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Evaporation represents a fundamental hydrological cycle process that demands dependable methods 
to quantify its fluctuation to ascertain sustainable agriculture, irrigation systems, and overall water 
resource management. Meteorological variables such as relative humidity, temperature, wind speed, 
and sunshine hours affect evaporation non-linearly, resulting in challenges while developing prediction 
models. To combat this, the study aimed to develop robust models for estimating evaporation in 
semi-arid environments by applying machine learning techniques. Daily meteorological datasets 
(from January 2000 to December 2010) for the above variables (input) were collected from the Sidi 
Yakoub meteorological station in the Wadi Sly basin, Algeria. Conventional deep neural network (DNN) 
coupled with support vector machine (SVM), Bayesian additive regression trees (BART), random 
subspace (RSS), M5 pruned, and random forest (RF) were used for developing prediction models using 
various input variable combinations. Model performances were compared using mean absolute error 
(MAE), root mean square error (RMSE), determination coefficient (R2), Nash–Sutcliffe efficiency (NSE) 
coefficient, and percentage bias (PBIAS). Results indicated comparatively better performance for 
hybrid models (DNN-SVM, DNN-BART, DNN-RSS, DNN-M5 pruned, and DNN-RF) than conventional 
models (standalone DNN). Among hybrid models, the DNN-SVM model outperformed others with high 
accuracy and performance and fewer statistical errors in the daily pan evaporation prediction during 
the testing phase (R²=0.65, RMSE = 3.00 mm, MAE = 2.13, NSE = 0.65, and PBIAS = 3.54). DNN-RF was 
in the second rank for the prediction with R2 of 0.64, RMSE of 3.00 mm, MAE of 2.16, NSE of 0.64, and 
PBIAS = 0.41. While the standalone DNN model gave the lowest results with MAE of 4.87, RMSE of 
5.00 mm, and NRMSE of 0.65. The present framework’s success in Algeria’s Wadi Sly basin highlights 
its potential for scalable adoption in irrigation scheduling and drought resilience strategies, yielding 
implementable steps for policymakers, addressing climate-driven water scarcity. Future research 
should explore integrating real-time climate projections and socio-hydrological variables to improve 
predictive adaptability across diverse agroecological zones.

Keywords  Pan evaporation, Meteorological variables, Machine learning, Deep neural network, Semi-arid 
regions

1Faculty of Nature and Life Sciences, Water and Environment Laboratory, University Hassiba Benboual of Chlef, 
Chlef B.P. 78C, Ouled Fares, 02180 , Algeria. 2College of Agricultural Engineering and Technology, Dr. R.P.C.A.U, 
Pusa, Samastipur, Bihar 848125, India. 3Construction and Project Management Research Institute, Housing 
and Building National Research Centre, Giza 12311, Egypt. 4Formerly, Centre for Technology Alternatives 
for Rural Areas (CTARA), Indian Institute of Technology (IIT) Bombay, Mumbai  400076, India. 5Agricultural 
Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt. 6Civil Engineering 
Department, Faculty of Engineering, Minia University, Minia 61111, Egypt. 7Structural Diagnostics and Analysis 
Research Group, Faculty of Engineering and Information Technology, University of Pécs, Pecs, Hungary. email:  
ahmedelbeltagy81@mans.edu.eg; salem.ali@mik.pte.hu

OPEN

Scientific Reports |        (2025) 15:20179 1| https://doi.org/10.1038/s41598-025-05985-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-05985-z&domain=pdf&date_stamp=2025-6-14


Abbreviations
AI	� Artificial intelligence
AIC	� Akaike information criterion
ANN	� Artificial neural network
BART	� Bayesian additive regression trees
DNN	� Deep neural network
DT	� Decision tree
Ep	� Pan evaporation
MAE	� Mean absolute error
ML	� Machine learning
NSE	� Nash–Sutcliffe efficiency
P (mm)	� Precipitation
PBIAS	� Percentage bias
PC	� Amemiya prediction criterion
R2	� Determination coefficient
Ra (MJm2)	� Extra-terrestrial radiation
RF	� Random forest
RHmax (%)	� Maximum relative humidity
RHmean (%)	� Mean relative humidity
RHmin (%)	� Minimum relative humidity
RMSE	� Root mean square error
Rs (MJm2)	� Solar radiation
RSS	� Random subspace
SBC	� Schwarz Bayesian criterion
SSH (hours)	� Sunshine hours
SVM	� Support vector machine
Tmax (℃)	� Maximum temperature
Tmean (℃)	� Mean temperature
Tmin (℃)	� Minimum temperature
VP (hPa)	� Vapor pressure
WSP (ms−1)	� Wind speed

Evaporation losses have significant global implications, particularly in the context of climate change, human 
interventions, and natural climate oscillations1. Rising global temperatures have intensified evaporation rates, 
exacerbating water scarcity issues in many regions, especially arid and semi-arid areas2. Increased evaporation 
from reservoirs, lakes, and river basins threatens freshwater availability, impacting agriculture, drinking 
water supplies, and hydropower generation3. Additionally, anthropogenic activities such as land-use changes, 
deforestation, and urbanization alter local climate patterns, further influencing evaporation rates and disrupting 
regional water cycles4. Climate oscillations, such as El Niño and La Niña, also play a crucial role in modifying 
evaporation patterns, leading to extreme droughts or intense precipitation events that impact water storage and 
distribution5. Given these challenges, accurately quantifying evaporation losses is essential for sustainable water 
resource management, agricultural planning, and climate adaptation strategies6.

Evaporation is measured using either direct methods, such as the pan evaporation method, or indirect 
methods, such as semi-empirical and empirical models7. Pan evaporation is commonly used for measuring 
evaporation because of its simplicity and cost-effectiveness8,9. The Class A pan is the most widely used method 
of assessing surface evaporation because it allows researchers to compare the evaporation rates in different 
locations10. However, it cannot be deployed everywhere, especially in difficult areas where instrumentation 
cannot be installed or maintained11. Therefore, the implementation cost is a disadvantage in developing nations12. 
As a result, studies have suggested developing indirect evaporation estimation methods (i.e., empirical and semi-
empirical models) from various metrological parameters, such as mean temperature (Tmean, ℃), maximum 
temperature (Tmax, ℃), minimum temperature (Tmin, ℃), wind speed (WSP, ms− 1), solar radiation (Rs, MJm2), 
extra-terrestrial radiation (Ra, MJm2), precipitation (P, mm), sunshine hours (SSH, hours), vapor pressure (VP, 
hPa), rainfall (R, mm), and relative humidity (RH, %)13. Penman-Monteith, Thornthwaite, and Priestley-Taylor 
equations are examples of empirical models14. However, due to the stochasticity of the meteorological variables 
and the location-specific nature of these models, the empirical approaches might underestimate or overestimate 
pan evaporation (Ep) under a wide range of climatic conditions, particularly during extreme weather events15. 
Hence developing robust machine learning (ML) models for predicting evaporation becomes an imperative 
approach16–18.

Over the last two decades, ML models have made significant improvements in several hydrological and 
climatological fields, including drought19,20, rainfall21,22, evapotranspiration23,24, surface water quality25, and 
streamflow26,27. This is owing to the capacity of these models to handle complex and stochastic problems28. A 
survey of related articles is conducted to grasp an overview of the most recent work in this field, as depicted in 
Table 1.

After reviewing the above-mentioned research studies, it has been recognized that ML models have been 
widely applied to estimate Ep across various regions worldwide. Compared to traditional empirical methods, ML-
based approaches demonstrate superior predictive accuracy due to their ability to capture complex, nonlinear 
relationships between meteorological parameters29. The evolution of ML models in earth and atmospheric 
sciences has seen a transition from conventional statistical and empirical methods to more sophisticated deep 
learning frameworks. Early studies primarily relied on artificial neural network (ANN) and support vector 
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Reference Applied models Study location Climatic inputs Evaluation metrics
Recommended 
model

Adnan et al.33

Clustered ANFIS using:
 Grid partition
 Subtractive clustering
 FCM

Uttarakhand station, 
India

Tmin, Tmax, WSP, SSH, 
and RH

R2, NSE, RMSE, and 
MAE ANFIS-FCM

Ghaemi et al.34
MODWT coupled with:
 MARS
 M5 model tree

Siirt and Diyarbakir 
stations, Turkey T, WSP, RH, Rs

RMSE, NSE, MAE, 
and R MARSMODWT

Khosravi et al.35

Data mining models:
 M5 pruning
 REPT
 RF
 Random tree
 Kstar
Hybrid models:
 ANFIS
 ANFIS-differential evolution algorithm
 ANFIS-GA
 ANFIS-imperialistic competitive algorithm

Baghdad and Mosul 
stations, Iraq

WSP, SSH, P, RH, 
Tmin, and Tmax

R2, NSE, RMSE, 
MAE, RSR, and 
PBIAS

ANFIS-GA

Kisi and Heddam36 MARS
M5 model tree

Adana, Antakya and 
Mersin stations, Turkey Tmin, Tmax, and Ra

RMSE, MAE, and 
NSE MARS

Rezaie-Balf et al.37
EEMD coupled with:
 SVM
 M5 model tree

Siirt and Diyarbakir 
stations, Turkey WSP, T, RH, and Ra

NSE, RMSE, PI, WI, 
and LMI

EEMD-M5 
model tree

Sebbar et al.38 OSELM
OPELM

Ain Dalia and Zit Emba 
stations, Algeria

Tmin, Tmax, WSP, 
and RH RMSE, MAE, and R

OPELM (Ain 
Dalia) and 
OSELM (Zit 
Emba)

Alsumaiei39 ANN trained using different meteorological variable 
combinations

Kuwait International 
Airport, Saberya, and 
Abdaly stations, Kuwait

Tmean, WSP, and RH R, R2, MAE, and 
NSE ANN

Malik et al.3

MM-ANN
MARS
SVM
MGGP
M5 model tree

Ranichauri and 
Pantnagar stations, India

Tmin, Tmax WSP, SSH, 
and RH

LMI, WI, RMSE, 
NSE, and MAPE

MM-ANN and 
MGGP

Shabani et al.6
GPR
KNN
SVR
RF

Gonbad-e Kavus, 
Gorgan, and Bandar 
Torkman stations, Iran

T, RH, WSP, and SSH RMSE, R, and MAE GPR

Wu et al.9
ELM coupled with:
 Whale optimization algorithm
 FPA

Poyang Lake Basin, 
Southern China

Tmin, Tmax, SSH, RH, 
and WSP

RMSE, MAE, 
MAPE, R2, and NSE FPA-ELM

Yaseen et al.40

Cascade correlation neural network
Classification and regression tree
SVM
GEP

Baghdad and Mosul 
stations, Iraq

Tmin, Tmax, P, RH, 
and SSH

MAE, RMSE, NSE, 
WI, LMI, and R2 SVM

Al-Mukhtar14

Conditional random forest regression
MARS
Bagged MARS
M5 model tree
KNN
Weighted KNN

Baghdad, Basrah, and 
Mosul stations, Iraq

Tmin, Tmax, Tmean, 
WSP, and RH

R2, NSE, MAE, 
RMSE, and PBIAS Weighted KNN

Abed et al.41
RF
CNN
DNN

Bayan Lepas, Ipoh, KLIA 
Sepang, and Kuantan, 
Malaysia

Tmax, Tmin, Tmean, RH, 
WSP, and Rs

R2, MAE, MSE, 
RMSE, RAE, and 
NSE

CNN

Ehteram et al.42

Optimized KELM using:
 BMA
 WSA
 Salp swarm algorithm
 Shark algorithm
 Particle swarm optimization

Hormozgan, 
Mazandaran, Fars, Yazd, 
and Isfahan provinces, 
Iran

Tmean, SSH, WSP, RH, 
and R

RMSE, MAE, PBIAS, 
p, and w

BMA and 
KELM-WSA

Novotná et al.43

ANN
DT
Autoneural network
Dmine regression
DM neural network
Gradient boosting
Least angle regression
Ensemble model

Slovak Republic

Tmax, Tmin, and 
Tmean, RH, WSP, 
R, VP, elevation, 
coordinates, and 
wind directions

Average squared 
error

Dmine 
regression

El Bilali et al.44

DNN
SVR
Extra tree
XGBoost

Sidi Mohammed Ben 
Abdellah, Morocco

Tmean, WSP, RH, VP, 
and Rs

NSE, RMSE, and 
PBIAS XGBoost

Elbeltagi et al.45

AR coupled with:
 RSS
 M5 pruned
 REPT
 Bagging

Baghdad, Mosul, and 
Basrah, Iraq

Tmax, Tmin, Tmean, RH, 
and WSP

MAE, RMSE, RAE, 
RRSE, and R AR-M5 pruned

Continued
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machine (SVM) for hydrological modeling, benefiting from their ability to learn from data without explicit 
physical assumptions30. However, these models often required extensive parameter tuning and were limited 
in their capacity to handle high-dimensional datasets effectively. Recent advancements in deep learning have 
introduced more powerful architectures, such as deep neural networks (DNNs) and hybrid models, which 
integrate multiple ML techniques for improved accuracy and generalization31. Studies have shown that hybrid 
approaches, such as combining DNN with SVM or random forest (RF), can enhance predictive performance 
by leveraging the strengths of multiple algorithms32. Additionally, ensemble learning techniques and Bayesian 
frameworks, such as Bayesian additive regression trees (BART), have gained traction in atmospheric and 
hydrological studies due to their robustness in handling uncertainties and complex spatial-temporal patterns.

Despite significant advancements in ML applications for hydrological modeling, the generalization capability 
of ML models across diverse climatic regions remains a challenge due to the stochastic and region-specific 
nature of meteorological conditions. To address this limitation, the present study evaluates six ML models—
conventional DNN, DNN coupled with SVM, BART, random subspace (RSS), M5 pruned trees, and RF—for 
predicting daily pan evaporation rates in semi-arid regions. The study utilizes daily meteorological data from 
the Sidi Yakoub meteorological station in the Wadi Sly basin, Algeria, incorporating key climatic variables such 
as sunshine hours, wind speed, and relative humidity and temperature (mean, maximum, and minimum). 
The novelty of this research lies in its comparative assessment of hybrid and ensemble ML models, integrating 
advanced techniques such as DNN-SVM and ensemble learning methods like BART and RF to enhance predictive 
accuracy. Unlike previous studies that primarily focus on standalone models, this study systematically evaluates 
multiple approaches to improve evaporation estimation. Additionally, it provides the first application of these 
models in Algeria’s semi-arid regions, addressing a critical gap in hydrological modeling for arid and semi-arid 
climates. The research also employs sensitivity analysis to optimize input variable selection, ensuring that the 
most influential meteorological parameters are identified for precise prediction. Finally, a rigorous performance 
evaluation using multiple statistical metrics strengthens the reliability of the findings, contributing valuable 
insights for sustainable water resource management in regions with high evaporation rates. By addressing these 
aspects, this study contributes to improving the reliability and adaptability of ML-based evaporation prediction 
models, offering valuable insights for sustainable water resource management in semi-arid regions.

Materials and methods
Study area and data collection
As shown in Fig. 1, the study area is the Wadi Sly basin, located in northwest Algeria. It has an area of 1,400 
km2 with coordinates of 35° 36’ 5”–36° 5’ 53” N and 1° 8’ 16”–1° 44’ 56” E. The basin has a maximum width and 
length of 30 and 70 km, respectively. Besides, it has a narrow, long-form, and large hydrographic network. The 
Sidi Yakoub dam, built for agricultural purposes, influences flows in the lower section of the basin. According 
to the Köppen-Geiger classification, the basin’s climate is the Mediterranean, with extremely hot summers and 

Reference Applied models Study location Climatic inputs Evaluation metrics
Recommended 
model

Fu and Li46
LSTM and SVM optimized using:
 GWO
 Whale optimization algorithm

Shapotou, Ningxia Hui 
Autonomous Region, 
China

Tmax, Tmin, Tmean, VP, 
and WSP

RMSE, NMSE, 
MAE, MAPE, and 
NSE

LSTM-GWO

Mohammed et al.47 MLR Ramadi City, Iraq Tmax, Tmin, Tmean, 
WSP, RH, and Rs

RMSE, NAE, MAPE, 
NSE, and R2 MLR

Rajput et al.48

Bagging
RSS
M5 pruned
REPT

New Delhi, India Tmean

R, MAE, RMSE, 
RAE, RRSE, MBE, 
NSE, WI, KGE, and 
MAPE

Bagging

Table 1.  Summary of research studies for modeling and estimating evaporation in different regions. Models: 
ANFIS Adaptive neuro-fuzzy inference system, ANN Artificial neural network, AR Additive regression, BMA 
Bayesian model averaging, CNN Convolutional neural network, DNN Deep neural network, DT Decision 
tree, EEMD Ensemble empirical mode decomposition, ELM Extreme learning machine, FCM Fuzzy c-means 
clustering, FPA Flower pollination algorithm, GA Genetic algorithm, GEP Gene expression programming, 
GPR Gaussian process regression, GWO Grey wolf optimizer, KELM Kernel extreme learning machine, 
KNN K-nearest neighbor, LSTM Long short-term memory, MARS Multivariate adaptive regression spline, 
MGGP Multi-gene genetic programming, MLR Multiple linear regression, MM-ANN Multiple model-ANN, 
MODWT Maximum overlap discrete wavelet transform, OPELM Optimally pruned extreme learning machine, 
OSELM Online sequential extreme learning machine, REPT Reduced error pruning tree, RF Random forest, 
RSS Random subspace, SVM Support vector machine, SVR Support vector regression, WSA Water strider 
algorithm, XGBoost Extreme gradient boosting. Performance metrics KGE Kling-Gupta efficiency, LMI 
Legates–McCabe’s index, MAE Mean absolute error, MAPE Mean absolute percentage error, MBE Mean bias 
error, NAE Normalized absolute error, NMSE Normalized mean squared error, NSE Nash-Sutcliffe efficiency, 
p Percentage of measured data bracketed by 95% of predicted uncertainties, PBIAS Percentage of bias, PI 
Performance index, R Correlation coefficient, R2 Determination coefficient, RAE Relative absolute error, RMSE 
Root mean square error, RRSE Root relative square error, RSR Ratio of RMSE to the standard deviation of 
observations, w Width of uncertainty bound, WI Willmott’s index.
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moderate winters. The coldest month is often January, whose temperature is typically above 0 °C. Besides, the 
average temperatures of at least one and four months are above 22 °C and 10 °C, respectively. In this environment, 
rainfall in the wettest month of the year is generally three times that of the driest month of the year.

The Wadi Sly basin in northwest Algeria was chosen as the study area for several reasons. Firstly, it represents 
a typical semi-arid environment with a Mediterranean climate, characterized by hot summers and mild winters, 
making it an ideal location to study evaporation. The basin’s hydrological characteristics, including its extensive 
hydrographic network and the presence of the Sidi Yakoub dam, provide a complex yet controlled environment 

Fig. 1.  Location of the study area and the meteorological station (created by ArcGIS 10.8.2).

 

Scientific Reports |        (2025) 15:20179 5| https://doi.org/10.1038/s41598-025-05985-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


to assess the impact of meteorological variables on evaporation. Additionally, the region’s reliance on irrigation 
for agriculture underscores the importance of accurate evaporation modeling for sustainable water resource 
management. The availability of comprehensive meteorological data from the Sidi Yakoub meteorological 
station further facilitated the selection of this site for the study.

The daily meteorological data, including minimum, maximum, and mean air temperature (Tmin, Tmax, and 
Tmean), minimum, maximum, and mean relative humidity (RHmin, RHmax, and RHmean), wind speed (WSP), 
sunshine hours (SSH), and pan evaporation (Ep) are collected from the Sidi Yakoub meteorological station. The 
dataset comprises daily records for 11 years from January 2000 to December 2010 (Figure S1). Table 2 shows the 
statistical characteristics of the meteorological data.

Machine learning models
For modeling evaporation in Algeria, the present study applies six hybrid ML models; conventional DNN, 
DNN-SVM, DNN-BART, DNN-RSS, DNN-M5 pruned, and DNN-RF. The process of stacking has been adopted 
for the hybridization of the models. Stacking is a way to ensemble multiple regression models. It is a general 
procedure where a learner is trained to combine the individual learners. Here, the individual learners are called 
the first-level learners, while the combiner is called the second-level learner, or meta-learner. The division of data 
into training and testing sets in the developed ML models was 75:25. It implies that 75% of the data is used for 
training the model, while 25% is reserved for testing and evaluating the model’s performance. The architecture 
of each model is described in the following sub-sections.

Deep neural network (DNN)
Hinton et al.49 proposed the concept of deep learning and networks that subsequently rejuvenated DNN. The 
DNN has emerged as a central and powerful deep learning model in the ongoing decade, given its added 
advantage over the single-hidden-layer ANN model50,51. The DNN models provide scope to learn complex non-
linear relationships via multiple hidden layers considering features, targets, inputs, and outputs. These multiple 
layers allow models to understand complex features more efficiently and perform more intensive computational 
operations. The higher efficiency and computation ability of DNN are due to deep learning algorithms’ ability 
to learn from their own errors, such that DNN can validate the model prediction accuracy. On the other hand, 
classical ML models require varying degrees of human intervention to determine output accuracy. Therefore, the 
DNN model became the natural choice for evaporation estimates and predictions for the present investigation. 
In this study, a 4-layer DNN model with a rectified linear unit ( ReLu) activation function is employed, as 
shown in Eq. 1. For this DNN architecture, the loss function ( Loss) is estimated using Eqs. 2–3. In order to 
minimize the loss, a classical gradient-descent method is applied. TensorFlow software has been used to write 
the codes of the DNN model in Python 3.6.

	
ReLu =

{
x, if x > 0
0, if x ≤ 0 � (1)

Statistical parameter Tmin (°C) Tmax (°C) Tmean (°C) RHmin (%) RHmax (%) RHmean (%) SSH (h) WSP (m s− 1) Ep (mm)

All data (4018)

 Minimum 0.10 6.30 3.35 2.50 33.00 30.00 0.00 0.00 0.10

 Maximum 33.30 47.40 40.15 87.50 99.00 89.50 14.20 11.40 23.00

 Mean 14.57 25.82 20.19 36.03 71.83 53.93 8.00 2.83 7.62

 Standard deviation 6.27 9.05 7.49 17.42 12.23 13.88 3.79 1.41 5.11

 Kurtosis − 0.89 − 1.08 − 1.05 − 0.77 − 0.50 − 0.95 − 0.67 2.93 − 0.82

 Skewness coefficient 0.18 0.18 0.20 0.33 − 0.62 0.00 − 0.58 1.19 0.48

Training phase (3000)

 Minimum 0.10 6.30 3.35 2.50 33.00 30.00 0.00 0.00 0.10

 Maximum 33.30 47.10 40.15 87.50 99.00 89.50 14.20 9.90 23.00

 Mean 14.57 25.81 20.19 35.49 70.91 53.20 7.92 2.73 7.62

 Standard deviation 6.44 9.15 7.63 17.44 12.28 13.94 3.75 1.25 5.08

 Kurtosis 41.41 83.81 58.19 304.18 150.79 194.23 14.08 1.57 25.79

 Skewness coefficient − 0.95 − 1.14 − 1.11 − 0.73 − 0.59 − 0.94 − 0.64 1.91 − 0.77

Testing phase (1018)

 Minimum 1.40 7.20 5.05 2.50 42.50 30.00 0.00 0.00 0.10

 Maximum 30.70 47.40 38.85 85.00 98.00 87.75 13.90 11.40 22.10

 Mean 14.55 25.83 20.19 37.62 74.54 56.08 8.24 3.11 7.64

 Standard deviation 5.77 8.74 7.08 17.27 11.68 13.48 3.88 1.75 5.20

 Kurtosis − 0.74 − 0.87 − 0.83 − 0.85 − 0.14 − 0.92 − 0.72 2.18 − 0.97

 Skewness coefficient 0.24 0.27 0.29 0.23 − 0.80 − 0.14 − 0.63 1.23 0.41

Table 2.  Statistical measures of the meteorological data for training and testing sets.
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Loss = 1

2n

∑ n

i=1
(EP 0 − EpDNN )2 � (2)

	 EpDNN = w5 (ReLu (w4 (ReLu (w3 (ReLu (w2 (ReLu (w1x + b1)) + b2)) + b3)) + b4)) + b5 )� (3)

.
where n is the number of observations or data records, EP 0 and EpDNN  are observed and predicted 

evaporation by the DNN model, respectively. Besides, in the networks, weights are represented as w1, w2, w3, 
w4, and w5, while bias terms are represented as b1, b2, b3, b4, and b5.

Support vector machine (SVM)
Cortes and Vapnik52 established the kernel-based SVM model, a supervised soft computing technique proficient 
in reducing complexities alongside errors in the estimation. The classifier models of SVMs are applied to data 
classification problems under different classes. Another group of the SVM is support vector regression, which 
is used in regression prediction problems. These regression functions are approximate as shown in Eq. 4. Here, 
the kernel function (input vector x) implicitly transforms the inputs of the lower-dimensional to a higher-
dimensional feature [ β (x)], wherein w is the weighting vector, and b is a bias. These two parameters are 
estimated using a regularized risk function [ R (P )], as shown in Eqs. 5, 6.

	 f (x) = wβ (x) + b � (4)

	
R (P ) = P

1
n

∑ n

i=1
L(di, yi) + 1

2 ||w||2 � (5)

	
Lϵ (d, y) =

{ |d − y| − ϵ |d − y| ≥ ϵ
0, otherwise � (6)

.
where P  is a penalty parameter, 1

2 ||w||2 is a regularization term, di is the desired value, P 1
n

∑ n

i=1L(di, yi) 
is the error term, and ? is the tube size of SVM in Lϵ . Since one of the advantages of employing SVM is finding 
a hyperplane in an N-dimensional space that separately classifies the data points, it works comparably well 
when there is an understandable margin of dissociation between classes, as observed for variables influencing 
evaporation processes. Furthermore, as the present study employs SVM in a higher dimension such that the 
target class is not much overlapping and data size is appropriate, SVM functions more productive and effective, 
becoming a confident choice for predicting evaporation.

Bayesian additive regression tree (BART)
In recent years, BART has gained popularity among the research community due to their widespread 
applications53,54. BART models have overcome one of the limitations of ML methods - the lack of uncertainty 
quantification for individual predictions. In a regression framework, BART quantifies uncertainty through a 
sum-of-trees approach, in that many decision trees contribute while predicting using a probabilistic model-
based method. To execute, BART employs prediction standard error and prediction intervals, and thus it can be 
proclaimed that techniques like BART are highly appropriate when predicting evaporation where uncertainty 
is inherent. This study applied BART for additive regression using MATLAB. It has a continuous outcome 
for pan evaporation (say y) and p covariates x = (x1, . . . , xp). The BART prediction model can define 
complex relations between the aforesaid x and y by estimating f (x) as follows: y = f (x) + ϵ , where 
ϵ ∼ N(0, σ 2). Furthermore, a sum of m regression trees is used, i.e., f (x) =

∑
g (x; Tj , Mj) ranging 

between j = 1 ∼ m allows estimation of f (x). The expression for BART is shown in Eq. 7.

	
y = f (x) + ϵ =

∑ m

j=1
g(x; Tj , Mj) + ϵ � (7)

.

Random subspace (RSS)
Ho55 introduced the RSS ensemble, which is proficient in combining multiple classifiers and their outputs 
(predictions) from multiple decision trees (DTs) via a voting approach. It overcomes one of the grave 
shortcomings of conventional DTs56. This has been achieved by addressing the overfitting issue of the decision-
making tree classifier (i.e., high variance and low bias). Furthermore, it ensures the precision of the training 
results. Skurichina and Duin57 classified inputs of the RSS algorithm into four categories: training dataset, base 
classifier as well as size and number of subspaces. In the ensemble, the subset of input features (columns) is 
randomly selected for each model in the first step. While in the second step, the model is attempted to fit during 
the entire training dataset. To achieve this, bootstraps or random samples (rows) are implemented in the training 
dataset. RSS generally attempts to reduce the correlation between estimators in an ensemble by training them 
on random samples of features instead of the entire feature set. Consequently, RSS compels individual learners 
to not over-focus on variables that appear highly predictive in the training set but fail to be as predictive for 
points outside that set. Therefore, RSS has gained popularity for high-dimensional problems where the number 
of variables is significantly larger than the number of training points. Hence, this study employed the RSS model 
hybridized with DNN to exploit benefits of both techniques while predicting evaporation.
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M5 pruned
Quinlan58 introduced the M5 algorithm, which was further reconstructed to develop the M5 pruned model 
tree. This integrates the traditional DT with the linear regression function. Wang and Witten59 described the 
four steps in the M5 pruned algorithm; (1) input space splitting, (2) linear regression model development, 
(3) pruning procedure, and (4) smoothing process. Besides, this algorithm has shown robustness due to its 
greater efficiency while dealing with missing data problems. Since M5 pruned can efficiently handle and process 
large datasets to ensure reduced errors in the output, it has been considered for analyzing and predicting the 
evaporation in the current study area.

The present study acquired data on the splitting measures for the M5 pruned model tree considering the 
error calculated at each node (linear regression functions are assigned on terminal nodes). The class values’ 
standard deviation is used to analyze the error at each node. The attribute at each node is tested to select a 
particular attribute for splitting. This selection is majorly driven by determining the attribute that maximizes the 
expected error reduction, which can be obtained by standard deviation reduction, as shown in Eq. 8.

	
SDR = SD (A)

∑ i

1

|Ai|
|A| SD (Ai) � (8)

.
where A represents the set of instances that attain the node; AI represents the subset of illustrations that 

have the ith product of the possible set, and SD represents the standard deviation.

Random forest (RF)
The RF model yields comparatively higher performance while constructing ensembles. The learning algorithms 
of DTs rely on classification and regression tree. Considering architecture, RF comprises sets of DTs, wherein 
space occupied by each variable is further subdivided into smaller and smaller sub-spaces, achieving uniform 
space for each data/variable. The structure of DT is employed for this classification pattern such that two sub-
branches originating from a branching point are recognized as a node. Furthermore, the root is identified as 
the first node in the tree structure, while the leaf is identified as the last node60. Each of these trees develops 
with a self-serving sample of the original data. To achieve the best division, a variable, randomly selecting the 
‘m’ number of variables, is searched61. In the selection process, data discrepancy, in terms of data similarity, is 
estimated considering their assignment in the final subspaces (leaves of the same kind) instead of using the 
distance functions method. Equation 9 quantifies the data similarity between data a and b [ s (a, b)], where 
it showcases the proportion of the number of times the data provided [ d(a, b)] are located in the same final 
subspaces. In order to convert the similar matrix (data similarity issue) into a non-similar matrix, a forest 
similarity matrix, which is characteristically random, symmetric, and positive, is employed as per Eq.  9. In 
general, since the values of the variables do not influence the classification tree formation process, the deficiency 
of similarity of the RF is applied to the various variable categories. Once the predefined stop condition is attained, 
the reiteration of the splitting procedure is stopped62.

	 d (a, b) =
√

1 − s (a, b) � (9)

.
As far as the advantages of RF models are concerned, past studies indicated their high efficiency in learning 

target class samples retrieved from training data alongside unique characteristics from unclassified data6,35,63. As a 
result, RF develops better prediction ability as a hybrid method and overcomes the limitations of non-supervised 
classifier methods. Therefore, the present study hybridized RF with DNN for modeling pan evaporation.

Model performance evaluation indicators
In this research, five statistical metrics are applied to evaluate the performance of the developed models; 
determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe 
efficiency (NSE), and percentage bias (PBIAS). These metrics are listed as follows: (1) R2 [unitless], which 
evaluates the linear relationship between predicted and observed Ep values; (2) RMSE [mm/day], which 
measures the mean error of all estimates; (3) MAE [mm/day], which is commonly used to compute model error 
or residual; (4) NSE [unitless], which is a metric for determining the accuracy of a model; and (5) PBIAS [%], 
which quantifies the average tendency of the predicted values to be either overestimated or underestimated 
compared to the observed values.

Lower RMSE, MAE, and PBIAS values approaching 0 indicate better performance accuracy. Higher R2 and 
NSE values, on the other hand, imply a greater degree of agreement between estimated and observed values. The 
five error quantification measures are defined as per Eqs. 10–14, respectively. The readers may refer to already 
published literature to see their applications64–72.

	
R2 =

[∑
n
i=1

(
xi−

−
x
) (

yi−
−
y
)]2

sx
2sy

2
� (10)

	
RMSE =

√∑
n
i=1

(xi − yi)2

n
� (11)
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MAE = 1

n

∑
n
i=1 |xi − yi|� (12)

	

NSE = 1 −
∑ n

i=1(xi − yi)
2

∑
n
i=1

(
xi−

−
x
)2 � (13)

	
P BIAS =

∑ n
i=1 (xi − yi)∑

n
i=1 (xi)

× 100� (14)

.
where xi and yi are observed and predicted data, respectively; 

−
x and 

−
y  are the mean observed and predicted 

data, respectively; sx
2 and sy

2 are observed and predicted variances, respectively.

Methodology
The main objective of this research is to estimate evaporation using several ML models in semi-arid regions. 
The flowchart of the research study is illustrated in Fig. 2, outlining the key steps involved in the methodology. 
The process begins with collecting daily meteorological datasets, including temperature, relative humidity, wind 
speed, insolation, and daily evaporation data. Using regression analysis and sensitivity tests, these datasets are 

Fig. 2.  Flowchart of daily pan evaporation estimation methodology in the study area.
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then subjected to statistical analysis and data preparation to identify the best subset of input variables. This step 
is crucial for determining the optimal combination of meteorological factors influencing evaporation.

Following selecting the best input combination, the data is split into training and testing sets with a ratio of 
75:25. This division is essential for training the models and evaluating their performance. The stacking process 
used in this study involves two layers: the first layer consists of multiple base models (DNN, SVM, BART, RSS, 
M5 pruned, and RF), and the second layer is a meta-model that combines the predictions from the base models. 
This approach allows for integrating diverse models, leveraging their strengths to improve overall performance. 
The training set is used to train the base models, and their outputs are then used as inputs for the meta-model, 
which is trained to optimize the final predictions.

The architecture of the individual models is designed to capitalize on their respective strengths. The DNN 
model used in this study consists of multiple hidden layers with a rectified linear unit activation function. The 
input layer receives the meteorological variables (Tmin, Tmax, RHmin, RHmax, insolation, and wind speed), and 
the output layer provides the predicted evaporation values. The number of neurons in each hidden layer was 
optimized through a grid search to minimize overfitting and improve model performance. SVM is a supervised 
max-margin model that maps the original finite-dimensional space into a higher-dimensional space to improve 
separability. It uses kernel functions, such as the Gaussian kernel, to compute dot products efficiently. The 
effectiveness of SVM depends on the selection of kernel parameters and the soft margin parameter, which are 
optimized using cross-validation.

BART is a flexible model for regression problems, combining multiple regression trees to model complex 
relationships between variables. This study uses BART as a base model in the stacking process to leverage its 
ability to handle non-linear interactions. RSS is an ensemble method that selects random subsets of features 
to train multiple models, reducing overfitting by averaging predictions across different feature spaces. The M5 
model tree is a decision tree-based model incorporating linear regression functions at each leaf node, providing 
a robust framework for predicting evaporation. RF is an ensemble model that combines multiple decision trees 
to improve prediction accuracy, with each tree trained on a random subset of features and samples.

The hybrid models integrate the strengths of these base models. The DNN-SVM model combines the feature 
extraction capabilities of DNNs with the robust classification power of SVMs. The DNN-BART model integrates 
the non-linear modeling capabilities of BART with the DNNs ability to extract complex features. The DNN-RSS 
model leverages the feature extraction of DNNs, and the ensemble diversity provided by RSS. The DNN-M5 
pruned model combines the strengths of DNNs with the linear regression capabilities of the M5 model tree, 
enhancing the model’s ability to handle continuous data. Finally, the DNN-RF model integrates the feature 
extraction of DNNs with the ensemble averaging of RF, providing robust and accurate predictions. For additional 
understanding of the methodological steps and ML architectures, readers may refer to relevant studies such as 
those by Samantaray and Ghose73–75, Masood et al.76 and Elbeltagi et al.77.

After developing and running these models, their performance is evaluated using metrics such as MAE, 
RMSE, R², NSE, and PBIAS. This evaluation stage is critical for selecting the best evaporation forecasting model. 
A Taylor diagram is also used to supplement the performance assessment measures, comprehensively verifying 
the optimum prediction model. The process concludes with selecting the most accurate model based on these 
evaluations, which can be used for practical applications in water resource management.

Results
Sensitivity analysis and best subset regression
The following sub-sections cover the best subset regression and sensitivity analyses for determining the optimum 
input combination for Ep prediction.

Input selection using the best subset model
Identifying the correct input parameters is crucial in achieving the greatest model performance. Eight 
meteorological variables (Tmin, Tmax, Tmean, RHmin, RHmax, RHmean, insolation, and wind speed) are employed 
in this study to determine the best input combination based on several performance indicators, as shown in 
Table 3. Overfitting is more likely when there are many input variables and a low correlation between input 
and output23,78,79a. For daily Ep prediction, seven statistical criteria were used to identify the optimal input 
combination: MSE, R2modified R2Mallows’ Cp, Amemiya prediction criterion (PC), Schwarz Bayesian criterion 
(SBC), and Akaike information criterion (AIC). Table 3 shows that the bold row is the optimal input combination 

ID Variables MSE R2 Adjusted R2 Mallows’ Cp Akaike’s AIC Schwarz’s SBC Amemiya’s PC

1 Tmean 11.87 0.59 0.59 815.78 9942.92 9955.51 0.41

2 Tmin/Insolation 10.55 0.64 0.64 280.75 9471.30 9490.19 0.36

3 Tmin/RHmean/Insolation 9.93 0.66 0.66 27.843 9227.33 9252.53 0.34

4 Tmin/Tmax/RHmean/Insolation 9.88 0.66 0.66 10.31 9209.85 9241.34 0.34

5 Tmin/Tmax/RHmean/Insolation/Wind speed 9.87 0.66 0.66 4.25 9203.78 9241.57 0.34

6 Tmin/Tmax/Tmean/RHmean/Insolation/Wind speed 9.87 0.66 0.66 6.07 9205.60 9249.69 0.34

7 Tmin/Tmax/RHmin/RHmax/Insolation/Wind speed 9.87 0.68 0.68 6.18 9205.71 9249.80 0.34

8 Tmin/Tmax/Tmean/RHmin/RHmax/Insolation/Wind speed 9.87 0.66 0.66 8.00 9207.53 9257.92 0.34

Table 3.  The best subset regression analysis for identifying the optimum input combinations for ep prediction.
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(Tmin, Tmax, RHmin, RHmax, insolation, and wind speed) since it has the lowest Mallows’ Cp (6.18) and Amemiya’s 
PC (0.34) values, as well as the greatest R2 (0.66) and modified R2 (0.66) values of all input situations. This 
scenario is followed by the 6th input combination (Tmin, Tmax, Tmean, RHmean, insolation, and wind speed). 
Whereas considering a single variable as input (Tmean) results in the lowest R2 and adjusted R2 (0.59) and the 
highest values of other statistical criteria, representing the worst input variable in estimating daily Ep. Following 
normalization, the entire dataset is divided into two groups, with 75% of the dataset used for training and the 
remaining 25% used for testing and validating the models.

Sensitivity analysis
The combinations of input variables significantly influence the performance of data-driven models. Some 
variables contribute positively to model accuracy, while others may have a negative impact. To identify the most 
influential input parameters for predicting daily Ep, we conducted a regression analysis. The results in Table 4; 
Fig. 3 highlight the importance of Tmin, Tmax, RHmin, RHmax, insolation, and wind speed.

The statistical significance of each variable was assessed using t-tests, with the p-values indicating the 
probability of observing the test statistic under the null hypothesis that the coefficient is zero. A p-value less 
than 0.05 indicates that the variable has a statistically significant effect on the model. Tmin, with a coefficient of 
0.433 and a p-value of less than 0.0001 (t = 23.220), is highly significant, suggesting that Tmin has a strong positive 
influence on the prediction of Ep. Tmax also positively affects Ep predictions, though to a lesser extent than Tmin, 
with a coefficient of 0.101 and a p-value of less than 0.0001 (t = 4.731).

In contrast, RHmin and RHmax have negative coefficients, negatively impacting Ep predictions. RHmin has a 
coefficient of − 0.130 with a p-value of less than 0.0001 (t = − 7.142), while RHmax has a coefficient of − 0.097 
with a p-value of less than 0.0001 (t = − 6.644). Insolation, with a coefficient of 0.202 and a p-value of less than 
0.0001 (t = 16.291), is a highly significant positive predictor of Ep. Wind speed also positively affects Ep, though 
to a lesser extent, with a coefficient of 0.027 and a p-value of 0.005 (t = 2.842). Tmean and RHmean were found to 
have no significant impact, as indicated by their coefficients of 0.000 and associated p-values.

This analysis demonstrates that Tmin, Tmax, RHmin, RHmax, insolation, and wind speed are the most influential 
input parameters for predicting daily Ep, with Tmin and insolation being particularly significant.

Fig. 3.  Standardized coefficients of the input variables for sensitivity analysis.

 

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Tmin 0.433 0.019 23.220 < 0.0001 0.397 0.470

Tmax 0.101 0.021 4.731 < 0.0001 0.059 0.143

Tmean 0.000 0.000

RHmin − 0.130 0.018 − 7.142 < 0.0001 − 0.165 − 0.094

RHmax − 0.097 0.015 − 6.644 < 0.0001 − 0.126 − 0.068

RHmean 0.000 0.000

Insolation 0.202 0.012 16.291 < 0.0001 0.178 0.227

Wind speed 0.027 0.009 2.842 0.005 0.008 0.045

Table 4.  The regression analysis for identifying the most effective parameters for ep estimation.
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Implementation of machine learning models for daily ep estimation
The estimation of Ep at Sidi Yakoub station in the Wadi Sly basin is carried out using DNN and its hybrids (i.e., 
SVM, BART, RSS, M5 pruned, and RF). The parameters of the ML models used for pan evaporation modeling 
are depicted in Table 5. Comparative performances are evaluated using statistical performance indicators such 
as R2 NSE, RMSE, and MAE. The model with the highest values of R2 and NSE close to one as well as the lowest 
values of RMSE and MAE approaching zero is considered the best predictive model for Ep.

The values of R2 NSE, RMSE, and MAE for the predictive models during the training and testing periods 
are presented in Table  6. As depicted in Table  6, RF can enhance the performance of DNN and shows the 
best statistical performance criteria during the training period (RMSE = 1.000, MAE = 0.958, and NSE = 0.922). 
However, during the testing span, the DNN-SVM model shows superiority over the other models and has 
statistical performance criteria values of RMSE = 3.000, MAE = 2.127, and NSE = 0.649. Therefore, the DNN-
SVM is selected as the optimum predictive model because it is associated with the best statistical criteria (i.e., 
minimum RMSE and MAE as well as maximum NSE) in the testing stage.

The scatter plots (right side) and temporal variation (left side) between predicted and observed daily 
evaporation values are plotted in Figs. 4 and 5 for the training and testing periods, respectively. In scatter plots, 
the regression line provides the R2 value as 0.668 for the DNN model, 0.651 for the DNN-SVM model, 0.630 
for the DNN-BART, 0.631 for the DNN-RSS model, 0.635 for the DNN-M5 pruned model, and 0.638 for the 
DNN-RF model during the testing stage, respectively. The fitted regression line and the perfect line of fit (1:1) are 
almost identical for all the hybrid models except the standalone DNN model. This reveals that all the constructed 
hybrid models can enhance the performance of DNN.

Besides, the Taylor diagram is used to visually assess the efficiency of data-driven DNN and hybrid models. 
The fundamental advantage of this graphical approach is that it summarizes three important statistical criteria 
in a single chart: RMSE, correlation coefficient, and standard deviation23,80. Furthermore, it displays the model’s 
correctness and realism, when compared to the observable parameters. The standard deviation stands for the 
number of average measurements that deviate from one another81. As a result, high precision is indicated by the 
relative value of the standard deviation predicted to the standard deviation actual. In contrast, the value of the 
standard deviation predicted compared to the standard deviation actual denotes inferior accuracy. As shown 
in Fig. 6, the Taylor diagram is used to conduct a comparative analysis of models in this study. For the training 
phase, the DNN-RF model is closer to the observed point and shows superiority during the training period. For 
the testing phase, all the hybrid models compete; however, the DNN-SVM model provides a slightly better result 
than other models as it has the highest correlation coefficient and lowest RMSE and standard deviation values.

Models

Training

R2 RMSE NRMSE MAE NSE PBIAS

DNN 0.797 5.000 0.656 4.742 0.002 − 60.31

DNN-SVM 0.795 2.000 0.262 1.630 0.750 0.421

DNN-BART 0.789 2.000 0.262 1.682 0.788 0.388

DNN-RSS 0.809 2.000 0.262 1.583 0.809 − 0.157

DNN-M5 pruned 0.795 2.000 0.262 1.645 0.794 0.419

DNN-RF 0.924 1.000 0.131 0.958 0.922 1.010

Models Testing

DNN 0.668 5.000 0.654 4.870 0.061 − 58.099

DNN-SVM 0.651 3.000 0.393 2.127 0.649 3.540

DNN-BART 0.630 3.000 0.393 2.220 0.630 0.761

DNN-RSS 0.631 3.000 0.393 2.165 0.628 1.744

DNN-M5 pruned 0.635 3.000 0.393 2.166 0.633 2.309

DNN-RF 0.638 3.000 0.393 2.155 0.638 0.411

Table 6.  Performance criteria for the models during the training and testing phases.

 

Model name Description of parameters

DNN Batch size-100, Learning rate = 0.3, Momentum = 0.2, Auto build = True, Nominal to Binary = True, Normalize Attributes = True, 
Normalize Numeric Class = True, Debug = False, Decay = False

AR Batch size-100, Classifier = Bagging, shrinkage = 1, number of iterations = 30

SVM Batch size-100, C = 0.1, kernel used = polykernel

RF Batch size-100, bag Size percent = 100, max depth = 0, numbers of executions slots = 1, number of iterations = 100, random seed = 1

M5 pruned Batch size-100, Minimum number of instances = 4

RSS Batch size-100, Classifier = REPTree, random seed-1, subspace size = 0.5, numbers of executions slots = 1, number of iterations = 10

Table 5.  Parameters of the machine learning algorithms used for pan evaporation modeling.
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Fig. 4.  Temporal variation (left) and scatter plot (right) of observed vs. predicted daily Ep during the training 
span.
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Discussion
According to the subset regression analysis results, the best input combination for Ep prediction included Tmin, 
Tmax, RHmin, RHmax, insolation, and wind speed. Previous studies showed that these factors physically impacted 
Ep79,82. The best subset combination was used to predict the daily Ep by constructing DNN, DNN-SVM, DNN-
BART, DNN-RSS, DNN-M5 pruned, and DNN-RF models. The results showed that DNN-RF performed better 
during the training span; however, DNN-SVM showed superiority during the testing period. Therefore, the 
DNN-SVM model could be utilized as a prediction tool for daily evaporation in the selected station under 
semi-arid conditions. The applications of the model in various contexts may only be conceivable after they have 
been calibrated with new data. Besides, combining DNN and SVM models integrates the feature extraction 
capabilities of DNNs and the robust classification power of SVMs. For instance, Huynh et al.83 proposed a 
hybrid model that utilizes DNNs for automatic feature extraction from high-dimensional gene expression data, 
followed by SVM for classification, resulting in improved accuracy over standalone models. Similarly, Díaz-Vico 
et al.84 developed deep SVM models by integrating the non-linear feature extraction capabilities of DNN while 
incorporating the loss functions of SVM. This approach achieved comparable performance to standard SVM but 
with the added benefit of improved scalability for larger datasets. Along these lines, some of the other research 
for different applications (beyond hydrology) include Ahmad et al.85, Ma et al.86, Jo et al.87, Elbeltagi et al.88 and 
Prasunna et al.89. These findings suggest that a DNN-SVM hybrid model could effectively combine the strengths 
of both approaches, potentially leading to superior performance in daily evaporation prediction as well under 
semi-arid conditions.

Other recent research3,79,90,91 conducted on different continents of the world corroborated the findings of 
the current study. Lin et al.91 compared two ML algorithms for estimating daily evaporation values (SVM and 
backpropagation network). The results showed that SVM has a high capacity to predict daily Ep values and 
could be a viable alternative for Ep estimates. Malik et al.3 compared the accuracy of five ML algorithms (i.e., 
multivariate adaptive regression spline, SVM, multi-gene genetic programming, multiple model-ANN, and M5 
model tree) in predicting the monthly Ep in India. The authors found that the multi-gene genetic programming 
and multiple model-ANN algorithms outperformed the SVM and multivariate adaptive regression spline 
methods and the M5 model tree approach in terms of prediction performance, as evidenced by their high RMSE 
values. Kushwaha et al.79 tested four ML algorithms (SVM, RSS, random tree, and reduced error pruning tree) in 
Northern India under various climate circumstances. According to the study, SVM outperformed other applied 
algorithms because it had high R and Willmott index values and low MAE and RMSE values. Chen et al.90 
studied the efficacy of SVM for monthly Ep prediction at six distinct sites along the Yangtze River in China. 
The SVM was superior to standard approaches for estimating Ep in the study. The current study also shows that 

Fig. 4.  (continued)
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Fig. 5.  Temporal variation (left) and scatter plot (right) of observed vs. predicted daily Ep during the testing 
span.
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the DNN-SVM hybrid ML method predicts daily Ep more accurately than other algorithms. Overall, findings 
show hybrid models are more predictive in real-world scenarios and may be used effectively in watersheds with 
limited data. These models could forecast a wide range of hydrological and water resource phenomena besides 
Ep.

Despite its contributions, this study has certain limitations. Since the primary objective was to evaluate the 
comparative performance of standalone and hybrid DNN models, alternative deep learning architectures such 
as convolutional neural network, gated recurrent units, and other hybrid frameworks were not explored. Future 
studies could extend this research by incorporating these advanced models to improve prediction accuracy 
further and assess their generalizability across diverse climatic conditions. Additionally, while the current study 
explains Ep estimation, multi-step ahead forecasting was not within its scope. Future research should explore 
long-term Ep prediction using hybrid models integrated with temporal learning mechanisms such as long short-
term memory and transformer-based architectures, which have demonstrated superior sequence modeling 
capabilities (e.g., Roy et al.92). Expanding the model to diverse climatic regions will help validate its robustness 
while integrating remote sensing and satellite data can improve spatial accuracy. Moreover, the study’s findings 
should be validated across other semi-arid regions worldwide to assess their adaptability under different 
environmental settings, as suggested by El-Kenawy et al.93. Comparative studies across multiple geographical 
contexts would boost the credibility and applicability of hybrid models in hydrological forecasting. Additionally, 
uncertainty quantification through Bayesian learning can improve model reliability and refine interpretability. 
Coupling artificial intelligent (AI) models with climate change projections can predict future evaporation trends 
under different scenarios. Furthermore, real-time applications such as AI-driven decision support systems and 
early warning mechanisms can aid water resource management. Evolutionary optimization techniques like 
genetic algorithms and swarm intelligence can refine model efficiency, while policy-driven studies can assess the 
socioeconomic impacts of evaporation variability. Integrating hybrid deep learning models with soil moisture 
indices and large-scale climate predictors such as the El Niño-Southern Oscillation and the Madden-Julian 
Oscillation could improve evaporation estimation under changing climate scenarios. These advancements will 
strengthen AI-driven hydrological modeling for sustainable water management in arid and semi-arid regions.

Conclusions
This study evaluated the effectiveness of standalone and hybrid DNN models in estimating Ep in the semi-arid 
Sidi Yakoub meteorological station, Wadi Sly basin, Algeria. Hybrid models were constructed by integrating 
DNN with advanced ML algorithms, including SVM, BART, RSS, M5 pruned, and RF. A comprehensive dataset 
spanning 2000–2010 was utilized, with 75% designated for training and 25% for testing. Subset regression 

Fig. 5.  (continued)
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analysis identified the most influential meteorological variables (i.e., wind speed, sunshine hours, maximum and 
minimum temperature, and humidity) followed by sensitivity analysis to determine their predictive significance. 
Performance evaluation using multiple statistical metrics revealed that hybrid models consistently outperformed 
standalone DNN models. Among them, the DNN-SVM model demonstrated the highest accuracy (R2 = 0.651, 
RMSE = 3.000, MAE = 2.127, NSE = 0.649, and PBIAS = 3.540), highlighting its ability to capture complex 
nonlinear relationships between meteorological parameters and Ep variations. Notably, models incorporating 
maximum and minimum temperature and humidity, rather than average values, exhibited superior predictive 

Fig. 6.  Taylor diagrams of the prediction models during (a) training and (b) testing phases.
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capabilities, reinforcing the importance of precise meteorological inputs. The findings underscore the potential 
of DNN-SVM as a robust and reliable predictive tool for Ep estimation in semi-arid environments, with broader 
applicability across Algeria. The study contributes to improving hydrological modeling and water resource 
management by providing a data-driven, machine-learning-based framework for evaporation forecasting. 
Future research could refine model performance by integrating wavelet packet decomposition and complete 
ensemble empirical mode decomposition, further enhancing predictive accuracy in diverse climatic conditions.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article.
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