Table 2 Output feature sizes for two quanvolutional layer.

From: Deep quanvolutional neural networks with enhanced trainability and gradient propagation

Input size

Residual configuration

Output feature size

\(28\times 28\times 1\)

No residual

\(7\times 7\times 1\)

\(28\times 28\times 1\)

\(X+O1\)

\(14\times 14\times 1\)

\(28\times 28\times 1\)

\(O1+O2\)

\(14\times 14\times 1\)

\(28\times 28\times 1\)

\(X+O2\)

\(28\times 28\times 1\)

\(28\times 28\times 1\)

\((X+O1)+O2\)

\(28\times 28\times 1\)