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Evaluation of invasion depth is essential for the treatment strategy of esophageal squamous cell 
carcinoma (ESCC). However, the application of the Japanese Endoscopic Society classification system, 
based on the patterns of intravascular papillary cell layer (IPCL) and avascular area (AVA), requires 
a long-term training for endoscopists. We aimed to develop explainable semi-supervised models for 
predicting ESCC invasion depth based on the IPCL/AVA patterns.  A total of 2,643 images of magnifying 
endoscopy with narrow-band imaging in the upstream task, self-supervised contrastive learning 
(n = 2,175), and the downstream task, fine-tuning (n = 468), were from Suzhou. In the fine-tuning, two 
approaches were adopted: the traditional blackbox or the explainable AI. Lastly, the models were 
evaluated in an external test dataset (Jintan, n = 60), in comparison with two endoscopists. The primary 
outcome was 3-way classification of ESCC invasion depth. The metrics included accuracy, Matthew 
correlation coefficient, and Cohen’s kappa. Furthermore, Grad-CAM was for visualized explanation of 
images; local interpretation, feature importance, and partial dependence plots were conducted for 
classifiers; and t-SNE was for visualization of feature vectors. A Xception-backboned explainable model 
(accuracy 0.817) had exhibited better performance than other models and a junior endoscopist (0.733), 
even though it underperformed a senior (0.883) by 0.066 on accuracy. However, the endoscopists’ 
performance was improved by AI assistance (junior 0.833 and senior 0.917). The explainable semi-
supervised framework empowers AI models to achieve improved transparentness and performance, 
facing the opacity of traditional supervised learning and limited amounts of labelled endoscopic 
images.
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Esophageal cancer, ranking as the eighth most prevalent malignancy and the sixth leading cause of cancer-
related mortality, is characterized by a low five-year survival rate1,2. It is primarily classified into two histological 
subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma, with the former 
constituting the majority of global cases, approximately 84% 3.

In terms of therapeutic approach, endoscopic resection is recommended for esophageal neoplasia, ranging 
from epithelial (EP) to minimal submucosal invasion (SM1), owing to its lower complication rate and reduced 
duration of hospitalization, in comparison with surgical intervention4. Consequently, an accurate preoperative 
evaluation of the depth of invasion is essential for the decision-making of the treatment strategy.
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The Japanese Endoscopic Society (JES) recognizes magnifying endoscopy with narrow-band imaging (ME-
NBI) as a highly effective technique for the preoperative assessment of invasion depth in ESCC5,6. In following 
of multiple previous classification systems, the JES classification system proposes the patterns of intravascular 
papillary cell layer (IPCL) and avascular area (AVA), which now has been widespread clinical adoption6,7. 
However, the accurate application of the JES classification system in routine requires a long-term training for 
endoscopists.

The advancements in deep learning have transformed numerous facets of clinical operations. In gastrointestinal 
endoscopy, artificial intelligence (AI), trained by large amount of labeled data, is progressively being incorporated 
into computer-aided diagnosis systems, thereby enhancing the detection and classification of lesions8,9. However, 
the procurement of such comprehensive and meticulously annotated datasets, necessitating laborious and time-
intensive curation, often presents a significant impediment to the training process10. Self-supervised learning 
(SSL) represents a novel machine learning paradigm that harnesses the power of unsupervised learning to equip 
cutting-edge AI models with the capacity to manage the exigencies of tasks traditionally reliant on extensive 
datasets annotated by human experts11,12.

As AI evolves toward higher complexity, it poses a formidable challenge for humans to grasp the logic 
and steps that lead an algorithm to its conclusions. The computational processes often become encapsulated 
within an enigmatic framework known as a “blackbox,” which is inherently resistant to interpretation13,14. It 
is imperative to achieve a comprehensive grasp of AI’s decision-making mechanisms through rigorous model 
monitoring and ensuring AI accountability. Consequently, there is a burgeoning demand for the development 
of explainable AI methodologies aimed at bolstering confidence in AI models. Explainable AI is designed to 
demystify and elucidate the operations of machine learning algorithms, deep learning structures, and neural 
networks. In recent years, explainable AI has emerged as a prominent area of inquiry within the domain of AI 
research15,16.

In this study, we aimed to develop a series of semi-supervised models for predicting invasion depth of ESCC, 
based on the IPCL/AVA patterns. The models were pretrained in a large unlabeled data using self-supervised 
contrastive learning and fine-tuned in a small labeled data. In the fine-tuning, two approaches were adopted: 
the traditional blackbox or the explainable AI. Lastly, the models were evaluated in an external test dataset, in 
comparison with two endoscopists.

Methods
Study design
This retrospective multicenter study was conducted in two hospitals: the First Affiliated Hospital of Soochow 
University (Suzhou, the training dataset) and Jintan Affiliated Hospital of Jiangsu University (Jintan, the test 
dataset). Patients who underwent ME-NBI examinations for precancerous lesions or superficial ESCC confirmed 
by histology of endoscopically or surgically resected specimens between November 2016 and December 2023 
were included. Each lesion offered three images in the training dataset, whereas one image in the test dataset. 
Non-magnified images, low-quality images, and white-light images were excluded. These images were captured 
using Olympus equipment (GIF-H260Z, Olympus Medical Systems, Tokyo, Japan) and saved in BMP format. 
Two endoscopists (L.K. and J.Z.) with more than 10 years of experience independently reviewed eligible images 
to ensure image quality and labeled IPCL/AVA patterns. If there was disagreement between the two endoscopists, 
it would be decided by X.S., with 20 years of experience. This study was approved by the ethics committee 
of the First Affiliated Hospital of Soochow University (Approval number 2022098)17. Due to the retrospective 
nature of the study, the need to obtain informed consent was waived by the Ethics Committee of the First 
Affiliated Hospital of Soochow University. All procedures involving human participants were conducted in 
accordance with ethical standards and the Declaration of Helsinki. Figure 1 presents the flowchart of the study. 
The characteristics of patients/ lesions/ images are listed in Table 1.

Based on the pathological results of invasion depth, the ME-NBI images were labeled as: (1) epithelium (EP) 
to lamina propria (LPM); (2) muscularis mucosa (MM) to minimal submucosal invasion (less than 200 μm; 
SM1); or (3) deeper submucosal invasion (200  μm or more; SM2 or deeper). The detailed information was 
offered in the Supplementary Methods 1.

Based on the patterns of IPCL/AVA, each ME-NBI image was labeled in four dimensions: (1) severe 
irregularity (yes or no); (2) loop-like formation (yes or no); (3) highly dilated vessels which calibers appear to be 
more than 3 times (yes or no); and (4) AVA (small < 0.5 mm; middle 0.5–3 mm; large ≥ 3 mm).

The proposed semi-supervised learning framework
The proposed framework, which consists of the upstream task SSL (Fig. 2) and the downstream task fine-tuning 
(Fig. 3). The development of the framework was introduced in our previous study18.

The upstream task: self-supervised contrastive learning
In the SSL (contrastive learning), an anchor image is employed to create a positive example by applying various 
data augmentation strategies. In contrast, a negative example is derived from selecting another random image 
within the same batch. Figure  2 illustrates the SSL process, showcasing augmentation techniques such as 
color modification and cropping followed by resizing18. The process offers a simplified approach to learning 
visual representations contrastively, streamlining complex self-supervised learning algorithms to their core 
principles, eschewing the need for specialized architectural configurations or a memory bank19. The framework 
is characterized by several integral elements: (1) a data augmentation component that randomly alters an 
image sample to generate a related pair, as a positive match, while it generates negative matches, augmented 
from different images; (2) a neural network encoder that serves to extract feature vectors from the augmented 
data instances; (3) a concise neural network projection layer that aids in the translation of these features into a 
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Fig. 1.  The flowchart of the study.  Step #1: self-supervised contrastive learning on large unlabeled images from 
Suzhou.  Step #2: fine-tuning (two methods: blackbox or explainable) on few labeled images from Suzhou.  Step 
#3: test on labeled images from Jintan.  This retrospective multicenter study was conducted in two hospitals: 
the First Affiliated Hospital of Soochow University (Suzhou, the training dataset) and Jintan Affiliated Hospital 
of Jiangsu University (Jintan, the test dataset).
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space conducive to the application of the contrastive loss mechanism; and (4) a contrastive loss function that is 
precisely formulated to fulfill the contrastive prediction task, facilitating the refinement of the learning process.

The downstream task: Fine-tuning
As shown in Fig. 3, following the upstream task SSL, the pretrained backbone models were submitted to the 
downstream task fine-tuning, which were two approaches: (1) the traditional learning labeled on the pathology 
(blackbox) or (2) the explainable learning based on the IPCL/AVA patterns (explainable AI). The former was a 
3-way supervised training based on the pathological results of the invasion depth, i.e., EP-LPM, MM-SM1, and 
≥ SM2. The blackbox model outputs using a softmax classifier. The latter (explainable AI) was comprised of four 
feature models based on the IPCL/AVA patterns, i.e., irregularity, loop formation, dilation ≥ 3-time and size of 
AVA. The outputs of the four feature models were integrated by a XGBoost classifier, which was also supervised 
trained by pathology18.

Evaluation
A total of 2,643 ME-NBI images in the upstream task SSL (n = 2,175) and the downstream task fine-tuning 
(n = 468) were from Suzhou. The 468 images were randomly divided into the training and the validation at 
a ratio of 7:3, thus 140 images were used to evaluate the models’ performance during the training procedure 
(Supplementary Table 2). The images in the test were from Jintan (n = 60), as shown in Fig. 4. To compare with 
the models, images from the test data were evaluated by two independent endoscopists (junior, four years of 
endoscopic experience; and senior, eleven years of experience). They were blind to the collection and labelling of 
the images. Firstly, they labeled the test images independently, and then in the next week, they relabeled the test 
images in awareness of the prediction of the best AI model.

Model training
The Keras (version 3.8.0, TensorFlow version 2.8.0) was used to train the models. The training parameters are 
listed in Supplementary Table 1. Images were resized to 224 × 224 pixels and input into the framework in the 
form of RGB channels. The training code for SSL was inspired by that of Sayak Paul, which can be accessed at ​h​
t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​s​a​y​a​k​​p​a​u​l​/​​S​i​m​C​L​R​​-​i​n​-​T​e​​n​s​o​r​F​l​​o​w​-​2. The training code is available at https://osf.io/t3g8n18.

Statistical analysis and explanation
The primary outcome was 3-way classification of ESCC invasion depth. To evaluate the performance of the 
models and endoscopists, three metrics were calculated: accuracy, Matthew correlation coefficient (MCC), and 
weighted Cohen’s kappa18. The detailed information of the metrics was offered in the Supplementary Methods 
2. Furthermore,, Grad-CAM was conducted for visualized explanation of endoscopic images20; variable 
importance, local interpretation, and partial dependence plots (PDP) were for the XGBoost classifier21; and 
t-SNE was for the visualization of feature vectors (blackbox models vs. explainable models) in a two-dimensional 
space18,22.

Results
Performance of the models in the downstream task
As shown in Supplementary Table 2, Xception-backboned explainable model presented the best performance, 
with accuracy 0.850, MCC 0.768 and weighted Cohen’s kappa 0.770.

Suzhou
Training dataset
(n = 156)

Jintan
Test dataset
(n = 60)

Age (yrs) 69 (61, 77) 67 (58, 73)

Sex (num, %) Men 123 48

Women 33 12

Lesion size (mm) 15 (6, 65) 18 (8, 68)

Lesions by depth (num, %)

EP-LPM 79 30

MM-SM1 54 20

≥SM2 23 10

Images by depth (num, %)

EP-LPM 237 30

MM-SM1 162 20

≥SM2 69 10

Table 1.  Characteristics of patients in the study. Data of age and lesion size are presented as median 
(interquartile range). Each lesion offered three images in the training dataset, whereas one image in the test 
dataset.
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Performance of the models in the evaluation
The performances of the four explainable models and four blackbox models on the test set were shown in Table 2. 
Among the models, Xception-backboned explainable model achieved the highest accuracy (0.817), with highest 
MCC 0.701 and weighted Cohen’s kappa 0.780. The confusion matrices are plotted in Fig. 5.

Fig. 2.  The flowchart of Step #1 self-supervised contrastive learning.  Self-supervised contrastive learning 
on large unlabeled images from Suzhou.  The self-supervised contrastive learning is characterized by several 
integral elements: (1) a data augmentation component; (2) a neural network encoder; (3) a concise neural 
network projection layer; and (4) a contrastive loss function.
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Comparison with endoscopists
The performances of the junior and senior endoscopists were listed in Table 2. The senior endoscopist showed 
higher accuracy, MCC and weighted Cohen’s kappa coefficient (0.883, 0.809 and 0.890) than Xception-backboned 
explainable model. The junior endoscopist had accuracy 0.733, MCC 0.571 and weighted Cohen’s kappa 0.750.

Fig. 3.  The flowchart of Step #2 fine-tuning.  The fine-tuning had two approaches: (1) blackbox models were 
trained based on traditional learning labeled on the pathology; or (2) four feature models were trained based 
on the IPCL/AVA patterns, and then their outputs were integrated using a XGBoost classifier in the principle of 
explainable AI.

 

Scientific Reports |        (2025) 15:22519 6| https://doi.org/10.1038/s41598-025-06172-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 4.  The flowchart of Step #3 test.  Models were evaluated on an external test dataset and compared with 
endoscopists. The metrics included accuracy, Matthew correlation coefficient (MCC), and weighted Cohen’s 
kappa. Furthermore, for visualized explanation, Grad-CAM was conducted for computer vision models on 
endoscopic images; local interpretable model-agnostic explanation (LIME), SHapley Additive exPlanations 
(SHAP), partial dependence plots (PDP) were conducted for the XGBoost classifier; and t-SNE was conducted 
for visualize feature vectors (blackbox models vs. explainable models) in a two-dimensional space.
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Fig. 5.  The confusion matrices of the models and endoscopists in the test dataset. (A) blackbox models. (B) 
explainable models. (C) endoscopists and AI-assisted endoscopists.

 

Models / Endoscopists Accuracy MCC Weighted Cohen’s kappa

Blackbox models

VGG16 0.617 0.405 0.480 [0.270–0.690]

MobileNet 0.650 0.454 0.470 [0.250–0.690]

ResNet50 0.733 0.573 0.600 [0.400–0.790]

Xception 0.767 0.626 0.710 [0.570–0.860]

Explainable models

VGG16 0.700 0.531 0.660 [0.510–0.800]

MobileNet 0.750 0.599 0.680 [0.530–0.830]

ResNet50 0.783 0.651 0.720 [0.570–0.870]

Xception 0.817 0.701 0.780 [0.680–0.880]

Junior endoscopist 0.733 0.571 0.750 [0.680–0.820]

Senior endoscopist 0.883 0.809 0.890 [0.880–0.900]

Junior endoscopist + AI 0.833 0.728 0.850 [0.820–0.870]

Senior endoscopist + AI 0.917 0.865 0.920 [0.910–0.930]

Table 2.  The performance of models and endoscopists in the evaluation. MCC, Matthew’s correlation 
coefficient.
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Performance of AI-assisted endoscopists
In awareness of Xception-backboned explainable model’s prediction, the performance of endoscopists were 
improved. The performance (accuracy) of the senior arrived at 0.917, which improved 3.85%. In the meantime, 
the junior’s accuracy arrived at 0.833, which improved 13.64%.

Visualized interpretation of the models
As shown in Fig. 6, t-SNE visualization of feature vectors revealed distinct clustering patterns between models. 
For the blackbox model, classes exhibited partial overlap, particularly between EP-LPM and MM-SM1, 
suggesting ambiguity in distinguishing early invasive depths. In contrast, the explainable model produced 

Fig. 6.  t-SNE visualization of feature vectors in models in the test.  t-SNE is an unsupervised machine learning 
algorithm for dimensionality reduction. In the study, it was used to map high-dimensional data to a two-
dimensional space. Each point represents an image, and the distance between points reflects the similarity 
between images in the reduced space. (A) Xception-backboned blackbox model. (B) Xception-backboned 
explainable model.
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markedly separable clusters. The findings confirm that integrating IPCL/AVA patterns during fine-tuning 
enforces pathologically relevant feature learning, reducing diagnostic uncertainty in borderline lesions.

Figure 7 was to visualize the association between the IPCL/AVA patterns and the prediction of the XGBoost 
classifier within the explainable AI.

Fig. 7.  Visualized explanation for XGBoost classifier in the explainable model. (A) feature importance plots; 
(B) partial dependence plots (PDP); (C) local Interpretation plots.  The feature importance plotting indicated 
the general association between the IPCL/AVA features and the prediction, as well as the PDPs. The local 
Interpretation plots reflected the local association between the IPCL/AVA features and the prediction within 
individual cases.
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In Fig. 7A, the feature importance indicated the general association between the IPCL/AVA patterns and 
the prediction, as well as the PDPs in Fig. 7B. They showed that loop-formation significantly contributed to 
invasion depth, as well as irregularity and dilation. However, the contribution of AVA was non-significant. The 
break down plotting (local interpretation, Fig. 7C) reflected the contribution of features to the prediction, within 
individual cases. In the case #1 with invasion depth EP, XGBoost XAI model’s prediction was 0.003 (category 
0 = EP-LPM). The most important variable was irregularity (prediction value = 0.278), which decreased the 
general prediction of XGBoost by 0.536. The second and third most important variables were loop-formation 
(0.710) and dilation (0.438), which decreased the prediction by 0.453 and 0.002. In the case #2 (invasion depth 
MM), XGBoost prediction was 0.997 (category 1 = MM-SM1). Dilation (0.367), irregularity (0.490) and loop-
formation (0.345) were the key features for the prediction. Their contribution to the prediction were − 0.333, 
+ 0.284 and + 0.051. Moreover, in the case #3 (invasion depth SM2), XGBoost prediction was 1.990 (category 
2 = ≥ SM2). Loop-formation (0.099), Dilation (0.907) and irregularity (0.902) increased the prediction by 0.578, 
0.399 and 0.018.

Lastly, based on the outputs of the four feature models within Xception-backboned explainable AI, Grad-
CAM was conducted for inferential explanation as shown in Fig. 8. The highlighted areas of the four feature 
models were their inferential evidence.

Discussion
In this study, we presented explainable semi-supervised models developed for predicting invasion depth 
of ESCC based on the IPCL/AVA patterns. The novel framework empowers AI models to achieve improved 
transparentness and performance, facing the opacity of traditional supervised learning and limited amounts of 
labelled endoscopic images.

Deep supervised learning algorithms are often contingent upon a substantial corpus of labeled data to attain 
optimal performance levels23. Nonetheless, the assembly and annotation of such datasets can entail considerable 
financial and temporal expenditures. SSL emerges as a niche within the unsupervised learning spectrum, 
dedicated to the extraction of informative features from data that lacks human-provided labels24. As a prevalent 
approach within SSL, contrastive learning facilitates the training of encoders on expansive datasets that are 
devoid of labels. It operates by enhancing the congruence between varied, augmented perspectives of identical 
data instances, within the latent space, through the optimization of a contrastive loss function19.

The imperative for explainable AI is driven by the inherent complexity and obscurity of traditional AI 
models, which frequently operate as impenetrable black boxes25. They generate predictions grounded in input 
data yet fail to elucidate the rationale underpinning these forecasts. The elucidation algorithm serves as the 
pivotal element within explainable AI, tasked with furnishing clarity and revealing the salient and impactful 
factors that inform the model’s predictive outcomes. This mechanism can draw upon diverse methodologies 
within explainable AI, encompassing techniques such as feature significance, contribution assessment, and data 
visualization, thereby imparting profound insights into the inner workings of machine learning models26.

The subtle endoscopic manifestations of early ESCC lesions are frequently overlooked, with literature 
indicating a considerable miss rate for upper gastrointestinal tract cancers during endoscopic examinations. 
The precise identification of ESCC lesions is essential for the prediction histology and invasion depth and 
consequently guides therapeutic interventions6. Mucosal lesions exhibit a low propensity for local lymph 
node metastasis (less than 2%) when compared to those that have invaded the submucosa (ranging from 8 
to 45.9%), making them suitable candidates for endoscopic treatment2,27. In accordance with guidelines from 
Japan and Europe, lesions confined to the EP-LPM are clear indications for ER, while those invading MM-
SM1 are considered relative indications. For lesions with ≥ SM2, esophagectomy or chemoradiotherapy is the 
recommended course of treatment5.

A variety of endoscopic classification criteria have been proposed for the diagnosis of ESCC, including 
mucosal surface characteristics, the JES’s classification based on IPCL and AVA5,6. Within this classification 
system, Type A vessels are indicative of normal mucosa or low-grade intraepithelial neoplasia, while Type B1, 
B2, and B3 vessels suggest progression to high-grade intraepithelial neoplasia or invasion into EP-LPM, MM-
SM1 and ≥ SM2, respectively. However, the patterns of IPCL and AVA are highly dependent on the expertise 
of endoscopists and is subject to interobserver variability. Thus, there is a need for computer-aided diagnostic 
(CADx) approaches that can reduce the complexity and variability inherent in IPCL/AVA classification.

The past five years witnessed a series of AI studies concerned deep learning in endoscopic diagnosis and 
detection of ESCC. In 2019, Everson et al.28 collected a dataset comprising 7046 ME-NBI images from 17 
subjects, including 10 with ESCC and 7 controls, to train a convolutional neural networks (CNN) model to 
classify 2-way IPCL patterns. It achieved a high level of accuracy, correctly distinguishing abnormal from normal 
IPCL patterns in 93.7% of cases. In 2020, Fukuda et al.29 developed a CADx system for differentiating cancerous 
from non-cancerous SCC on NBI/BLI images and reported an accuracy rate of 88%. Similarly, a CADx system by 
Guo et al.30 reported remarkable sensitivity (98.04%) and specificity (95.03%) in endoscopic NBI images. Tokai 
et al. developed an AI-diagnostic system to determine the invasion depth of ESCC. This system analyzed 279 
white-light images, accurately estimating the invasion depth of ESCC with a sensitivity of 84.1% and an overall 
accuracy of 80.9% within 6 s. Uema et al.31 constructed a ResNeXt-101 backboned model to classify microvessels 
in ESCC. With a dataset of 2,524 ME-NBI images encompassing 393 lesions, the system achieved a microvessel 
classification accuracy of 84.2%, surpassing the average accuracy of eight endoscopists (77.8%). Wang and 
colleagues32 proposed an AI-assisted endoscopic diagnostic approach for the detection and localization of 
IPCLs in early-stage ESCC using ME-BLI and ME-NBI images. They employed an enhanced Faster region-based 
CNN with a polarized self-attention-HRNetV2p backbone for automatic IPCL detection. The methods showed 
promising results with a recall of 79.25%, precision of 75.54%, F1-score of 0.764, and a mean average precision of 
74.95%. In the meantime, Zhang et al.33 collected 5,119 ME-NBI images from 581 ESCC patients and developed 
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a multi-model diagnostic system for feature extraction and integration. This diagnostic system, grounded in a 
variety of endoscopic diagnostic methods, outperformed traditional DL models and endoscopists, achieving 
sensitivity, specificity, and accuracy rates of 85.7%, 86.3%, and 86.2% in image validation, and 87.5%, 84%, and 
84.9% in consecutive video analysis, respectively, for distinguishing SM2-3 lesions.

The study has some limitation. To begin with, the dataset employed for training and testing was of insufficient 
size, which may undermine the robustness and generalizability of the findings. Second, methodological diversity 

Fig. 8.  Visualized inference of four feature models within the explainable fine-tuning via Grad-CAM.  Left 
column: the original endoscopic images;  Middle column: heatmaps based on the outputs of the feature models’ 
last layer;  Right column: the Grad-CAM heatmap covering the original images, highlighting inferential 
evidence of the models.
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and dataset heterogeneity hinder comparative analysis with the previous reports. Future efforts should prioritize 
standardized evaluation frameworks and multicenter collaborative datasets to enable robust benchmarking and 
clinical translation.

The study introduces a novel framework that combines semi-supervised learning with explainable AI 
to address the challenges of data scarcity and model interpretability in endoscopic assessment of ESCC. By 
leveraging semi-supervised learning, the model reduces its reliance on large labeled datasets, effectively 
utilizing abundant unlabeled ME-NBI images to enhance performance. This approach maintains competitive 
accuracy while providing interpretable predictions, addressing the traditional “blackbox” critique of deep 
learning models. Clinically, the model demonstrates real-world utility by significantly enhancing endoscopists’ 
diagnostic accuracy, aligning with treatment guidelines for ESCC stratification. Technically, this study pioneers 
the integration of self-supervised contrastive learning with multi-feature explainable AI for ESCC invasion 
prediction, introducing innovative visualization methods such as t-SNE for feature clustering and Grad-CAM 
for region-of-interest localization, tailored specifically to endoscopic IPCL/AVA patterns. These advancements 
collectively position the model as a powerful tool for improving diagnostic accuracy and trust in AI-driven 
endoscopic practices.

Data availability
The code used to train self-supervised models can be found in an open-accessed website (https://osf.io/t3g8n).
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