Table 1 Performance of each U-Net model within the cascading U-Net method. For offline phase, we use a GPU in JURECA High-Performance Computing (HPC) infrastructure at Forschungszentrum Jülich, utilizing a GPU-equipped node with 2 \(\times\) AMD EPYC 7742 processors (2 \(\times\) 64 CPU cores at 2.25 GHz), 512 GB of RAM, and 4 \(\times\) NVIDIA A100 GPUs per node. For online phase, we employ a CPU in a Dell Latitude 7440 Laptop equipped with Gen 13th Intel i7-1365U containing 12 CPU cores at 1.8 GHz and 32 GB RAM.

From: Investigating the metastability of amorphous calcium carbonate by droplet microfluidics experiments using machine learning

Model

Number of encoders

Number of filters in the first encoder

Learning rate

Batch size

Number of epochs

Offline time (minutes)

Offline resources

Binary cross-entropy error

Online time per image (seconds)

U-Net 1

5

32

\(4.4 \times 10^{-4}\)

2

9,269

15

1 GPU

\(2.7 \times 10^{4}\)

0.46

U-Net 2

6

64

\(4.9 \times 10^{-4}\)

16

3,853

17

1 GPU

\(7.7 \times 10^{2}\)

1.60

U-Net 3

5

64

\(6.9 \times 10^{-4}\)

13

2,997

16

1 GPU

\(2.1 \times 10^{2}\)

1.22