Table 3 Dataset and hyperparemeters specifications. BS batch size, Opt optimizer, LR learning rate.

From: Deep quanvolutional neural networks with enhanced trainability and gradient propagation

Dataset specs

BS

Opt

LR

Quanvolutional layer specs

Postprocessing

Total classes

Samples/class

Train data

Test data

   

Encoding

Kernel size

# of qubits

Classical

Quantum

10

200

1600

400

16

Adam

0.01

Angle (RY)

\(2 \times 2\)

4

Dense layer (10 neurons)

–

4

200

640

160

16

Adam

0.01

Angle (RY)

\(2 \times 2\)

4

–

10-Qubit circuit (4 measured)