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Understanding the high-pressure phase behavior of carbon dioxide–hydrocarbon mixtures is 
of considerable interest owing to their wide range of applications. Under certain conditions, 
these systems are not amenable to direct visual monitoring, and experimentalists often rely on 
spectrophotometric data to infer phase behavior. Consequently, developing computationally 
efficient and robust methods to leverage such data is crucial. Here, we combine nearest neighbor 
permutation entropy, computed directly from in situ near-infrared absorbance spectra acquired 
during depressurization trials of mixtures of carbon dioxide and a distilled petroleum fraction, with an 
anomaly detection approach to identify phase transitions. We show that changes in nearest neighbor 
entropy effectively signal transitions from initially homogeneous mixtures to two-phase equilibria, 
thereby enabling accurate out-of-sample online predictions of transition pressures. Our approach 
requires minimum data preprocessing, no specialized detection techniques or visual inspection of the 
spectra, and is sufficiently general to be adapted for studying phase behavior in other high-pressure 
systems monitored via spectrophotometry.

Carbon dioxide flooding is widely employed as a miscible displacement technique to enhance oil recovery 
through mechanisms such as crude vaporization, oil swelling, viscosity reduction, and interfacial tension 
modification1,2. Furthermore, this technology facilitates the underground storage of substantial quantities of 
CO2, thereby contributing to carbon footprint reduction3,4. Conversely, many pre-salt reservoirs along the 
Brazilian coast contain high concentrations of carbon dioxide, rendering high-pressure phase-equilibrium 
data essential for petroleum reservoir exploration and planning. Moreover, mixtures of CO2 and hydrocarbons 
typically exhibit complex phenomena, including liquid-liquid and vapor-liquid-liquid equilibria, and in some 
cases, homogeneous mixtures cannot be achieved even at very high pressures5–7.

Traditional approaches to understanding these phase behaviors have typically involved thermodynamic 
analyses of variations in pressure, volume, and temperature8–10. However, the direct visualization methods 
employed in these approaches are limited by the opacity of certain crude oils. Studies indicate that most crude 
oils exhibit a minimum absorbance near 1.6 µm, rendering visualization techniques operating in the visible 
spectrum inefficient for some assessments11,12. Despite the extensive body of work on the phase behavior 
of hydrocarbon mixtures, there remains a need to develop new tools and strategies to probe the complex 
physicochemical phenomena involved.

In this context, the application of spectroscopy to monitor phase equilibrium in complex chemical systems 
at high pressures is an important subset of analytical methods that minimizes perturbations during sample 
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withdrawal13–15. Furthermore, combining spectroscopic techniques with robust, computationally efficient 
information-theoretic methods – such as permutation entropy16 and related ordinal approaches17–21 – has 
emerged as a promising strategy for investigating phase behavior under high-pressure conditions, as evidenced 
by its successful application in diverse spectroscopic and phase behavior studies22–30. For instance, permutation 
entropy has been employed to segment near-infrared spectra from blood samples, thereby identifying wavelength 
ranges that improve blood glucose prediction22,23. It has also served as an anomaly detection tool in time series 
of relative isotope abundances derived from laser absorption spectroscopy of ice cores24. Ordinal methods have 
been extensively applied to characterize distinct flow regimes – such as slug flow, non-uniform bubble flow, and 
uniform bubble flow – in two-phase and three-phase systems25–28. Moreover, permutation entropy and ordinal 
methods have yielded intriguing insights into phase transitions in thermotropic liquid crystals29,30.

Here, we present an application of the recently proposed k-nearest neighbor permutation entropy31 to 
experimental transflectance spectra obtained in situ from mixtures of carbon dioxide and a distilled petroleum 
fraction under controlled high-pressure conditions. Specifically, we develop a methodology to detect phase 
transitions via abrupt changes in the entropy of the measured spectra. Our approach operates online, detecting 
phase transitions in real time as new sample spectra are acquired. Furthermore, because the k-nn permutation 
entropy – as well as other ordinal methods16,21 – relies on the relative amplitudes of neighboring data points, our 
method requires minimum data preprocessing, no specialized detection techniques, and no visual inspection of 
the spectra, and it can be readily extended to other systems monitored via spectrophotometric measurements.

The remainder of this paper is structured as follows. First, we present the dataset of absorbance spectra 
collected during depressurization trials of mixtures of carbon dioxide and hydrocarbon fractions. Next, we 
detail the formalisms underlying both the k-nearest neighbor permutation entropy and permutation entropy 
before their applications to the spectra. We then describe our anomaly detection approach for inferring phase 
transitions and present the results of its application. Finally, we discuss our findings and conclude.

Data
The dataset used in our investigations was originally introduced by Borges et al.6 and comprises near-infrared 
(NIR) absorbance spectra acquired via transflectance measurements during depressurization trials of mixtures 
of carbon dioxide (CO2) and distilled petroleum fractions maintained within a high-pressure and variable-
volume view cell. The distilled fraction is light yellow in color, with a density of 0.8230 g cm−3 at 298 K and 
a normal boiling point of 569 K; the raw oil composition, determined through standard fractionation analysis, 
includes 74.7% saturates, 14.7% aromatics, 10.6% resins, and less than 0.5% asphaltenes by weight6. The spectra, 
denoted by {xλ}λ=λmin,...,λmax , represent the sample absorbance (xλ) indexed by 1440 distinct wavelengths 
(λ) unevenly sampled between λmin = 1000 nm and λmax = 2250 nm (Fig.  1). Mixtures were prepared 
using six different CO2 concentrations, corresponding to relative sample weights ranging from 35% to 90%. 
Subsequently, several depressurization runs were performed at fixed temperatures (T = 293 K, T = 303 K, 
T = 313 K, and T = 333 K), while the samples were subjected to pressures ranging from 4.1 MPa to 19.5 
MPa (see Table 1 for an overview of pressure intervals and the number of runs performed at different CO2 
concentrations and temperatures). Each trial yielded between 21 and 127 spectra, with measurements recorded 
at successive pressure increments of 0.1 MPa. For each combination of CO2 concentration and temperature, the 
transition pressure P exp

t  corresponding to the observed phase transitions during depressurization was visually 
determined by an expert. A more detailed description of the experimental apparatus and techniques used in data 
collection is provided in Ref.6.

The observed phase transitions encompass transitions from homogeneous liquid or gas mixtures (at higher 
pressures) to different types of two-phase equilibria (at lower pressures), as well as a transition from a two-phase 
liquid mixture to a multiphase system (at even lower pressures). We categorize these transitions as follows:

Fig. 1.  Near-infrared spectra of mixtures of carbon dioxide and distilled petroleum fractions. Panels (A), (B), 
and (C) show absorbance spectra (in arbitrary units) for wavelengths between 1000 nm and 2250 nm measured 
at various pressures for three distinct samples. The spectra are color-coded by pressure (see colorbars) and 
annotated with the relative CO2 sample weight and temperature. Absorbance spectra for each depressurization 
trial were recorded at 0.1 MPa increments and shifted in these visualizations for clarity.
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•	 liquid-liquid equilibrium (LLE): transitions from a homogeneous liquid mixture to a two-phase liquid mix-
ture;

•	 vapor-liquid equilibrium via bubble point (VLE-BP): transitions from a homogeneous gas mixture to a two-
phase gas-liquid mixture upon crossing the bubble-point curve;

•	 vapor-liquid equilibrium via dew point (VLE-DP): transitions from a homogeneous liquid mixture to a two-
phase gas-liquid mixture upon crossing the dew-point curve;

•	 vapor-liquid-liquid equilibrium (VLLE): transitions from a two-phase liquid mixture to a multiphase system 
with three coexisting phases at equilibrium (one gas phase and two immiscible liquids).

Supplementary Table S1 summarizes the key variables extracted from this dataset.

Methods
To investigate whether phase transitions can be detected through changes in the characteristics of sample spectra 
during depressurization runs, we use the k-nearest neighbor (k-nn) permutation entropy31. This information-
theoretic measure arises from combining the permutation entropy framework16–21 – originally developed for 
time series analysis – with biased random walks such as those implemented in node2vec32, an algorithm for 
obtaining high-dimensional vector representations of vertices in complex networks. The k-nn permutation 
entropy has been primarily proposed to address unstructured, irregularly sampled datasets such as our spectra, 
and its application to structured data (time series and images) has also yielded excellent results31.

The initial step in calculating the k-nn entropy involves fixing the number of neighbors k to construct a 
nearest neighbor graph on which random walks are performed (Fig. 2A and B). In our dataset, each absorbance 
value xλ of a spectrum {xλ}λ=λmin,...,λmax  is mapped to a node in the graph. Both the absorbance and its 
corresponding wavelength (λ, xλ) are considered when defining the nearest neighbors via the Euclidean 
distances between all datapoints (λ, xλ) in the spectrum. However, the range of variation and the typical scale 
of differences between wavelengths and absorbances are not equivalent. In fact, the locally smooth behavior 
of the spectrum renders neighboring data points considerably closer in terms of absorbance than in terms of 
wavelength, thereby disproportionately weighting the absorbance values during graph construction. To mitigate 
this imbalance, we rescale the wavelength and absorbance values to the interval [0, 1] via min-max normalization 
prior to constructing the nearest-neighbor graph. Subsequently, n random walks of length w are initiated from 
each xλ( Fig.  2B and C). These random walks are second-order Markov processes, wherein the probability 
ρbc of transitioning from node b to node c depends on the previous node a visited before b according to the 
unnormalized transition probabilities

	
ρbc =

{
1/α, if sac = 0
1, if sac = 1
1/β, if sac = 2

,� (1)

CO2 Temperature Runs Pressure range

35% 293 K 4 5.3–10.0 MPa

35% 303 K 3 5.4–12.0 MPa

35% 313 K 2 8.0–13.5 MPa

35% 333 K 2 11.0–16.0 MPa

45% 293 K 3 4.9–13.0 MPa

45% 313 K 2 7.2–16.0 MPa

45% 333 K 2 12.6–17.5 MPa

60% 303 K 2 6.1–17.0 MPa

60% 313 K 2 12.8–16.0 MPa

60% 333 K 2 16.0–18.5 MPa

70% 303 K 2 5.8–17.5 MPa

70% 313 K 2 13.5–17.5 MPa

70% 333 K 2 16.4–19.5 MPa

80% 313 K 2 4.8–17.0 MPa

80% 333 K 2 15.5–18.5 MPa

90% 293 K 2 4.1–14.0 MPa

90% 303 K 2 6.2–12.0 MPa

90% 313 K 2 10.5–13.0 MPa

90% 333 K 2 15.0–18.0 MPa

Table 1.  Summary of the carbon dioxide and distilled petroleum fraction mixtures used in depressurization 
trials. Six samples were prepared at six different carbon dioxide (CO2) concentrations relative to sample 
weight, with depressurizations conducted at four different temperatures. The table shows the number of 
depressurization runs for each sample as well as the corresponding pressure intervals.
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where sac denotes the shortest path (minimum number of edges) connecting nodes a (previously occupied 
node) and c (subsequent node), while α > 0 and β > 0 are parameters controlling the walker’s bias. Smaller 
values of α favor more exploitative walks that sample local neighborhoods, while smaller values of β favor more 
exploratory ones that sample deeper neighborhoods.

After the walks are performed, we obtain N × n time series of length w, which we denote by {x̃m}m=1,...,w . 
We then apply a symbolization process derived from the permutation entropy framework16 to each time series 
as follows. First, we select a sliding window of size d (the embedding dimension) that traverses each {x̃m}( 
Fig. 2C), dividing each trajectory into overlapping partitions pm represented by

	 pm = (x̃m, x̃m+1, . . . , x̃m+d−1),� (2)

with m = 1, . . . , w − d + 1. For each partition pm, we determine the permutation 
πm = (r0, r1, . . . , rd−1) of the index numbers (0, 1, . . . , d − 1) that sorts the elements of pm, such that 
x̃m+r0 ≤ x̃m+r1 ≤ · · · ≤ x̃m+rd−1 . In the event of equal values within a partition, that is, xm+rk−1 = xm+rk , 
we impose rk−1 < rk  for k = 1, . . . , d − 1 33, thereby effectively treating earlier observations as smaller than 
later ones. As an illustration of the symbolization, consider a short walk {x̃m} = {6, 1, 6, 4, 8} with sliding 
window size d = 3. The first partition is p1 = (6, 1, 6) and sorting its elements yields 1 < 6 ≤ 6, that is, 
x1+1 < x1+0 ≤ x1+2. Thus, the permutation associated with p1 is π1 = (1, 0, 2). It is important to note that 
the number of different permutation types each πm can assume is equal to d!. Accordingly, the complete set of all 
permutation types is represented by {Πj}j=1,...,d!. For instance, if d = 3, there are 3! = 6 permutations types: 
Π1 = (0, 1, 2), Π2 = (0, 2, 1), Π3 = (1, 0, 2), Π4 = (1, 2, 0), Π5 = (2, 0, 1), and Π6 = (2, 1, 0).

By repeatedly applying the previously described symbolization method to all sampled walks and 
aggregating the corresponding permutations, we obtain a single symbolic sequence {πm}m=1,...,M  comprising 
M = N × n × (w − d + 1) permutation symbols. The probability ρi(Πi) for each permutation type is then 
estimated as

	
ρi(Πi) = number of permutations of type Πi in {πm}m=1,...,M

N × n × (w − d + 1) .� (3)

Fig. 2.  Calculation of the k-nearest neighbor permutation entropy for sequential data. (A) Illustration of a 
short, unevenly sampled, hypothetical spectrum {xλ}λ=λ1,...,λ15 . (B) From this hypothetical spectrum, we 
construct a k-nearest neighbor graph (k = 3 in this example) using the data coordinates (λ, xλ) to define 
neighborhood relationships. In this graph, each observed absorbance value xλ is represented by a node, 
with undirected edges connecting pairs of observations xλi ↔ xλj  when (λj , xλj ) is among the k-nearest 
neighbors of (λi, xλi ). For ease of interpretation, the min–max normalization step has been omitted from 
this illustration. (C) Subsequently, we execute n biased random walks of length w starting from each node, 
sampling the absorbance values (xλ) to generate time series (n = 2 and w = 5 in this example). We then apply 
the Bandt-Pompe symbolization approach to each of these time series. This symbolization entails creating 
overlapping partitions of length d (d = 3 in this example) and arranging partition indices in ascending order 
to determine the sorting permutation for each partition. (D) Finally, we evaluate the probability of occurrence 
of each of the d! permutation types (ordinal distribution) and calculate its (E) Shannon entropy, thereby 
defining the k-nearest neighbor permutation entropy.
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Finally, given the probability distribution P = {ρi(Πi)}i=1,...,d!, the nearest neighbor permutation entropy31 
is computed via the normalized Shannon entropy (Fig. 2D and E):

	
H[P] = − 1

ln d!

d!∑
i=1

ρi(Πi) ln ρi(Πi).� (4)

According to this equation, the k-nearest neighbor permutation entropy is restricted to H ∈ [0, 1], with H 
quantifying the degree of irregularity in the spectrum {xλ}λ=λmin,...,λmax . In general, we expect H ≈ 1 when 
a single permutation dominates the probability distribution, whereas H ≈ 0 indicates a uniform distribution 
across all permutation types. The procedure for computing the k-nn permutation entropy is illustrated in Fig. 2, 
and for the numerical implementation, we rely on the Python module knnpe34.

In applying the k-nearest neighbor permutation entropy to our absorbance spectra, we adopt the default 
values for the four parameters associated with the random walks31: n = 10, w = 10, α = 10, and β = 0.001. 
In contrast, the parameters k and d are extensively varied to identify optimal combinations. Additionally, to 
provide a basis for comparison, we also calculate the conventional permutation entropy of the spectra16. Briefly, 
the permutation entropy is calculated by symbolizing a spectrum {xλ}λ=λmin,...,λmax  using a sliding window 
of size d to partition the complete sequence of absorbance values. Next, we identify the permutations that sort 
these partitions (forming the permutation sequence {πt}), determine the probabilities associated with each 
permutation type [ρi(Πi), i = 1, . . . , d!], and compute the corresponding Shannon entropy, implemented using 
the Python module ordpy35. Supplementary Table S2 summarizes the parameters and key variables related to 
the k-nearest neighbor permutation entropy.

Results
Leveraging the absorbance spectra collected during our depressurization trials, we investigate phase transitions 
in mixtures of carbon dioxide and a distilled petroleum fraction via an anomaly detection approach. Specifically, 
we calculate the k-nearest neighbor entropy for each spectrum recorded at a given pressure and monitor the 
dispersion of these entropy values as an indicator of phase transitions.

Formally, we interpret a sequence of entropy values {HP }P =Pmax,...,Pmin  obtained from a depressurization 
trial as a time series indexed by decreasing pressure values, from Pmax to Pmin. Thus, the trend and fluctuations 
in HP  are quantified iteratively by calculating the average entropy

	
µP =

P∑
P ′=Pmax

HP ′

N
� (5)

and its standard deviation

	

σP =

√√√√
P∑

P ′=Pmax

(HP ′ − µP ′ )2

N
� (6)

evaluated over an expanding window indexed by pressures P ∈ {Pmax, . . . , Pmin} as the depressurization 
proceeds. We assume that the transition pressure P knn

t  associated with a phase transition is signaled by 
an abrupt change in HP . Specifically, P knn

t  is identified as the pressure at which HP  first falls outside the 
confidence band defined by the thresholds H−

P = µP − γσP  and H+
P = µP + γσP , where γ controls the band 

width. Supplementary Table S3 summarizes the parameters and key variables used in our anomaly detection 
framework.

Figure  3 illustrates this procedure for three different samples. For instance, Fig.  3A presents a single 
depressurization trial involving a mixture containing 45% CO2 at T = 313 K. The initially homogeneous 
liquid mixture transitions to a vapor-liquid equilibrium upon crossing the bubble-point curve (VLE-BP) at 
P exp

t = 10.2 MPa. Notably, the spectra entropy values first exceed the upper threshold H+
P  at P knn

t = 10.1 MPa, 
signaling the onset of the VLE-BP phase in close agreement with the visually inferred transition pressure. 
Figure 3B shows a transition from an initially homogeneous gas mixture to vapor-liquid equilibrium by crossing 
the dew-point curve (VLE-DP), while Fig. 3B depicts a transition from an initially homogeneous liquid mixture 
to a two-phase liquid-liquid equilibrium (LLE). For the VLE-DP transition in Fig. 3B, our method identifies 
P knn

t = 11.7 MPa, marginally smaller than the visually determined P exp
t = 11.8 MPa, and for the LLE 

transition in Figure 3C it predicts P knn
t = 8.1 MPa, slightly lower than the visually determined P exp

t = 8.4 
MPa.

We next apply our approach to characterize phase transitions across all 42 depressurization trials. As the 
approach depends on the threshold parameter γ and the entropy parameters k and d, we systematically explore 
all possible combinations of γ ∈ {1.00, 1.05, . . . , 3.50}, k ∈ {10, 15, . . . , 300}, and d ∈ {3, 4, 5} to optimize 
the predictive performance and maximize the number of accurately detected transitions. To identify the best-
performing parameter set, we adopt a leave-one-out cross-validation strategy36 in which each depressurization 
trial is iteratively used as a validation set, while the remaining trials constitute the training set. This procedure 
ensures that the parameter optimization process remains strictly independent of the evaluation data, thereby 
enabling out-of-sample predictions that reflect our method’s generalizability and predictive power. Through this 
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extensive search, we find that the best results are consistently obtained for γ = 2.25, k = 265, and d = 5 for 41 
out of the 42 validation trials. The only exception is a trial prepared with CO2 = 45% and T = 333 K, where no 
phase transition was detected and a slightly different parameter set emerged.

Figure  4A compares the predicted transition pressures (P knn
t ) with the visually determined reference 

values (P exp
t ) for the 41 trials in which a phase transition was detected (see also Supplementary Table S4). The 

predictions closely match the experimental values, with a coefficient of determination R2 = 0.96 and a mean 
absolute percentage error (MAPE) of 4.51%. Figure 4B further shows that this high predictive performance 

Fig. 3.  Phase transitions manifest as anomalies in entropy values. Panels (A), (B), and (C) show the values 
of k-nearest neighbor permutation entropy (HP , solid black line) calculated from spectra of carbon dioxide 
and distilled petroleum fraction mixtures collected during depressurization trials. Light gray lines denote the 
confidence bands defined by threshold values H−

P  and H+
P , whose exceedance indicates a phase transition. 

Gray dotted lines display the average entropy values (µP ) calculated within expanding windows. Transition 
pressures visually determined by experts are indicated by colored vertical lines alongside the type of initiating 
phase, while colored cross markers show transition pressures identified by entropy values outside the 
confidence bands. CO2 concentration levels and temperatures are annotated within the panels. In all panels, 
the entropy parameters are set to k = 265 and d = 5, with the threshold parameter γ = 2.25.
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holds across different types of initiating phase equilibria. For example, transitions to LLE yield R2 = 0.88 and 
MAPE = 6.25%, transitions to VLE-BP lead to R2 = 0.98 and MAPE = 3.16%, and transitions to VLE-DP 
produce R2 = 0.87 and MAPE = 3.15%. In 22 out of 41 detected transitions, the predicted transition pressures 
are equal to or smaller than the true values, indicating an approximately symmetric chance of anticipating or 
lagging the experimentally determined transitions. On average, the absolute difference between the predicted 
pressures and the pressures sampled nearest to the experimental estimates is 0.5 MPa. These discrepancies may 
partly arise from the finite temporal resolution of the experimental measurements and the windowed nature of 
the k-nn permutation entropy calculation, both of which can hinder the detection of abrupt changes; gradual 
variations in system dynamics near the transition may also contribute. Additionally, given the inherent difficulty 
in exhaustively monitoring these rapid transitions, visually determined transition pressures are themselves 
susceptible to experimental errors.

Furthermore, given the stability of the optimal entropy parameters across validation trials, we investigate the 
effect of the threshold parameter γ on predictive performance while fixing k = 265 and d = 5 – their optimal 
values. As shown in Figure 4C, values of γ in the range 1 ⩽ γ ⩽ 2.25 yield the highest detection rate η, albeit 
at the cost of reduced accuracy in the predicted transition pressures. Conversely, for 2.00 ⩽ γ ⩽ 3.50, the 
predictions of transition pressures improve, but the fraction of detected transitions decreases with increasing 
γ. Since γ controls the width of the confidence band, these findings indicate that transition pressures are more 
accurately identified when entropy changes are more abrupt. Thus, enhancing the temporal resolution of the 
experimental measurements would likely improve both detection accuracy and performance, as the confidence 
band would become narrower and smoother.

For further comparison, we apply our anomaly detection approach using the standard permutation entropy 
in place of the k-nearest neighbor entropy. As before, we employ a leave-one-out cross-validation strategy to 
identify the optimal parameter combination, considering γ ∈ {1.00, 1.05, . . . , 3.50} and d ∈ {3, 4, 5}. This 
modification, however, results in markedly poorer predictive performance, with R2 = 0.67 and MAPE = 15.0%, 
despite correctly detecting all 42 transitions (Supplementary Figure S1A). Stratifying results by transition type 
further reveals that standard permutation entropy performs particularly poorly for LLE and VLE-BP transitions 
(Supplementary Figure S1B). These findings indicate that the superior performance of our approach stems from 
the k-nn permutation entropy’s ability to exploit local neighborhood relationships via the graph-based sampling 
strategy that captures amplitude variations and wavelength gaps ignored by the standard permutation entropy, 
thereby enhancing noise resilience and increasing sensitivity in detecting phase transitions.

Continuing our analysis, we observe that nine depressurization trials exhibit a second transition, each 
corresponding to a change from liquid-liquid equilibrium (at higher pressures) to vapor-liquid-liquid equilibrium 
(at lower pressures). Figure  5A illustrates the evolution of the k-nearest neighbor permutation entropy in 
one such trial, along with the confidence band and the detected transition obtained using our approach with 
previously optimized parameters (γ = 2.25, k = 265 and d = 5). However, unlike this particular example, and 
despite detecting all transitions, our method generally performs poorly in identifying this class of transitions, 
yielding a negative coefficient of determination (R2 = −2.42) and a substantial prediction error (mean absolute 
percentage error, MAPE = 16.1%). In an attempt to address this limitation, we re-optimize the parameter 
set using a leave-one-out cross-validation strategy tailored to this class of transitions. Yet, as shown in Fig. 5B 
(see also Supplementary Table  S5), even re-optimized parameters fail to significantly improve performance, 
with the coefficient of determination remaining negative (R2 = −1.68) and a high prediction error persisting 
(MAPE = 13.0%), based on 7 detected transitions out of the 9 observed. Furthermore, replacing k-nearest 

Fig. 4.  Accuracy of out-of-sample predictions for transition pressures in mixtures of carbon dioxide with 
a distilled petroleum fraction. (A) Relationship between the true P exp

t ( experimentally determined) and 
predicted P knn

t  transition pressures for 41 of 42 depressurization trials in which a transition was successfully 
identified. Colors indicate the transition types observed during the depressurization of homogeneous mixtures. 
The coefficient of determination (R2) quantifying the agreement between true and predicted pressures is 
shown within the panel. (B) Coefficient of determination (R2) stratified by the transition types. Predictions 
were obtained using a leave-one-out cross-validation approach, with the threshold parameter γ and entropy 
parameters k and d optimized independently of the evaluation data. (C) Fraction of detected transitions η 
(black line) and coefficient of determination R2(gray line) as functions of the threshold parameter γ, with 
entropy parameters fixed at their optimal values (k = 265 and d = 5).
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neighbor entropy with standard permutation entropy results in even less accurate predictions. These results 
indicate that transitions between liquid-liquid equilibrium (LLE) and vapor-liquid-liquid equilibrium (VLLE) 
are considerably more difficult to detect via abrupt changes in entropy than transitions between homogeneous 
mixtures and other types of high-pressure phase equilibria. This increased difficulty likely stems from the 
greater complexity of the LLE–VLLE transition – characterized by vapor nucleation and mass transfer between 
phases – which renders phase homogeneity more difficult to achieve experimentally6. Additionally, due to the 
spatial arrangement of phases within the optical cell, the NIR beam may predominantly sample only one of the 
coexisting phases – typically the denser or more spectrally active liquid – while underrepresenting the emerging 
vapor phase or the less optically absorbing liquid. The relatively weak absorbance of the vapor phase, combined 
with its limited residence time or distribution along the optical path, may further diminish its contribution 
to the spectra. As the k-nn entropy reflects spectral complexity rather than intensity alone, the absence of 
abrupt or structured spectral changes across scans makes such transitions inherently more difficult to resolve. 
Finally, because these transitions occur later in the depressurization process, the number of spectra preceding 
the transition is limited, reducing the temporal resolution and the robustness of confidence band estimation – 
further constraining the effectiveness of our detection approach.

Discussion and conclusions
We have presented an investigation of phase transitions in synthesized mixtures of carbon dioxide with a 
distilled petroleum fraction using an anomaly detection methodology. During depressurization trials, our 
approach repeatedly calculates the k-nearest neighbor permutation entropy – an information-theoretic measure 
directly computed from near-infrared absorbance spectra – and signals the occurrence of a phase transition 
by identifying large variations in entropy values. In line with previous studies on high-pressure systems13,15, 
our work integrates synthetic and analytical methods to elucidate phase behavior in high-pressure conditions, 
employing a modified experimental setup that enables continuous system monitoring without requiring sample 
extraction6.

Our methodology yields robust results, accurately identifying transitions from initially homogeneous 
mixtures to different types of two-phase equilibria. Moreover, the approach can be tailored to specific mixtures 
of carbon dioxide and hydrocarbon fractions (for instance, 60% CO2) or particular types of phase transitions, 
allowing for further improvements in performance. Indeed, detecting phase transitions in high-pressure 
hydrocarbon mixtures with elevated CO2 content has proven challenging, typically requiring cumbersome data 
preprocessing, specialized detection techniques based on field expertise, and qualitative visual assessments 6, 
difficulties that our method overcomes through an online, streamlined, and computationally efficient strategy.

Although we have used the same dataset as Borges et al.6, the results are not directly comparable. In their study, 
transition pressures were estimated via visual identification of inflection points in cumulative absorbance curves, 
whereas our fully automated approach employs a leave-one-out cross-validation scheme to enable out-of-sample 
predictions. Moreover, their analysis reflects average behaviors across isothermal depressurization trials at fixed 
CO2 concentrations, while our method produces individualized predictions for each trial. We have further 
verified that the predictive power of our approach arises from the ability of k-nearest neighbor permutation 

Fig. 5.  Challenges in predicting transition pressures between liquid–liquid and vapor–liquid–liquid equilibria. 
(A) Values of the k-nearest neighbor permutation entropy (HP , solid black line) calculated from spectra of 
carbon dioxide and distilled petroleum fraction mixtures during depressurization trials involving a transition 
from a liquid-liquid equilibrium to vapor-liquid-liquid equilibrium. Light gray lines represent threshold values 
whose exceedance indicates a phase transition (H−

P  and H+
P ), while gray dotted lines show average entropy 

values (µP ). The experimentally identified transition pressure (P exp
t ) is marked by a vertical colored line, and 

the predicted transition pressure (P knn
t ) is shown by a colored cross. Mixture composition and temperature are 

indicated within the panel. (B) Relationship between the true P exp
t ( experimentally determined) and predicted 

P knn
t  transition pressures for 7 of 9 depressurization trials exhibiting a second phase transition. The coefficient 

of determination (R2) quantifying the agreement between true and predicted pressures is shown within the 
panel.
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entropy to exploit local neighborhood structure through a graph-based sampling strategy that captures both 
amplitude variations and wavelength gaps – features not adequately resolved by standard permutation entropy, 
which yielded markedly inferior results. While future studies may explore the performance of other generalized 
variants of permutation entropy, we emphasize that the capacity to simultaneously account for gaps, amplitude 
values, and non-sequential sampling remains a distinctive feature of the k-nearest neighbor permutation 
entropy31.

Transitions between liquid-liquid and vapor-liquid-liquid equilibria, however, were not effectively captured 
by changes in the k-nearest neighbor permutation entropy. A closer examination reveals that, in these cases, 
entropy values tend to shift gradually, limiting our method’s ability to detect abrupt changes. This observation 
represents an intriguing avenue for future studies aimed at defining or applying more sensitive information-
theoretic quantifiers capable of detecting gradual shifts. Beyond the intrinsic complexity of the liquid-liquid to 
vapor-liquid-liquid equilibria transition, part of the challenge may stem from the fact that the mixtures were 
not allowed to stabilize after reaching liquid-liquid equilibrium; consequently, the experimental conditions 
preceding this phase transition differ from those preceding the transition of the initially homogeneous mixture 
into liquid-liquid equilibrium. These transitions also occur later in the depressurization process, resulting in 
fewer spectra preceding their onset and limiting the reliability of confidence band estimation – factors that 
further hinder the application of our approach in these cases. We believe that experiments specifically designed 
to probe such transitions, incorporating slower depressurization rates and using higher sampling rates for 
collecting the spectra, may yield more conclusive results. We also note that our anomaly-detection framework 
is somewhat computationally intensive due to the exhaustive search over a three-dimensional parameter space, 
which may become cumbersome for large spectral datasets.

Despite these limitations, our approach is sufficiently general to be adapted for studying phase behavior 
in other chemical systems subjected to high-pressure conditions and monitored by spectrophotometry. Thus, 
our work underscores the noninvasive nature of employing permutation entropy and ordinal methods in the 
investigation of complex physicochemical systems29,30.

Data availability
All code and data necessary to reproduce the results and figures in this work are available at the GitLab reposi-
tory https://gitlab.com/complexlab/nir-co2oil-knnpe.
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