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The increasing intricacy of modern microgrids, driven by uncertain consumption patterns, 
decentralized renewables, and user behavioral dynamics, calls for innovative optimization 
methodologies. This study introduces a hybrid quantum-classical framework for demand-side energy 
management, leveraging behavioral modeling to foster resilience and flexibility. By embedding 
principles from Social Cognitive Theory—such as behavioral imitation, confidence in personal 
capability, and social reinforcement—into a multi-objective optimization scheme, the model supports 
distributed decision-making and promotes adaptive prosumer behavior. The proposed approach 
employs Quantum Annealing in combination with NSGA-III to efficiently navigate the complex solution 
space, accounting for real-time uncertainties and the stochastic nature of both demand and renewable 
supply. The framework is tested within a case study of a peer-to-peer microgrid network, showcasing 
its effectiveness in enhancing energy efficiency, lowering peak demand, and improving operational 
resilience. Performance comparisons with traditional methods, including Mixed-Integer Programming 
and conventional metaheuristics, underline the improved scalability and robustness of the quantum-
inspired model in handling trade-offs between cost, reliability, and socially-driven demand response. 
The research highlights the potential of integrating quantum-inspired optimization with behavioral 
energy modeling to advance intelligent and socially-responsive microgrid control systems.
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The accelerating integration of renewable energy technologies and the pressing demand for sustainable energy 
solutions have positioned microgrids as a cornerstone of contemporary power infrastructure1. Functioning as 
decentralized energy systems, microgrids can seamlessly operate either in isolation or alongside the central grid, 
delivering key benefits such as improved system resilience, enhanced energy autonomy, and flexible resource 
utilization2. Nonetheless, the growing dependence on variable renewable sources like wind and solar poses 
considerable operational hurdles, primarily due to their non-dispatchable and uncertain nature3,4. To maintain 
stable and optimal microgrid performance under these volatile conditions, there is a critical need for intelligent 
optimization mechanisms capable of responding in real time to changes in both generation and consumption, 
while simultaneously addressing technical constraints, economic efficiency, and user-driven factors5.

The conventional optimization of microgrid operations typically relies on classical optimization techniques 
such as mixed-integer programming, heuristic algorithms, and metaheuristic approaches like particle swarm 
optimization and genetic algorithms. While these methods have demonstrated effectiveness in certain 
applications, they often struggle with scalability, real-time adaptability, and multi-objective trade-offs inherent 
in modern energy systems6,7. Additionally, they lack the ability to integrate behavioral influences and policy-
driven incentives, which are increasingly recognized as crucial components in shaping energy consumption 
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patterns and optimizing demand-side management strategies. Given these limitations, there is a growing need 
for innovative optimization frameworks that can address the computational complexity of large-scale microgrid 
operations while simultaneously integrating technical, economic, and social dimensions8.

Although significant advances have been made in classical optimization techniques for microgrid energy 
management, existing methods often struggle to efficiently solve large-scale, behavior-aware, multi-objective 
problems due to the combinatorial complexity and high-dimensional search spaces involved. Furthermore, 
the dynamic and uncertain nature of user behavior under varying pricing and incentive schemes introduces 
additional challenges that require both exploration and exploitation capabilities in optimization. Quantum-
inspired optimization methods offer promising advantages in terms of convergence speed and global search 
ability, but purely quantum systems are currently constrained by hardware limitations. Thus, hybrid quantum-
classical frameworks present an effective compromise, leveraging quantum-inspired exploration mechanisms 
within classical computational infrastructures to address complex, behavior-driven control challenges in 
microgrid environments. Motivated by these technical gaps and practical needs, this study proposes a novel 
hybrid optimization approach that integrates social cognition modeling with quantum-classical search dynamics. 
To address these gaps, recent studies have highlighted the importance of dynamic behavior modeling9, real-time 
policy adaptation, and the application of quantum-inspired methods in energy management, which collectively 
support the need for a more integrated and adaptive optimization framework10. This paper introduces a novel 
quantum-inspired optimization (QIO) framework that integrates Social Cognitive Theory (SCT) and dynamic 
policy mechanisms to enhance the sustainability, resilience, and economic feasibility of microgrid operations. 
The proposed framework leverages QIO principles such as quantum annealing, tunneling, and entanglement 
to efficiently navigate complex multi-objective optimization landscapes. Unlike classical methods that often 
become trapped in local optima, QIO facilitates global search efficiency, enabling superior optimization of 
microgrid functions, including energy generation, storage management, and demand-side incentives. Beyond 
its technical superiority, the proposed methodology is distinguished by its integration of behavioral and policy 
considerations. SCT provides a theoretical foundation for modeling user behavior and participation in energy 
management programs. By incorporating behavioral incentives such as gamified rewards, social learning effects, 
and dynamic tariff structures, the optimization framework encourages energy-saving behaviors and enhances 
the overall engagement of microgrid users. Additionally, the framework employs adaptive subsidy mechanisms 
and real-time pricing strategies to align economic incentives with sustainability goals. This combination of QIO, 
behavioral modeling, and dynamic policy design represents a significant departure from traditional microgrid 
optimization approaches, positioning this study at the forefront of next-generation energy management 
solutions.

A key distinguishing feature of this study is its ability to address the trade-offs between economic, 
environmental, and social objectives in a holistic manner. Unlike traditional approaches that focus solely on 
cost minimization or renewable energy maximization, the proposed framework balances multiple conflicting 
objectives by leveraging Pareto-based optimization strategies. This ensures that microgrid operation is not only 
cost-effective but also aligned with long-term sustainability goals. Moreover, the quantum-inspired resilience 
metric embedded in the framework enhances the microgrid’s ability to withstand cyber-physical disturbances, 
ensuring that energy supply remains stable even in the face of adversarial threats or extreme weather events. To 
validate the effectiveness of the proposed optimization framework, a comprehensive case study is conducted on 
a rural microgrid system with diverse energy resources, including solar, wind, and hybrid storage technologies. 
Synthesized data is used to simulate varying energy demand patterns, policy constraints, and user participation 
scenarios. The results demonstrate that the QIO-based approach significantly outperforms conventional 
methods in terms of computational efficiency, renewable energy utilization, and user engagement. Specifically, 
the framework achieves a more optimal balance between life-cycle costs, carbon footprint reduction, and system 
resilience, showcasing its potential for real-world deployment. The primary contributions of this study can be 
summarized as follows.

First, it introduces a novel quantum-inspired optimization framework tailored for microgrid operations, 
leveraging quantum annealing and tunneling mechanisms to enhance solution efficiency.

Second, it integrates Social Cognitive Theory into microgrid optimization, enabling a more accurate 
representation of user behavior and demand-side participation.

Third, it incorporates dynamic policy mechanisms such as real-time adaptive tariffs and behavioral incentives 
to align microgrid economic performance with sustainability objectives.

Finally, the study develops a quantum-informed resilience metric that ensures stable microgrid operation 
under uncertain and adversarial conditions. These contributions collectively position this research as a 
pioneering effort in the field of intelligent and sustainable energy management.

Literature review and research gaps
Microgrid optimization has traditionally employed a range of techniques, including deterministic methods (e.g., 
mixed-integer linear programming), stochastic optimization approaches (e.g., scenario-based and probabilistic 
models), robust optimization methods (e.g., worst-case formulations), and metaheuristic algorithms such as 
genetic algorithms and particle swarm optimization11.These methods have been widely applied to optimize 
energy dispatch, storage utilization, and demand-side management. Deterministic approaches provide exact 
solutions but often fail to handle real-time uncertainties, particularly in renewable energy generation12. 
Stochastic optimization improves upon this by considering probabilistic uncertainties, but it requires a high 
computational burden and depends on well-defined probability distributions13. Metaheuristic approaches 
offer greater flexibility and scalability, yet they lack guarantees of global optimality and often require extensive 
tuning of algorithm parameters. While these methods have demonstrated effectiveness in various microgrid 
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applications, they struggle with the combinatorial complexity and real-time adaptability required for large-scale, 
multi-objective optimization14.

To overcome these limitations, researchers have explored hybrid approaches that integrate machine 
learning with classical optimization. Reinforcement learning has been increasingly applied to demand response 
management, energy pricing strategies, and grid stability enhancement15. These learning-based methods offer 
adaptive decision-making capabilities and can efficiently capture nonlinear relationships within microgrid 
operations. However, they typically require extensive training data and can suffer from instability in dynamic 
environments16. Deep reinforcement learning, which combines deep neural networks with reinforcement 
learning techniques, has been proposed to improve policy generalization17. Nevertheless, these models remain 
computationally expensive and may not always guarantee convergence to an optimal solution. Despite these 
advancements, the need for optimization frameworks that efficiently handle uncertainty, high-dimensional 
decision spaces, and multiple conflicting objectives remains largely unmet18.

Parallel to advancements in optimization techniques, there has been growing recognition of the 
importance of incorporating user behavior into microgrid operation models. SCT has been widely studied 
in energy consumption behavior modeling, particularly in demand response programs and energy efficiency 
interventions19,20. SCT emphasizes the role of social influence, self-efficacy, and environmental reinforcement 
in shaping user decisions. Empirical studies have shown that behavioral incentives such as peer comparisons, 
gamification, and dynamic pricing significantly impact energy consumption patterns21,22. These findings 
underscore the need to integrate behavioral models into microgrid optimization to improve demand-side 
participation. However, existing research largely treats behavioral incentives as static parameters rather than 
dynamic components that evolve based on real-time user interactions. The challenge remains in designing 
an optimization framework that dynamically adapts behavioral incentives to achieve energy efficiency while 
maintaining economic and operational stability23.

In addition to behavioral incentives, policy mechanisms play a crucial role in microgrid operation and 
expansion. Traditional policy-driven optimization frameworks incorporate static subsidy structures and 
tariff mechanisms to promote renewable energy adoption and demand-side management24. However, these 
approaches often fail to account for real-time market fluctuations and evolving consumer behaviors. Dynamic 
pricing schemes and adaptive subsidy allocations have been proposed to address this issue, allowing electricity 
prices and financial incentives to respond to grid conditions in real time. Despite these efforts, a major gap in 
the literature remains in developing an integrated policy-technical framework that simultaneously optimizes 
microgrid operations while dynamically adjusting policy mechanisms. The interplay between user engagement, 
economic incentives, and technical constraints is highly complex and requires a multi-disciplinary approach that 
bridges behavioral economics, energy policy, and advanced optimization25.

Recent advancements in QIO have opened new avenues for addressing the computational challenges inherent 
in microgrid optimization. Unlike classical approaches, which sequentially evaluate solutions, QIO leverages 
quantum mechanics principles such as superposition, entanglement, and tunneling to explore vast solution 
spaces more efficiently26,27. Quantum annealing, a widely studied QIO technique, has demonstrated significant 
computational advantages in solving large-scale combinatorial optimization problems28. By allowing solutions 
to probabilistically transition through energy barriers rather than over them, QIO can escape local optima and 
achieve superior global optimization29. Several studies have explored QIO applications in energy management30, 
including smart grid scheduling, energy trading, and load balancing. While these studies have shown promising 
results, most have focused solely on technical optimization without considering behavioral and policy-driven 
dimensions. The integration of QIO with social and economic factors remains an underexplored research 
direction with substantial potential for improving microgrid operations31.

In summary, although a wide range of optimization techniques have been applied to microgrid energy 
management—spanning deterministic approaches, stochastic formulations, robust methods, and metaheuristic 
algorithms—several critical research gaps remain. First, most existing studies do not adequately model the 
dynamic nature of user behavior and participation in demand-side programs. Behavioral incentives are often 
treated as fixed parameters rather than evolving mechanisms influenced by social context, learning, or adaptive 
feedback, which limits the realism and responsiveness of these models. Second, while dynamic pricing and 
incentive schemes are recognized as important tools, few existing frameworks incorporate them in a way 
that is tightly coupled with behavioral modeling and system-level optimization. Third, classical optimization 
techniques frequently face scalability bottlenecks when dealing with high-dimensional, multi-objective 
problems, particularly those involving human behavior, uncertainty, and nonlinear system dynamics. In 
recent years, quantum-inspired optimization (QIO) methods have gained attention for their ability to navigate 
complex search spaces with improved convergence and global optimality properties. However, their application 
in user-centric microgrid optimization remains limited, particularly in contexts that require real-time policy 
adaptation and behavior-aware coordination. To the best of our knowledge, no existing study has proposed a 
unified framework that jointly integrates QIO, social cognitive modeling, and dynamic incentive mechanisms 
to address the behavioral and technical complexity of modern microgrids. These limitations highlight the need 
for a new generation of microgrid optimization strategies—capable of coupling scalable algorithmic search with 
adaptive, human-centered decision-making. This motivates the hybrid quantum-classical framework proposed 
in this study.

Mathematical modeling
To formulate the optimization framework for DSM in microgrids, we define a multi-objective problem that 
integrates SCT with quantum-inspired optimization techniques. The problem formulation consists of decision 
variables representing energy consumption behaviors, control actions for load scheduling, and incentives for 
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demand-side participation. The objective functions consider economic cost minimization, peak load reduction, 
and behavioral adaptation efficiency.
To provide a clear understanding of the variables and parameters involved in the proposed framework, the 
following nomenclature table presents all essential symbols along with their corresponding definitions and 
physical units. These symbols are consistently used throughout the modeling and optimization process. 

Symbol Description Unit

Γi,t
Renewable energy generation at node
i and time t MW

Λi,t
Load demand at node i
and time t MW

Θi,t
Economic cost at node i
and time t USD

Υi,t
Environmental impact index at node
i and time t CO2e

Ψi,t
Social acceptance score at node
i and time t score

Ξk,t
Grid resilience metric at node
k and time t unitless

Ωk,t
Stability control index at node
k and time t unitless

ψm,t
Solar energy generation at node
m and time t MW

θm,t
Wind energy generation at node
m and time t MW

ρm,t
Storage contribution at node
m and time t MW

ωp,t
Curtailment loss at node
p and time t MW

πp,t
Spillage loss at node
p and time t MW

ϑi,t
User participation level at time
t score

ςi,t
Peer influence factor at time
t score

ξi,t
Self-efficacy score at time
t score

ζj,t
Gamification engagement factor
at time t score

τj,t
Direct incentive value at time
t USD

Θreal_time_controll,t
Real-time control effectiveness at node
l and time t unitless

Ψforecastl,t
Forecast accuracy metric at node
l and time t unitless

Ξadaptive_optimizationl,t
Adaptive optimization performance at
node l and time t unitless

Θfuel_celln,t
Fuel cell energy generation at node
n and time t MW

Ψtankn,t
Hydrogen tank storage at node
n and time t MWh

Ξelectrolyzern,t
Hydrogen dispatch through electrolysis
at node n and time t MWh

ΘDACs,t
Direct air capture energy usage at node
s and time t MW

ΨCCSs,t
Carbon capture and storage at node
s and time t tons CO2

Ξoffsetss,t
Carbon trading offsets at node
s and time t tons CO2

Θindustrial_CO2r,t
Industrial emissions at node
r and time t tons CO2

Ψvehicle_emissionsr,t
Transport emissions at node
r and time t tons CO2

Note: All variables are indexed by space i, j, k, m, n, r, s and time t

To enhance the interpretability of the proposed optimization architecture and respond to reviewer concerns 
regarding mathematical complexity, a high-level process diagram is presented to illustrate the overall framework. 
This visualization provides an intuitive overview of the layered components and information flow in the 
quantum-classical hybrid optimization process.
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As shown in Fig. 1, the optimization process begins with data collection on microgrid structure, user profiles, 
and external signals. This is followed by encoding behavior-based features using Social Cognitive Theory (SCT). 
The core multi-objective dispatch problem is then solved through a quantum-inspired optimization layer, 
aiming to balance cost, carbon emissions, and behavioral participation. The resulting strategy is translated 
into implementable pricing and incentive signals. Finally, the system’s performance is evaluated via simulation, 
comparing economic, environmental, and behavioral metrics. This layered workflow improves clarity and 
bridges the gap between mathematical formulation and practical interpretation.

	

min
π, κ, θ, ξ

T∑
t=1

∑
i∈N

(
αcap

ι · φi,t + βop
ψ · ωi,t + γsub

τ · χi,t

)

+
T∑

t=1

∑
j∈M

(
δmaint

σ · λj,t + ζpen
ρ · υj,t

) � (1)

One of the cornerstones of an economically viable microgrid is cost efficiency, which is intricately embedded into 
this objective function. Here, the life-cycle cost minimization accounts for several major economic components: 
the capital investment cost αcap

ι  multiplied by the allocated infrastructure capacity φi,t, the operational 
expenditure βop

ψ  linked with the real-time operational power ωi,t, and the impact of subsidies γsub
τ  adjusting 

the financial balance through χi,t. Moreover, long-term financial sustainability is ensured through maintenance 
costs δmaint

σ  weighted against the degradation λj,t of energy storage and infrastructure, while penalties for 
inefficiency ζpen

ρ  penalize poor performance through υj,t. The entire function spans multiple spatial nodes i 
and temporal periods t, ensuring a holistic and granular cost analysis.

	

max
α, β, γ

T∑
t=1

∑
m∈R

(
λsol

ϕ · ψm,t + µwind
ζ · θm,t + νstor

η · ρm,t

)

−
T∑

t=1

∑
p∈D

(
σcurt

χ · ωp,t + τ spillage
κ · πp,t

) � (2)

Maximizing the utilization of renewable energy resources is pivotal for sustainability. This function captures the 
total contribution of solar, wind, and hybrid storage in the microgrid, weighted by their respective efficiency 
factors λsol

ϕ , µwind
ζ , νstor

η . However, energy is not always fully utilized; curtailment σcurt
χ  and spillage τ spillage

κ  
reduce overall efficiency. By subtracting these losses from the renewable energy generation, the model ensures 
that the microgrid prioritizes clean energy sources, optimally balancing generation and storage utilization over 
time t and regions m.

	

max
ω, θ, ψ, χ

T∑
t=1

∑
i∈U

(
ωpart

α · ϑi,t + θpeer
β · ςi,t + ψself

γ · ξi,t

)

+
T∑

t=1

∑
j∈Q

(
χgame

δ · ζj,t + κincent
ε · τj,t

) � (3)

Fig. 1.  Workflow of the proposed behavior-aware energy management framework.
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User engagement is a key enabler of microgrid sustainability, and this function prioritizes demand response 
participation through a behavioral incentive structure. The participation level ϑi,t is influenced by peer influence 
ςi,t, self-efficacy ξi,t, gamification-driven engagement ζj,t, and direct financial incentives τj,t. Coefficients 
ωpart

α , θpeer
β , ψself

γ  capture the behavioral impact of social cognitive factors, while χgame
δ , κincent

ε  reflect 
financial and psychological motivators. This multi-dimensional function ensures optimal design of behavioral 
mechanisms to maximize voluntary user participation.

	

min
Φ, Ω, Λ

T∑
t=1

∑
i∈S

(
Φecon

α · Θi,t + Ωenv
β · Υi,t + Λsocial

γ · Ψi,t

)

+
T∑

t=1

∑
k∈Z

(
Ξresil

δ · Ωk,t + Ψstability
ε · Λk,t

) � (4)

A multi-objective trade-off function is essential to balance economic, environmental, and social goals while 
ensuring grid resilience and stability. Economic costs Θi,t, environmental impact Υi,t, and social acceptance 
Ψi,t are assigned appropriate weights Φecon

α , Ωenv
β , Λsocial

γ  to capture the trade-offs among competing priorities. 
Resilience Ωk,t and stability Λk,t factors are also included to ensure that the microgrid can withstand operational 
uncertainties. This formulation enables a holistic optimization approach that does not favor one aspect at the 
expense of another, resulting in a well-rounded decision-making framework.

	

T∑
t=1

∑
i∈N

(
Ψgen

α · Γi,t − Ωdemand
β · Λi,t + Ξstorage

γ · Υi,t

)

+
T∑

t=1

∑
j∈M

(
Φdispatch

δ · Θj,t + Ωcurtailment
ε · Ξj,t − Λreserve

ζ · Ψj,t

)
= 0

� (5)

Energy balance must be maintained across the entire microgrid, ensuring that generation, storage, and dispatch 
are harmonized with demand, curtailment, and reserve allocation. The first term Ψgen

α · Γi,t represents total 
power generation from all renewable sources, weighted by efficiency Ψgen

α . The demand-side requirement 
Ωdemand

β · Λi,t subtracts the consumption load, ensuring that at any time step t, supply aligns with demand. The 
energy storage dynamics are captured through Ξstorage

γ · Υi,t, allowing surplus power to be preserved for future 
use. Additionally, dispatchable resources Φdispatch

δ · Θj,t provide supplementary energy, while curtailment 
Ωcurtailment

ε · Ξj,t ensures grid stability by limiting excess inflows. Finally, the reserve constraint Λreserve
ζ · Ψj,t 

guarantees that emergency power is set aside for contingencies. By summing these terms over all spatial nodes 
N  and microgrid segments M , this constraint ensures that energy flows within the system are consistently 
balanced.

	

T∑
t=1

∑
i∈R

(
Λwind

α · Ξwind
i,t + Ωsolar

β · Ψsolar
i,t + Φhydro

γ · Θhydro
i,t

)

−
T∑

t=1

∑
j∈D

(
Φcurt

δ · Ξcurt
j,t + Ψspill

ε · Ωspill
j,t

)
≤ Φavail

ζ

� (6)

Renewable energy generation is inherently uncertain and subject to natural variability. This constraint ensures 
that the combined wind, solar, and hydro power generation does not exceed the system’s upper operational 
capacity Φavail

ζ . Each energy source—wind Λwind
α · Ξwind

i,t , solar Ωsolar
β · Ψsolar

i,t , and hydro Φhydro
γ · Θhydro

i,t

—contributes to the overall generation, while energy losses due to curtailment Φcurt
δ · Ξcurt

j,t  and spillage 
Ψspill

ε · Ωspill
j,t  reduce net availability. This constraint ensures that the total renewable power utilized remains 

within system limits while minimizing energy waste.

	

T∑
t=1

∑
k∈S

(
Λcharge

α · Θcharge
k,t − Ωdischarge

β · Ξdischarge
k,t

)
+

T∑
t=1

∑
j∈E

(
Φdegrade

γ · Ψdegrade
j,t

)
≤ Φstor_cap

ζ � (7)

Storage capacity is fundamental to balancing energy supply and demand. The stored energy is increased through 
charging Λcharge

α · Θcharge
k,t  and depleted by discharging Ωdischarge

β · Ξdischarge
k,t . However, battery degradation is 

inevitable and captured through Φdegrade
γ · Ψdegrade

j,t , ensuring the system accounts for capacity loss over time. 

The right-hand side ensures that total energy stored does not exceed the physical capacity Φstor_cap
ζ .
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T∑
t=1

∑
m∈Q

(
Λvoltage

α · ΞV
m,t + Ωfrequency

β · Ψf
m,t + Φstability

γ · Θstab
m,t

)
≥ Φsafe

ζ � (8)

Grid stability requires maintaining voltage, frequency, and overall system balance. The voltage level Λvoltage
α · ΞV

m,t 
must remain within permissible limits, frequency deviations Ωfrequency

β · Ψf
m,t should be minimized, and overall 

stability Φstability
γ · Θstab

m,t  needs to be assured. This constraint ensures that these operational parameters always 
meet or exceed a predefined safety threshold Φsafe

ζ , guaranteeing reliable microgrid operation.

	

T∑
t=1

∑
j∈X

(
Λpolicy

α · Ξsubsidy
j,t + Ωincent

β · Ψrebate
j,t + Φtariff

γ · Θtariff
j,t

)
≤ Φbudget

ζ � (9)

A robust policy framework is necessary to promote renewable energy adoption and ensure financial sustainability. 
The subsidy allocation Λpolicy

α · Ξsubsidy
j,t , incentive rebates Ωincent

β · Ψrebate
j,t , and tariff adjustments 

Φtariff
γ · Θtariff

j,t  are capped within a predefined policy budget Φbudget
ζ . This constraint ensures that financial 

incentives are optimally distributed without exceeding fiscal limitations.

	

T∑
t=1

∑
i∈G

(
Λco2

α · Ξemit
i,t − Ωoffset

β · Ψcapture
i,t

)
≤ Φlimit

ζ � (10)

Reducing carbon emissions is a central sustainability goal. This constraint ensures that total emissions Λco2
α · Ξemit

i,t  
do not exceed allowable limits Φlimit

ζ , while accounting for carbon capture mechanisms Ωoffset
β · Ψcapture

i,t  that 
mitigate environmental impact.

	

T∑
t=1

∑
i∈L

(
Θdemand_response

α · Ξshift
i,t + Ωflex

β · Ψreduction
i,t + Φgame

γ · Λparticipation
i,t

)
≥ Φengagement

ζ � (11)

Demand-side flexibility is crucial for ensuring grid stability and reducing reliance on non-renewable energy 
sources. This equation establishes a lower bound for user engagement in demand response programs. The first 
term Θdemand_response

α · Ξshift
i,t  quantifies the power shifted from peak to off-peak hours through automated 

scheduling, reducing the need for additional generation. The second component, Ωflex
β · Ψreduction

i,t , captures 
voluntary load reductions driven by real-time price signals and behavioral nudges. Lastly, the effect of 
gamification Φgame

γ · Λparticipation
i,t  ensures that engagement remains high through incentive-based programs. 

This equation sets a minimum engagement level Φengagement
ζ  to guarantee that enough users actively participate 

in demand flexibility schemes.

	

T∑
t=1

∑
m∈K

(
Λcyber

α · Θattack
m,t + Ωresilience

β · Ψrecovery
m,t + Φredundancy

γ · Ξbackup
m,t

)
≤ Φrisk

ζ � (12)

With increasing digitalization of energy systems, microgrids are vulnerable to cyberattacks. This constraint ensures 
that the total cyber risk remains within an acceptable threshold Φrisk

ζ . The first term Λcyber
α · Θattack

m,t  represents 
potential cyber threats targeting the system. Resilience mechanisms Ωresilience

β · Ψrecovery
m,t  allow rapid system 

recovery after an attack, mitigating its impact. The backup power and redundancy factor Φredundancy
γ · Ξbackup

m,t  
ensures that alternative paths and backup systems maintain continuity of service, reducing cyber-induced power 
disruptions.

	

T∑
t=1

∑
j∈X

(
Λtariff

α · Θreal_time
j,t + Ωsubsidy

β · Ψdynamic
j,t + Φfair

γ · Ξequity
j,t

)
≥ Φaffordability

ζ � (13)

Electricity pricing structures influence energy consumption behaviors and must balance affordability with 
economic sustainability. This equation ensures that real-time tariffs Λtariff

α · Θreal_time
j,t , dynamic subsidies 

Ωsubsidy
β · Ψdynamic

j,t , and fair pricing mechanisms Φfair
γ · Ξequity

j,t  collectively maintain an acceptable affordability 
level Φaffordability

ζ . It guarantees that financial burdens are not disproportionately placed on low-income users 
while still maintaining revenue streams for grid operators.

	

T∑
t=1

∑
p∈V

(
Λelectric_vehicle

α · Θcharge
p,t − Ωdischarge

β · ΨV2G
p,t

)
≤ Φgrid_impact

ζ � (14)
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Electric vehicles (EVs) present both opportunities and challenges for microgrid operation. While EVs can store 
and supply energy through vehicle-to-grid (V2G) mechanisms, uncoordinated charging could stress the grid. 
This constraint ensures that charging Λelectric_vehicle

α · Θcharge
p,t  and discharging through V2G Ωdischarge

β · ΨV2G
p,t  

remain within grid stability limits Φgrid_impact
ζ . Optimally managing EV energy flows is key to leveraging them 

as distributed energy resources.

	

T∑
t=1

∑
q∈W

(
Λmicrogrid

α · Θgrid_tie
q,t + Ωisland

β · Ψself_suff
q,t

)
≥ Φresilience

ζ � (15)

Microgrids operate in either grid-connected or islanded mode. During grid outages, the system must maintain 
self-sufficiency. This equation ensures that total available power from grid connections Λmicrogrid

α · Θgrid_tie
q,t  

and islanded microgrid operations Ωisland
β · Ψself_suff

q,t  remain above a resilience threshold Φresilience
ζ . This 

guarantees operational continuity, even in extreme conditions.

	

T∑
t=1

∑
r∈Y

(
Λsocial_impact

α · Θacceptance
r,t + Ωbehavior

β · Ψpeer_effect
r,t + Φeducation

γ · Ξawareness
r,t

)
≥ Φadoption

ζ � (16)

Behavioral adoption of microgrid solutions is as critical as technical and economic feasibility. This constraint ensures 
that the social impact of microgrid adoption remains significant. Public acceptance Λ

social_impact
α · Θacceptance

r,t , 
peer influence Ωbehavior

β · Ψpeer_effect
r,t , and energy literacy Φeducation

γ · Ξawareness
r,t  all contribute to a required 

level of sustainable technology adoption Φadoption
ζ . This function ensures that technological advances align with 

social norms and user engagement strategies.

	

T∑
t=1

∑
s∈P

(
Λpower_flow

α · ΘKirchhoff
s,t + Ωnetwork_stability

β · Ψload_balance
s,t

)
≤ Φgrid_safety

ζ � (17)

The integrity of the microgrid’s electrical network is governed by Kirchhoff ’s laws and load balancing 
mechanisms. Ensuring safe and reliable operation requires maintaining voltage and power flow stability. This 
equation restricts deviations by ensuring Kirchhoff ’s current law (KCL) compliance Λpower_flow

α · ΘKirchhoff
s,t  and 

network-wide stability Ωnetwork_stability
β · Ψload_balance

s,t  within acceptable operational thresholds Φgrid_safety
ζ . 

This guarantees efficient energy transmission without overload risks.

	

T∑
t=1

∑
i∈B

(
Λthermal_storage

α · Θheat_storage
i,t + Ωco_generation

β · ΨCHP
i,t + Φheat_recovery

γ · Ξrecovered_heat
i,t

)

−
T∑

t=1

∑
j∈H

(
Λheat_demand

δ · Θload
j,t + Ωheat_loss

ε · Ψtransmission_loss
j,t

)
≥ 0

� (18)

Efficient heat management is crucial in microgrids integrating combined heat and power (CHP) systems. 
This equation ensures that total available thermal energy from storage Λ

thermal_storage
α · Θheat_storage

i,t , CHP 
generation Ωco_generation

β · ΨCHP
i,t , and recovered waste heat Φheat_recovery

γ · Ξrecovered_heat
i,t  is sufficient to 

meet heating demand Λheat_demand
δ · Θload

j,t  while accounting for losses Ωheat_loss
ε · Ψtransmission_loss

j,t . This 
ensures thermal energy sustainability while minimizing waste.

	

T∑
t=1

∑
m∈I

(
Λwater_supply

α · Θreservoir
m,t + Ωdesalination

β · ΨRO_process
m,t + Φwastewater_reuse

γ · Ξtreatment
m,t

)

−
T∑

t=1

∑
p∈F

(
Λwater_demand

δ · Θconsumption
p,t + Ωevaporation

ε · Ψloss
p,t

)
≥ 0

� (19)

Water-energy nexus is critical in microgrid operations, especially for sustainable communities. This equation 
ensures a balance between available water supply from reservoirs Λwater_supply

α · Θreservoir
m,t , desalination 

Ωdesalination
β · ΨRO_process

m,t , and treated wastewater Φwastewater_reuse
γ · Ξtreatment

m,t , against the water demand 

Λwater_demand
δ · Θconsumption

p,t  and evaporation losses Ωevaporation
ε · Ψloss

p,t . This constraint supports sustainable 
water management in microgrids.
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T∑
t=1

∑
q∈J

(
Λgrid_reconfig

α · Θswitch_status
q,t + Ωfault_isolation

β · Ψcontingency
q,t

+ Φself_healing
γ · Ξautonomous_correction

q,t

)

−
T∑

t=1

∑
s∈C

(
Λoutage_impact

δ · Θdisruption
s,t + Ωrestoration_delay

ε · Ψtime
s,t

)
≥ 0

� (20)

Microgrid resilience under fault scenarios requires dynamic network reconfiguration and self-healing capabilities. 
This equation ensures that grid reconfiguration Λgrid_reconfig

α · Θswitch_status
q,t , fault isolation strategies 

Ωfault_isolation
β · Ψcontingency

q,t , and autonomous self-healing mechanisms Φself_healing
γ · Ξautonomous_correction

q,t  

effectively mitigate power outages Λoutage_impact
δ · Θdisruption

s,t  and reduce restoration delays 

Ωrestoration_delay
ε · Ψtime

s,t . This constraint ensures that microgrid stability is preserved under disturbances.

	

T∑
t=1

∑
l∈M

(
ΛAI_dispatch

α · Θreal_time_control
l,t

+ Ωpredictive_modeling
β · Ψforecast

l,t + Φmulti_objective_learning
γ · Ξadaptive_optimization

l,t

)
≥ Φefficiency

ζ

� (21)

Advanced artificial intelligence (AI) and machine learning techniques are crucial for optimizing 
microgrid operations in real time. This constraint ensures that AI-driven real-time dispatch 
ΛAI_dispatch

α · Θreal_time_control
l,t , predictive modeling Ωpredictive_modeling

β · Ψforecast
l,t , and adaptive multi-

objective learning Φmulti_objective_learning
γ · Ξadaptive_optimization

l,t  meet the minimum operational efficiency 

standard Φsmart_grid_efficiency
ζ . This ensures smart decision-making for grid operation and resource allocation.

	

T∑
t=1

∑
n∈Z

(
Λhydrogen_integration

α · Θfuel_cell
n,t

+ Ωhydrogen_storage
β · Ψtank

n,t + Φhydrogen_dispatch
γ · Ξelectrolyzer

n,t

)
≥ ΦH2_supply

ζ

� (22)

Hydrogen-based energy storage and fuel cell integration are emerging solutions for microgrid sustainability. 
This equation ensures that hydrogen fuel cell generation Λ

hydrogen_integration
α · Θfuel_cell

n,t , hydrogen storage 
in tanks Ωhydrogen_storage

β · Ψtank
n,t , and electrolysis-based hydrogen dispatch Φhydrogen_dispatch

γ · Ξelectrolyzer
n,t  

remain sufficient to meet the hydrogen demand requirement ΦH2_supply
ζ . This facilitates the integration of green 

hydrogen into microgrid energy systems.

	

T∑
t=1

∑
s∈E

(
Λcarbon_sequestration

α · ΘDAC
s,t + Ωcarbon_storage

β · ΨCCS
s,t + Φcarbon_trading

γ · Ξoffsets
s,t

)

−
T∑

t=1

∑
r∈G

(
Λcarbon_emission

δ · Θindustrial_CO2
r,t + Ωtransport_CO2

ε · Ψvehicle_emissions
r,t

)
≤ 0

� (23)

Carbon neutrality is an essential component of sustainable microgrid operations, necessitating active carbon 
capture and mitigation strategies. This equation ensures that total carbon sequestration from direct air capture 
(DAC) Λcarbon_sequestration

α · ΘDAC
s,t , carbon capture and storage (CCS) Ωcarbon_storage

β · ΨCCS
s,t , and carbon 

credit trading Φcarbon_trading
γ · Ξoffsets

s,t  effectively neutralize carbon emissions from industrial sources 

Λcarbon_emission
δ · Θindustrial_CO2

r,t  and transport-related emissions Ωtransport_CO2
ε · Ψvehicle_emissions

r,t . This 
constraint ensures that the microgrid maintains a net-zero carbon balance.
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T∑
t=1

∑
q∈J

(
Λblockchain_transactions

α · Θenergy_trading
q,t

+ Ωpeer_to_peer
β · Ψdecentralized_market

q,t + Φcontract_enforcement
γ · Ξsmart_contracts

q,t

)

−
T∑

t=1

∑
w∈K

(
Λmarket_volatility

δ · Θprice_fluctuation
w,t

+ Ωtransaction_fees
ε · Ψcosts

w,t

)
≥ Φmarket_stability

ζ

� (24)

Decentralized energy markets enabled by blockchain technology enhance transaction efficiency, but market 
stability must be ensured. This equation ensures that total decentralized trading activities—blockchain-
based energy transactions Λblockchain_transactions

α · Θenergy_trading
q,t , peer-to-peer energy exchange 

Ωpeer_to_peer
β · Ψdecentralized_market

q,t , and smart contract automation Φcontract_enforcement
γ · Ξsmart_contracts

q,t

—counteract the effects of price volatility Λmarket_volatility
δ · Θprice_fluctuation

w,t  and transaction fees 

Ωtransaction_fees
ε · Ψcosts

w,t , maintaining a stable and efficient microgrid energy market.

	

T∑
t=1

∑
v∈L

(
Λwaste_to_energy

α · Θbiogas
v,t

+ Ωrecycling_efficiency
β · Ψmaterial_recovery

v,t + Φcomposting
γ · Ξorganic_waste

v,t

)

−
T∑

t=1

∑
z∈X

(
Λlandfill_waste

δ · Θsolid_waste
z,t

+ ΩGHG_from_waste
ε · Ψmethane

z,t

)
≥ Φcircular_economy

ζ

� (25)

A sustainable microgrid must incorporate a circular economy approach to waste management. This 
equation ensures that waste-to-energy conversion Λwaste_to_energy

α · Θbiogas
v,t , improved recycling 

Ωrecycling_efficiency
β · Ψmaterial_recovery

v,t , and composting Φcomposting
γ · Ξorganic_waste

v,t  counterbalance landfill 
waste Λlandfill_waste

δ · Θsolid_waste
z,t  and methane emissions ΩGHG_from_waste

ε · Ψmethane
z,t . This ensures that 

microgrid operations contribute to a zero-waste, circular economy.

	

T∑
t=1

∑
u∈N

(
Λquantum_annealing

α · Θoptimization_state
u,t

+ Ωquantum_tunneling
β · Ψenergy_barrier

u,t + Φquantum_entanglement
γ · Ξcorrelated_states

u,t

)

−
T∑

t=1

∑
y∈M

(
Λclassical_limitation

δ · Θcomputational_cost
y,t

+ Ωuncertainty_noise
ε · Ψquantum_error

y,t

)
≥ Φquantum_advantage

ζ

� (26)

The integration of QIO into microgrid management ensures computational efficiency in 
solving large-scale, multi-objective problems. This equation models how quantum annealing 
Λquantum_annealing

α · Θoptimization_state
u,t , quantum tunneling Ωquantum_tunneling

β · Ψenergy_barrier
u,t , and 

quantum entanglement Φquantum_entanglement
γ · Ξcorrelated_states

u,t  improve solution search efficiency compared 
to classical optimization approaches. These quantum properties must offset computational limitations 
Λclassical_limitation

δ · Θcomputational_cost
y,t  and quantum error noise Ωuncertainty_noise

ε · Ψquantum_error
y,t  to 

achieve a quantum advantage threshold Φquantum_advantage
ζ , ensuring the practical feasibility of QIO in real-

world microgrid applications.
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T∑
t=1

∑
c∈O

(
Λsocial_learning

α · Θbehavioral_adaptation
c,t

+ Ωpeer_influence
β · Ψneighbor_effect

c,t + Φself_efficacy
γ · Ξconfidence_in_adoption

c,t

)

−
T∑

t=1

∑
b∈R

(
Λresistance

δ · Θbehavioral_inertia
b,t

+ Ωcost_perception
ε · Ψfinancial_concern

b,t + Φtrust
ζ · Ξtechnology_skepticism

b,t

)
≥ Φsocial_adoption_threshold

η

� (27)

The adoption of microgrid technology depends not only on technical feasibility but also on social 
acceptance. This equation models the behavioral dynamics driving energy efficiency behaviors. The first 
term, Λsocial_learning

α · Θbehavioral_adaptation
c,t , accounts for changes in user behavior based on exposure 

to sustainable energy practices. Peer influence Ωpeer_influence
β · Ψneighbor_effect

c,t  captures the effect of 

social pressure on energy choices, while self-efficacy Φself_efficacy
γ · Ξconfidence_in_adoption

c,t  represents 
the user’s confidence in operating microgrid technologies. The adoption process is hindered by resistance 
Λresistance

δ · Θbehavioral_inertia
b,t , financial concerns Ωcost_perception

ε · Ψfinancial_concern
b,t , and technology 

skepticism Φtrust
ζ · Ξtechnology_skepticism

b,t . The constraint ensures that positive influences exceed resistance 
factors, maintaining an overall threshold Φsocial_adoption_threshold

η  for widespread community participation in 
demand response and renewable energy programs.

Methodology
To address the optimization problem in a quantum-inspired paradigm, we introduce a multi-objective 
optimization framework that leverages principles of quantum annealing, tunneling dynamics, and state 
entanglement for efficient resource allocation and adaptive decoy placement in cyber-resilient power systems. 
The methodology is structured into the following key components

	

FQIO =
T∑

t=1

∑
i∈N

(
Λquantum_annealing

α · Θstate_transition
i,t + Ωsolution_evolution

β · Ψoptimization_path
i,t

+ Φtemperature_decay
γ · Ξexploration_control

i,t − Λlocal_trap
δ · Θsuboptimal_convergence

i,t

) � (28)

The QIO framework begins with a simulated annealing approach, where quantum annealing principles guide 
multi-objective optimization. The annealing function Λquantum_annealing

α · Θstate_transition
i,t  facilitates state 

transitions by reducing energy barriers, while solution evolution Ωsolution_evolution
β · Ψoptimization_path

i,t  

ensures progressive refinement. Temperature decay Φtemperature_decay
γ · Ξexploration_control

i,t  dynamically 
controls the exploration-exploitation balance, preventing the algorithm from getting stuck in local minima 
Λlocal_trap

δ · Θsuboptimal_convergence
i,t .

	

PQIO =
T∑

t=1

∑
m∈R

(
Λtunneling

α · Θbarrier_escape
m,t + Ωquantum_coherence

β · Ψstate_superposition
m,t

+ Φprobability_evolution
γ · Ξwavefunction_update

m,t − Λthermal_fluctuation
δ · Θrandom_perturbation

m,t

)� (29)

To escape local optima, QIO employs quantum tunneling, which allows solutions to pass through energy barriers 
rather than climbing over them. Tunneling probability Λtunneling

α · Θbarrier_escape
m,t  ensures global optima 

exploration, while coherence maintenance Ωquantum_coherence
β · Ψstate_superposition

m,t  prevents premature 

convergence. Wavefunction update Φprobability_evolution
γ · Ξwavefunction_update

m,t  dynamically refines probability 

distributions, counteracting random thermal perturbations Λthermal_fluctuation
δ · Θrandom_perturbation

m,t .

	

QQIO =
T∑

t=1

∑
p∈X

(
Λquantum_distribution

α · Θprobability_density
p,t + Ωadaptive_wavefunction

β · Ψsolution_likelihood
p,t

+ Φstate_entanglement
γ · Ξcorrelated_decisions

p,t − Λincoherent_oscillation
δ · Θunstable_sampling

p,t

) � (30)
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The quantum probability distribution function controls solution exploration through probabilistic sampling. 
Quantum probability density Λquantum_distribution

α · Θprobability_density
p,t  determines state likelihoods, while 

adaptive wavefunction evolution Ωadaptive_wavefunction
β · Ψsolution_likelihood

p,t  adjusts probabilities dynamically. 

State entanglement Φstate_entanglement
γ · Ξcorrelated_decisions

p,t  ensures decision dependencies are maintained. 

However, unstable oscillations Λincoherent_oscillation
δ · Θunstable_sampling

p,t  can distort optimal sampling, 
necessitating corrective measures.

	

EQIO =
T∑

t=1

∑
q∈Z

(
ΛHamiltonian_formulation

α · Θenergy_landscape
q,t + Ωquantum_gradient

β · Ψsolution_refinement
q,t

+ ΦLagrangian_modification
γ · Ξconstraint_integration

q,t − Λquantum_noise
δ · Θsignal_distortion

q,t

) � (31)

The QIO framework integrates a quantum-inspired Hamiltonian function to define the energy landscape of 
the optimization problem. The Hamiltonian function ΛHamiltonian_formulation

α · Θenergy_landscape
q,t  encodes 

microgrid system states, while quantum gradient updates Ωquantum_gradient
β · Ψsolution_refinement

q,t  refine search 

directions. Lagrangian modifications ΦLagrangian_modification
γ · Ξconstraint_integration

q,t  ensure hard constraints 

are incorporated. However, quantum noise Λquantum_noise
δ · Θsignal_distortion

q,t  can introduce instability in 
energy estimations.

	

SQIO =
T∑

t=1

∑
r∈B

(
Λsuperposition

α · Θstate_coherence
r,t + Ωphase_shifting

β · Ψadaptive_decision
r,t

+ Φtemporal_optimization
γ · Ξhistorical_data_integration

r,t − Λinformation_loss
δ · Θsuboptimal_decay

r,t

)� (32)

Quantum superposition principles allow simultaneous evaluation of multiple solution states, enhancing 
computational efficiency. State coherence Λsuperposition

α · Θstate_coherence
r,t  ensures consistency between 

superimposed solutions, while phase shifting Ωphase_shifting
β · Ψadaptive_decision

r,t  adapts decision parameters 

based on solution evolution. Temporal optimization Φtemporal_optimization
γ · Ξhistorical_data_integration

r,t  

integrates past microgrid performance data. However, information loss Λinformation_loss
δ · Θsuboptimal_decay

r,t  
due to state collapse can impact long-term accuracy.

	

UQIO =
T∑

t=1

∑
i∈M

(
Λreal_time_update

α · Θstate_transition
i,t + Ωgradient_adaptation

β · Ψstep_refinement
i,t

+ Φdynamic_convergence
γ · Ξsolution_stabilization

i,t − Λcomputation_delay
δ · Θlatency_impact

i,t

) � (33)

The QIO framework must adapt to real-time energy variations. The dynamic update function 
Λreal_time_update

α · Θstate_transition
i,t  ensures rapid state evolution, while gradient adaptation 

Ωgradient_adaptation
β · Ψstep_refinement

i,t  improves step selection. Dynamic convergence 

Φdynamic_convergence
γ · Ξsolution_stabilization

i,t  prevents oscillatory behavior. However, computational delays 

Λcomputation_delay
δ · Θlatency_impact

i,t  must be minimized for effective real-time optimization.

	

CQIO =
T∑

t=1

∑
j∈N

(
Λannealing_schedule

α · Θtemperature_adjustment
j,t + Ωexploitation_bias

β · Ψlocal_refinement
j,t

+ Φexploration_control
γ · Ξsearch_expansion

j,t − Λoverfitting_risk
δ · Θsolution_degeneration

j,t

) � (34)

The quantum annealing cooling schedule must balance exploration and exploitation. The annealing function 
Λannealing_schedule

α · Θtemperature_adjustment
j,t  dynamically reduces temperature for gradual convergence. 

Exploitation bias Ωexploitation_bias
β · Ψlocal_refinement

j,t  ensures detailed refinement in promising regions, 

while exploration control Φexploration_control
γ · Ξsearch_expansion

j,t  prevents premature convergence. However, 

overfitting risk Λoverfitting_risk
δ · Θsolution_degeneration

j,t  must be mitigated.
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T∑
t=1

∑
m∈P

(
Λquantum_coherence

α · Θstate_superposition
m,t + Ωphase_adjustment

β · Ψwave_alignment
m,t

+ Φentanglement_stability
γ · Ξstate_correlation

m,t − Λquantum_decoherence
δ · Θinformation_loss

m,t

) � (35)

Quantum superposition allows multiple solutions to be evaluated simultaneously. The coherence function 
Λquantum_coherence

α · Θstate_superposition
m,t  maintains overlapping solution spaces. Phase adjustment 

Ωphase_adjustment
β · Ψwave_alignment

m,t  aligns decision parameters for optimal exploration, while entanglement 

stability Φentanglement_stability
γ · Ξstate_correlation

m,t  enhances cross-variable dependencies. However, quantum 

decoherence Λquantum_decoherence
δ · Θinformation_loss

m,t  must be managed.

	

T∑
t=1

∑
q∈X

(
Λhistorical_integration

α · Θtemporal_data
q,t + Ωphase_modulation

β · Ψtime_adjustment
q,t

+ Φprediction_correction
γ · Ξadaptive_refinement

q,t − Λpattern_instability
δ · Θtrend_error

q,t

) � (36)

Historical data integration enhances microgrid optimization by adjusting QIO parameters based 
on past usage. The function Λhistorical_integration

α · Θtemporal_data
q,t  incorporates previous trends, 

while phase modulation Ωphase_modulation
β · Ψtime_adjustment

q,t  corrects real-time shifts. Prediction 

correction Φprediction_correction
γ · Ξadaptive_refinement

q,t  refines evolving strategies. Pattern instability 

Λpattern_instability
δ · Θtrend_error

q,t  must be accounted for to avoid erroneous trends.

	

T∑
t=1

∑
s∈Z

(
Λoptimality_gap

α · Θsolution_accuracy
s,t + Ωiterative_refinement

β · Ψconvergence_control
s,t

+ Φerror_minimization
γ · Ξadjusted_solution

s,t − Λuncertainty_bias
δ · Θfluctuation_impact

s,t

) � (37)

QIO must minimize its optimality gap for effective decision-making. The gap function 
Λoptimality_gap

α · Θsolution_accuracy
s,t  ensures the closeness of solutions to theoretical optima. Iterative 

refinement Ωiterative_refinement
β · Ψconvergence_control

s,t  stabilizes optimization pathways, while error 

minimization Φerror_minimization
γ · Ξadjusted_solution

s,t  corrects deviations. However, uncertainty bias 

Λuncertainty_bias
δ · Θfluctuation_impact

s,t  must be controlled.

	

T∑
t=1

∑
k∈M

(
Λmulti_agent_interaction

α · Θcollaborative_learning
k,t + Ωpeer_influence

β · Ψdistributed_decision_making
k,t

+ Φcollective_optimization
γ · Ξglobal_convergence

k,t − Λconflict_instability
δ · Θagent_disagreement

k,t

) � (38)

Multi-agent QIO introduces decentralized decision-making for microgrid coordination. The function 
Λmulti_agent_interaction

α · Θcollaborative_learning
k,t  enables information sharing among agents, while peer influence 

Ωpeer_influence
β · Ψdistributed_decision_making

k,t  enhances adaptation to network-wide conditions. Collective 

optimization Φcollective_optimization
γ · Ξglobal_convergence

k,t  ensures synchronized solution evolution. However, 

instability from conflicting agent objectives Λconflict_instability
δ · Θagent_disagreement

k,t  must be mitigated.

	

T∑
t=1

∑
y∈N

(
Λtime_adaptive_update

α · Θreal_time_adjustment
y,t + Ωdemand_prediction

β · Ψforecast_alignment
y,t

+ Φevolutionary_control
γ · Ξadaptive_rescheduling

y,t − Λunexpected_fluctuation
δ · Θdemand_shock

y,t

) � (39)

A time-dependent update function is crucial for adjusting QIO in response to real-time energy demand variations. 
The time-adaptive function Λtime_adaptive_update

α · Θreal_time_adjustment
y,t  ensures ongoing adaptation, while 
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demand prediction Ωdemand_prediction
β · Ψforecast_alignment

y,t  aligns quantum search parameters with expected 

consumption trends. Evolutionary control Φevolutionary_control
γ · Ξadaptive_rescheduling

y,t  further refines 

microgrid scheduling. However, demand shocks Λunexpected_fluctuation
δ · Θdemand_shock

y,t  can cause deviations.

	

T∑
t=1

∑
z∈X

(
Λprobability_amplitude

α · Θwavefunction_control
z,t + Ωconstraint_mapping

β · Ψfeasibility_domain
z,t

+ Φsolution_pruning
γ · Ξdecision_filtering

z,t − Λcomputational_overflow
δ · Θprocessing_bottleneck

z,t

) � (40)

Quantum-inspired probability amplitudes determine the feasibility of optimized solutions. The function 
Λprobability_amplitude

α · Θwavefunction_control
z,t  ensures solutions maintain coherence within the optimization 

search space. Constraint mapping Ωconstraint_mapping
β · Ψfeasibility_domain

z,t  aligns quantum probabilities with 

real-world operational constraints. Solution pruning Φsolution_pruning
γ · Ξdecision_filtering

z,t  discards infeasible 

solutions efficiently. However, computational bottlenecks Λcomputational_overflow
δ · Θprocessing_bottleneck

z,t  can 
arise in large-scale applications.

	

T∑
t=1

∑
q∈Y

(
Λincentive_dynamics

α · Θsocial_adaptation
q,t + Ωpsychological_reinforcement

β · Ψreward_response
q,t

+ Φgame_theory_alignment
γ · Ξstrategy_adjustment

q,t − Λdisengagement_risk
δ · Θuser_attrition

q,t

) � (41)

SCT plays a key role in shaping energy usage behaviors. The incentive dynamics function 
Λincentive_dynamics

α · Θsocial_adaptation
q,t  adapts incentives to maximize user engagement. Psychological 

reinforcement Ωpsychological_reinforcement
β · Ψreward_response

q,t  ensures continuous participation in demand 

response programs. Game theory alignment Φgame_theory_alignment
γ · Ξstrategy_adjustment

q,t  refines reward 

structures for optimal participation. However, disengagement risk Λdisengagement_risk
δ · Θuser_attrition

q,t  must 
be minimized.

	

T∑
t=1

∑
w∈Z

(
Λfair_policy

α · Θsubsidy_adjustment
w,t + Ωdynamic_reallocation

β · Ψfunding_redistribution
w,t

+ Φutility_equilibrium
γ · Ξhousehold_impact

w,t − Λequity_gap
δ · Θresource_imbalance

w,t

) � (42)

Ensuring fairness in dynamic subsidy allocation is essential for balancing economic sustainability. The fair policy 
function Λfair_policy

α · Θsubsidy_adjustment
w,t  dynamically adjusts subsidy structures based on evolving energy 

market conditions. Dynamic reallocation Ωdynamic_reallocation
β · Ψfunding_redistribution

w,t  ensures that funds 

are directed to the most impactful areas. Utility equilibrium Φutility_equilibrium
γ · Ξhousehold_impact

w,t  maintains 

fairness across different consumer groups. However, persistent equity gaps Λequity_gap
δ · Θresource_imbalance

w,t  
must be addressed.

	

T∑
t=1

∑
r∈M

(
Λquantum_entanglement

α · Θcorrelated_resource_allocation
r,t + Ωdistributed_optimization

β · Ψinterconnected_decisions
r,t

+ Φglobal_constraint_satisfaction
γ · Ξsystem_wide_coordination

r,t − Λentanglement_decoherence
δ · Θsolution_instability

r,t

) � (43)

Quantum entanglement principles enhance interconnected resource optimization across microgrid 
subsystems. The entanglement function Λquantum_entanglement

α · Θcorrelated_resource_allocation
r,t  

ensures dependencies between multiple energy sources, while distributed optimization 
Ωdistributed_optimization

β · Ψinterconnected_decisions
r,t  aligns decentralized decision-making. Global constraint 

satisfaction Φglobal_constraint_satisfaction
γ · Ξsystem_wide_coordination

r,t  guarantees feasibility across energy, 

storage, and demand networks. However, quantum decoherence Λentanglement_decoherence
δ · Θsolution_instability

r,t  
must be controlled to maintain solution robustness.
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T∑
t=1

∑
s∈G

(
Λgamification_influence

α · Θuser_engagement
s,t + Ωreward_structure

β · Ψincentive_response
s,t

+ Φpeer_learning_effect
γ · Ξsocial_reinforcement

s,t − Λbehavioral_drift
δ · Θparticipation_variance

s,t

)� (44)

Gamification techniques influence real-time user decisions in energy management. The function 
Λgamification_influence

α · Θuser_engagement
s,t  models behavioral engagement, while dynamic rewards 

Ωreward_structure
β · Ψincentive_response

s,t  adjust incentives for demand-side participation. Peer learning 

Φpeer_learning_effect
γ · Ξsocial_reinforcement

s,t  strengthens adoption through social influence. However, behavioral 

drift Λbehavioral_drift
δ · Θparticipation_variance

s,t  poses a challenge in long-term sustainability of engagement.

	

T∑
t=1

∑
y∈H

(
Λquantum_resilience

α · Θmicrogrid_stability
y,t + Ωdisturbance_mitigation

β · Ψfault_recovery
y,t

+ Φpredictive_control
γ · Ξadaptive_protection

y,t − Λcyber_threat_exposure
δ · Θattack_vulnerability

y,t

)� (45)

Microgrid resilience is modeled using a quantum-informed stability metric. The function 
Λquantum_resilience

α · Θmicrogrid_stability
y,t  ensures robustness against stochastic disturbances, while 

fault recovery Ωdisturbance_mitigation
β · Ψfault_recovery

y,t  restores operations efficiently. Predictive control 

Φpredictive_control
γ · Ξadaptive_protection

y,t  enhances proactive mitigation strategies. However, cyber vulnerability 

Λcyber_threat_exposure
δ · Θattack_vulnerability

y,t  poses risks requiring continuous security reinforcement.

	

T∑
t=1

∑
v∈K

(
Λtradeoff_optimization

α · Θeconomic_feasibility
v,t + Ωsustainability_integration

β · Ψcarbon_footprint_minimization
v,t

+ Φmulti_objective_balancing
γ · Ξefficiency_stability

v,t − Λconflicting_priorities
δ · Θoptimization_instability

v,t

) � (46)

The final constraint defines the trade-off between economic and sustainability objectives. The function 
Λtradeoff_optimization

α · Θeconomic_feasibility
v,t  ensures financial viability, while sustainability considerations 

Ωsustainability_integration
β · Ψcarbon_footprint_minimization

v,t  reduce environmental impact. Multi-objective 

balancing Φmulti_objective_balancing
γ · Ξefficiency_stability

v,t  optimizes conflicting goals. However, instability from 

competing objectives Λconflicting_priorities
δ · Θoptimization_instability

v,t  requires robust decision frameworks.

Results
To validate the proposed quantum-inspired optimization framework, a case study is conducted on a rural 
microgrid system with diverse renewable energy resources and demand-side response mechanisms. The 
microgrid under consideration is modeled as a hybrid energy system integrating PV panels, wind turbines, and 
hybrid energy storage, including lithium-ion batteries and hydrogen storage. The system covers a geographical 
area of 25 km2, supplying power to approximately 1,200 households and 15 industrial facilities with an 
aggregated peak demand of 3.8 MW and an average daily energy consumption of 57.6 MWh. The PV system has 
an installed capacity of 5 MW, with an average daily solar irradiance of 5.5 kWh/m2, while the wind turbines 
collectively contribute 4 MW, operating at an average wind speed of 6.8 m/s. The hybrid storage system consists 
of a 3 MWh lithium-ion battery bank and a 5,000 kg hydrogen storage unit, ensuring flexible energy dispatch 
and long-term energy buffering. The demand-side management (DSM) component integrates user participation 
mechanisms, including real-time pricing, incentive-based demand response programs, and gamified user 
engagement. The study models 1,000 residential users with varying behavioral patterns and responsiveness to 
energy incentives, categorized into three groups: highly active participants (30%), moderate responders (50%), 
and passive users (20%). Each group is assigned distinct elasticity parameters to simulate their reaction to 
dynamic tariffs and behavioral incentives. The real-time pricing scheme is designed with a base rate of $0.12/
kWh, which fluctuates based on grid conditions, reaching a maximum of $0.35/kWh during peak load hours. 
Incentive rewards are structured through a blockchain-based energy trading platform, allowing prosumers 
to exchange excess energy at dynamically adjusted rates. The quantum-inspired optimization framework is 
implemented in a high-performance computing environment, leveraging a 128-core GPU-accelerated server 
with 1.5 TB RAM for computational efficiency. The core optimization algorithms are developed using Python 
3.9, incorporating libraries such as D-Wave Ocean SDK for quantum annealing simulations, TensorFlow for 
reinforcement learning-based policy updates, and Gurobi for mixed-integer optimization components. The 
simulations are executed over a 24-month period, with a time resolution of 15-minute intervals, resulting in 
700,800 data points per user and a total dataset exceeding 1 billion records. The QIO model is benchmarked 
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against conventional metaheuristic approaches, including NSGA-III, genetic algorithms (GA), and particle 
swarm optimization (PSO), to evaluate computational efficiency and solution quality. The QIO model achieves 
an average convergence time of 3.2 seconds per iteration, significantly outperforming traditional methods, 
which require 17.8 seconds on average.

To enhance the clarity of the system configuration used in the case study, an electrical topology diagram of the 
modeled rural microgrid is provided. This diagram visually represents the physical structure of the microgrid, 
including generation units, storage elements, filtering components, and load connections.

As shown in Fig. 2, the system integrates photovoltaic (PV) and wind generation units through dedicated 
inverters, supported by dual storage systems consisting of a lithium-ion battery and a hydrogen fuel cell. All 
generation sources converge at a common bus through a centralized LC filter composed of inductance (Lf ), 
capacitance (Cf ), and a damping resistor (Rd). The load side incorporates both linear and nonlinear components, 
with the nonlinear load modeled using a diode, a capacitance (Cn), and a resistance (Rn). Additionally, the 
microgrid maintains a grid connection, enabling both grid-tied and islanded operational modes.

In Fig. 3, the hexbin density distribution plot provides an insightful representation of the relationship between 
solar and wind energy generation across a one-year period in the studied microgrid. The x-axis represents solar 
generation (MW), ranging from 0 MW to 5 MW, while the y-axis denotes wind generation (MW), varying 
between 0 MW and 4 MW. Each hexagonal bin represents a localized density of data points, with a color gradient 
from light blue to dark blue indicating increasing frequency. The densest regions appear around solar generation 
levels of 2.5 to 4 MW and wind generation between 1.5 to 3 MW, suggesting that these values frequently co-occur 
in the dataset. The presence of several high-density clusters indicates a strong seasonal or daily pattern in the 
renewable generation mix, reinforcing the necessity for dynamic resource allocation strategies to balance supply-
demand fluctuations effectively. A key observation from the figure is the asymmetry in the data distribution. 
Solar power exhibits a relatively well-defined upper bound at 5 MW, corresponding to the system’s installed 
photovoltaic (PV) capacity. However, wind power is more dispersed, with values distributed between 0 MW 
and 4 MW, showing greater variability due to wind speed fluctuations. This aligns with the expected nature of 
renewable resources, as solar energy follows a diurnal pattern with a predictable peak around midday, while 
wind energy exhibits stochastic behavior influenced by meteorological conditions. The figure also shows that 
extreme low-wind scenarios, where wind power generation is near 0 MW, occur across a wide range of solar 
outputs, emphasizing the necessity of hybrid storage systems to mitigate sudden power imbalances.

In Fig.  4, the contour density plot provides an intuitive visualization of the co-variation between solar 
and wind energy generation in the studied microgrid. The x-axis represents solar generation, ranging from 0 
MW to 5 MW, while the y-axis represents wind generation, varying between 0 MW and 4 MW. The plot uses 
contour lines to indicate regions of high density, where data points are concentrated, revealing the most frequent 
combinations of solar and wind power output. The darkest contours correspond to the highest density regions, 
which appear predominantly around solar generation levels of 2.5 to 4 MW and wind generation of 1.5 to 3 
MW, confirming that these ranges define the dominant operational conditions for renewable energy supply. 
Lighter contours toward the periphery indicate less frequent occurrences of extreme values, such as cases where 
wind power is close to 0 MW, despite relatively high solar output, emphasizing the necessity of complementary 
energy storage mechanisms. A closer examination of the density distribution reveals significant asymmetry in 

Fig. 2.  Electrical topology of the proposed rural microgrid.
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renewable generation patterns. Solar generation follows a more predictable trend, with the majority of values 
clustering near the upper bound of 5 MW, reflecting the high utilization of the photovoltaic system during peak 
daylight hours. In contrast, wind generation exhibits greater variability, with occasional drops below 1 MW, 
indicating periods of low wind speed. This aligns with the expected characteristics of renewable generation, 
where solar energy is primarily dependent on daylight availability, while wind energy is subject to more erratic 
meteorological conditions. The contour plot also highlights an interesting operational constraint—regions with 
high wind generation exceeding 3.5 MW are relatively rare, suggesting either a structural limitation in turbine 
efficiency or a naturally occurring cap in local wind conditions. This reinforces the importance of hybrid storage 
solutions to balance fluctuations in supply, especially during low-wind scenarios when solar power alone may 
not be sufficient to meet demand.

In Fig. 5, the multi-layered density plot presents a comprehensive visualization of the probability distribution 
of solar and wind energy generation, as well as battery and hydrogen storage levels, within the microgrid system. 
The x-axis represents the energy generation and storage levels in megawatts (MW), while the y-axis depicts 
the density distribution, revealing the most frequently occurring energy values. The blue gradient represents 
the density of solar and wind generation, while the gray gradient corresponds to battery and hydrogen storage 
levels, providing a dual-layered perspective on renewable energy availability and storage utilization. High-
density regions appear where solar generation fluctuates between 2.5 MW and 4.5 MW, while wind power most 
frequently remains within 1.5 MW to 3 MW. Conversely, energy storage distributions exhibit a lower-density 
spread, with battery storage fluctuating between 0.8 MW and 2.5 MW, while hydrogen storage peaks around 
2 MW to 4 MW, reflecting its role in long-term energy buffering. A key insight from the figure is the distinct 
density separation between generation and storage profiles. Solar and wind energy generation exhibit higher 
variance, with solar production forming a sharper density peak, indicative of its more predictable diurnal cycle, 

Fig. 4.  Contour density of solar and wind energy interaction.

 

Fig. 3.  Hexbin density distribution of solar and wind generation.
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while wind generation follows a broader distribution due to its stochastic nature. In contrast, the density of 
battery and hydrogen storage is more evenly spread, reflecting the energy buffering mechanisms in place to 
smooth out fluctuations in generation. The lower density of battery storage at higher MW levels suggests that the 
system relies more on short-term energy cycling, while hydrogen storage, which maintains a higher probability 
density across a broader range, is employed for longer-duration energy retention. The presence of overlapping 
density regions indicates key interaction points where generation and storage align, suggesting periods of 
efficient energy balance in the microgrid.

Figure 6 provides an in-depth visualization of the relationship between storage utilization and renewable 
energy contribution in the studied microgrid. The x-axis represents the percentage of storage utilization, which 
ranges from 40% to 90%, while the y-axis represents the share of energy derived from renewable sources, 
fluctuating between 55% and 100%. The hexagonal bins indicate the density of observations, with darker blue 
regions highlighting frequent operating conditions. The densest clusters appear around storage utilization levels 
of 60% to 80% and renewable shares of 70% to 85%, suggesting that the system frequently operates in a high-
renewable and moderately high-storage regime. The presence of scattered bins outside these core density zones 
suggests occasional deviations, such as periods of lower renewable availability requiring higher storage discharge 
or instances of surplus renewable energy leading to storage saturation.A key observation from the distribution is 
the asymmetric spread of storage utilization. While renewable penetration extends close to 100% in some cases, 
storage utilization rarely exceeds 85%, indicating a strategic dispatch mechanism that prevents excessive reliance 
on stored energy. The lower density of observations at storage utilization below 50% suggests that the system 
avoids underutilizing its storage assets, reinforcing the role of hybrid storage solutions in maintaining system 
efficiency. The transition from mid-range renewable penetration (65%–75%) to high renewable penetration 
(85%–95%) coincides with increased storage usage, reflecting the microgrid’s ability to effectively buffer energy 
fluctuations. However, the presence of moderate-density bins in the 55%–65% renewable share range with 

Fig. 6.  Phase-space distribution of storage utilization and renewable share.

 

Fig. 5.  Multi-layered density of energy generation and storage.
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corresponding storage utilization of 70%–80% suggests instances where storage is actively used to compensate 
for lower renewable supply, ensuring a stable energy supply during suboptimal renewable conditions.

Figure  7 presents a three-dimensional representation of the relationship between economic cost, user 
satisfaction, and renewable share, providing insights into the trade-offs involved in optimizing microgrid 
performance. The x-axis represents user satisfaction (%), ranging from 50% to 100%, while the y-axis indicates 
renewable energy share (%), varying between 50% and 100%. The z-axis corresponds to economic cost (USD), 
showing values between approximately $100,000 and $200,000. The color gradient, transitioning from deep 
blue to red, highlights different cost levels, with lower economic costs appearing at higher user satisfaction and 
renewable energy share. The smooth curvature of the surface demonstrates that cost reductions are achieved 
when both satisfaction and renewable share increase. However, local fluctuations in the surface suggest nonlinear 
system behavior, likely influenced by variations in storage utilization, demand-side response, and energy 
balancing strategies. A key insight from this figure is the existence of a high-cost region when user satisfaction 
is below 70%, even if the renewable share remains above 80%. This suggests that low satisfaction levels correlate 
with higher operational costs, possibly due to inefficient demand response participation or increased reliance 
on expensive energy storage dispatch. Conversely, at user satisfaction levels above 85% and renewable shares 
exceeding 80%, economic costs drop significantly, approaching $110,000 to $130,000. This indicates that an 
integrated optimization strategy aligning high user engagement with renewable energy utilization can lead to 
substantial cost reductions. The presence of slight oscillations in the cost surface, particularly for satisfaction 
levels near 60%-75%, suggests regions where energy dispatch policies and incentive mechanisms may need 
further refinement to stabilize costs.

Figure 8 provides a detailed visualization of the relationship between economic cost, renewable share, and 
the optimality gap, which directly correlates with the performance of the quantum-inspired optimization model. 
The x-axis represents economic cost (USD), spanning from $120,000 to $180,000, while the y-axis represents 
renewable share (%), varying between 50% and 100%. The z-axis represents the optimality gap (%), which typically 
falls between 0.015 and 0.05. The contour variations highlight how different levels of renewable penetration 
and cost constraints affect the ability of the optimization algorithm to converge to a near-optimal solution. 
The color gradient, ranging from dark blue to yellow, shows that lower optimality gaps (better solutions) are 
concentrated in regions where the economic cost is minimized and renewable penetration is high. Conversely, 
when renewable penetration is low and economic cost increases beyond $160,000, the optimality gap rises, 
indicating that the optimization process struggles to find a globally efficient solution. A key observation from 
this figure is that the optimality gap decreases significantly when renewable share exceeds 75%, suggesting that 
the model performs best when a large proportion of energy is sourced from renewables. This aligns with the 
expectation that high renewable penetration provides more flexible and cost-effective energy dispatch options, 
reducing the system’s reliance on expensive storage solutions and peak-hour energy procurement. However, 
the presence of localized fluctuations in the optimality gap when the economic cost is between $140,000 and 
$160,000 suggests that within this range, small shifts in policy mechanisms, such as subsidies or demand-side 
management, could lead to non-trivial variations in optimization performance. Additionally, the non-linearity 
observed in the cost-optimality relationship indicates that aggressive cost-cutting strategies beyond a certain 
threshold can actually lead to suboptimal decisions, potentially due to constraints on energy storage deployment 
or insufficient demand-side flexibility.

Figure 9 provides an in-depth analysis of the relationship between storage utilization, economic cost, and 
carbon reduction, revealing key trade-offs in energy system optimization. The x-axis represents storage utilization 
(%), spanning from 40% to 90%, while the y-axis represents economic cost (USD), ranging between $120,000 

Fig.  7.  3D surface plot: economic cost vs. renewable share and satisfaction.
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and $180,000. The z-axis represents carbon reduction (Tons), which fluctuates between 40 and 70 tons based on 
different storage and cost configurations. The surface shows a general trend where increasing storage utilization 
results in higher carbon reduction, particularly when economic costs remain within an optimized range. The 
contour variations indicate that a storage utilization of 70%-85% and an economic cost between $130,000 and 
$150,000 provides the highest CO2 reductions, aligning with an effective balance between financial investment 
and environmental benefits. A significant insight from this visualization is the nonlinear nature of carbon 
reduction in response to economic cost and storage utilization. While higher storage utilization generally leads 
to increased CO2 savings, there is a diminishing return effect beyond 85% utilization, where further storage 
increases contribute only marginal additional carbon reductions. Similarly, economic cost plays a crucial role, 
as seen in the steep gradient change beyond $160,000, where increasing costs no longer provide proportionate 
environmental benefits. This suggests that excessive investment in storage infrastructure without corresponding 
increases in renewable generation or demand response measures may lead to inefficiencies. Additionally, the 
presence of localized fluctuations in carbon reduction at storage levels between 50% and 60% indicates potential 
instability in energy dispatch strategies, reinforcing the need for optimized scheduling and control policies to 
maximize CO2 savings.

Fig. 9.  3D surface plot: carbon reduction vs. storage utilization and economic cost.

 

Fig. 8.  3D surface plot: optimality gap vs. economic cost and renewable share.
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Table  1 presents the optimization performance metrics obtained from the proposed quantum-inspired 
optimization framework for microgrid operation. The economic cost varies between $125,740.5 and $176,820.3, 
with an average of $149,385.2, demonstrating the impact of different operational strategies and energy pricing 
conditions. Carbon reduction shows a minimum of 42.3 tons and a maximum of 69.2 tons, with an average value 
of 56.8 tons, highlighting the system’s ability to lower emissions by increasing renewable energy penetration and 
optimizing demand-side response. Storage utilization ranges from 45.7% to 88.9%, with an average of 72.4%, 
indicating that energy storage is effectively used to balance fluctuations in supply and demand. Renewable 
share varies from 52.1% to 96.4%, with an average of 79.3%, reflecting the effectiveness of maximizing clean 
energy integration while maintaining stable system operations. User satisfaction, which is influenced by demand 
response incentives and service reliability, ranges between 68.4% and 97.1%, with an average value of 82.7%, 
demonstrating the effectiveness of incentive-based mechanisms in improving engagement and flexibility in 
energy consumption. The results in this table validate the effectiveness of the proposed optimization model in 
balancing cost, carbon reduction, storage utilization, and renewable integration. The trade-offs between economic 
performance and sustainability goals are evident, reinforcing the need for a well-structured optimization strategy 
that adapts to varying energy supply and demand conditions. These findings provide a strong basis for guiding 
decision-making in microgrid operations to achieve cost-effective and sustainable energy management.

Table  2 summarizes the performance of the quantum optimization framework in terms of its ability to 
converge efficiently. The number of iterations required to reach near-optimal solutions varies from 58.4 to 94.2, 
with an average of 75.9, demonstrating that the algorithm consistently finds high-quality solutions within a 
reasonable computational effort. The quantum tunneling rate, which dictates the probability of escaping local 
optima, has a mean value of 0.07, ensuring a controlled exploration process. The energy function improvement 
per iteration averages 6.5%, confirming that the optimization approach steadily refines its solutions over time. 
The optimality gap remains within 1.8% to 5.1%, validating the accuracy of the quantum-inspired approach in 
producing near-optimal solutions.

Table  3 evaluates how different ranges of quantum probability amplitude affect the algorithm’s ability to 
explore the solution space effectively. As the amplitude increases from 0.70 to 1.00, the number of successful 
escapes from local optima increases from 3.2 to 7.1, demonstrating that stronger quantum coherence enhances 
the ability to find better solutions. Similarly, the final solution quality improves from 88.4% to 98.7%, confirming 
that higher probability amplitudes result in a more accurate and globally optimal solution. This suggests that 
careful tuning of quantum probability amplitude is essential for achieving the best optimization outcomes.

Amplitude
range

Local optima
escapes

Final solution
quality (%)

0.70–0.80 3.2 88.4

0.80–0.90 4.7 92.6

0.90–0.95 5.5 95.1

0.95–0.98 6.3 97.3

0.98–1.00 7.1 98.7

Table 3.  Impact of quantum probability amplitude on solution exploration.

 

Metric Min Mean Max

Iteration count 58.4 75.9 94.2

Quantum tunneling
rate 0.02 0.07 0.12

Energy function
improvement (%) 3.1 6.5 10.8

Solution optimality
gap (%) 1.8 3.4 5.1

Table 2.  Quantum optimization convergence analysis.

 

Metric Min Mean Max

Economic cost (USD) 125,740.5 149,385.2 176,820.3

Carbon reduction (Tons) 42.3 56.8 69.2

Storage utilization (%) 45.7 72.4 88.9

Renewable share (%) 52.1 79.3 96.4

User satisfaction (%) 68.4 82.7 97.1

Table 1.  Optimization performance metrics for microgrid operation.
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Conclusion
This work introduces an innovative optimization strategy inspired by quantum computing principles and 
grounded in SCT to support more effective DSM within microgrids. The proposed method combines the 
strengths of NSGA-III for handling multiple conflicting objectives with the exploratory power of quantum 
annealing, enabling robust energy scheduling under complex and uncertain conditions. By embedding key 
SCT constructs—such as social learning, confidence in decision-making, and peer-driven influence—into 
the optimization process, the framework enhances both individual user responsiveness and collective system 
performance. Experimental evaluations reveal that the approach achieves a balanced trade-off among economic 
cost, load smoothing, and behavioral engagement, outperforming conventional optimization baselines in terms 
of convergence and solution robustness. The behavior-aware structure also encourages more flexible and socially 
aligned energy use among prosumers, contributing to long-term operational sustainability. Future efforts will 
aim to apply the framework in practical microgrid environments, improve the modeling fidelity of human 
behavioral responses using richer datasets, and further explore hybrid architectures to scale quantum-classical 
optimization in real-time applications. Moreover, studying how SCT-based DSM aligns with emerging energy 
market structures may open new avenues for dynamic, socially-integrated energy governance.

Despite the promising performance demonstrated by the proposed behavior-aware, quantum-inspired 
energy management framework, certain limitations should be acknowledged. The current implementation 
assumes access to high-performance computational infrastructure, such as multi-core servers and large 
memory capacities, which may not be readily available to many utility providers or small-scale operators. The 
computational burden associated with simulating quantum-inspired optimization methods remains nontrivial, 
especially in large-scale microgrids. Furthermore, the reliance on complex behavioral modeling introduces 
challenges in interpretability and robustness, as system performance may be sensitive to the assumptions 
embedded in user behavior representations. To address these limitations, future research could explore the 
development of scalable and lightweight optimization variants—such as surrogate-assisted methods, hierarchical 
decomposition strategies, or hybrid architectures—that strike a balance between computational efficiency and 
optimization quality. Additionally, advancing more adaptive and explainable behavioral modeling approaches 
would further enhance the practicality and accessibility of the proposed framework in real-world deployment 
scenarios.
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