were counter 
stained with Hoechst 33,342 to detect cell nuclei, washed, and imaged with a Cytation 1 (Biotek) automated. 
Each image was then analyzed with a custom workflow in Cell Profiler (Broad Inst., Boston, MA) which involved 
counting of cell nuclei and infected cells. At least 4 replicates were used to construct dose response curves.

Statistics and data normalization
The growth rate index is calculated from cell counts using the following formula:

	 GR = 2

(
Xc
X0

)
(

XDMSO
X0

)
− 1

Where Xc is the observed cell count after drug exposure, X0 is the median cell count from a plate that was fixed 
at the time when the drug was added, and XDMSO is the median cell count of the on-plate DMSO control. The 
growth rate is then fit against the log10 molar concentration using a cascade of models (4 parameters logistic, 2 
parameters logistic, and linear model). The model with the best overall fit, determined by minimizing the mean-
squared-error, is then selected. Finally, compound effects are ranked using either potency (GR50, LD50) or the 
area under/over the curve (AUC_GRI, AOC_GR, and AOC_LD) calculated from the optimized fit.

Viral assay
As for the cytotoxicity assay, Vero cells were seeded into 384-well plates to a density of 70% per well. Cells were 
allowed to recover and fully attach overnight (approximately 16  h), at which point library compounds were 
added to cells. A total of ten final concentrations where tested ranging from 10 µM down to 20 nM. Compounds 
were incubated with cells for 1 h prior to addition of SARS-CoV-2 virus, Washington strain, and then for an 
additional 36 h. The cells were then fixed with 10% formalin, permeabilized 0.1% Triton X-100, washed, and 
stained for SARS-CoV-2 N protein using a specific antibody (Sino Biological # MM05) and fluorescently labelled 
secondary antibody. Cells were counter stained with Hoechst 33,342 to detect cell nuclei, washed, and imaged 
with a Cytation 1 (Biotek) automated. Each image was then analyzed with a custom workflow in Cell Profiler 
(Broad Inst., Boston, MA) which involved counting of cell nuclei and infected cells. At least 4 replicates were 
used to construct dose response curves.

Infected cells/total cell count ratios were calculated for each well. Then, each well was normalized to the 
average of the 14 negative control wells on each plate. These normalized ratios were input into GraphPad Prism 
(7.05), and curves were fitted to the data. A dose response curve ([Inhibitor] vs. response - Variable slope (four 
parameters); constrained to 0) was used. R2 > 0.80 was used as a threshold for a good fit of the dose-response 
curve. Total cell count was added to the right y-axis as a surrogate for potential cytotoxicity and dose-response 
curves were also run for total cell count following the same formula and constraint.

In Supplementary Table 2, the results are labeled accordingly: red, did not converge on a line of best fit; 
yellow, converged on a line of best fit but R2 < 0.80; green, converged on a line of best fit and R2 > 0.80.

Data availability
The data that support the findings of this study are available from the corresponding author, Khushboo Singh 
upon reasonable request.
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