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Behavior-aware energy
management in microgrids
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algorithms under social and
demand dynamics
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The increasing intricacy of modern microgrids, driven by uncertain consumption patterns,
decentralized renewables, and user behavioral dynamics, calls for innovative optimization
methodologies. This study introduces a hybrid quantum-classical framework for demand-side energy
management, leveraging behavioral modeling to foster resilience and flexibility. By embedding
principles from Social Cognitive Theory—such as behavioral imitation, confidence in personal
capability, and social reinforcement—into a multi-objective optimization scheme, the model supports
distributed decision-making and promotes adaptive prosumer behavior. The proposed approach
employs Quantum Annealing in combination with NSGA-III to efficiently navigate the complex solution
space, accounting for real-time uncertainties and the stochastic nature of both demand and renewable
supply. The framework is tested within a case study of a peer-to-peer microgrid network, showcasing
its effectiveness in enhancing energy efficiency, lowering peak demand, and improving operational
resilience. Performance comparisons with traditional methods, including Mixed-Integer Programming
and conventional metaheuristics, underline the improved scalability and robustness of the quantum-
inspired model in handling trade-offs between cost, reliability, and socially-driven demand response.
The research highlights the potential of integrating quantum-inspired optimization with behavioral
energy modeling to advance intelligent and socially-responsive microgrid control systems.

Keywords Quantum-inspired optimization, Social cognitive theory, Behavioral demand response, NSGA-
III, Quantum annealing, Microgrid resilience enhancement, Behavioral energy management

The accelerating integration of renewable energy technologies and the pressing demand for sustainable energy
solutions have positioned microgrids as a cornerstone of contemporary power infrastructure!. Functioning as
decentralized energy systems, microgrids can seamlessly operate either in isolation or alongside the central grid,
delivering key benefits such as improved system resilience, enhanced energy autonomy, and flexible resource
utilization®. Nonetheless, the growing dependence on variable renewable sources like wind and solar poses
considerable operational hurdles, primarily due to their non-dispatchable and uncertain nature®*. To maintain
stable and optimal microgrid performance under these volatile conditions, there is a critical need for intelligent
optimization mechanisms capable of responding in real time to changes in both generation and consumption,
while simultaneously addressing technical constraints, economic efficiency, and user-driven factors’.

The conventional optimization of microgrid operations typically relies on classical optimization techniques
such as mixed-integer programming, heuristic algorithms, and metaheuristic approaches like particle swarm
optimization and genetic algorithms. While these methods have demonstrated effectiveness in certain
applications, they often struggle with scalability, real-time adaptability, and multi-objective trade-offs inherent
in modern energy systems®’. Additionally, they lack the ability to integrate behavioral influences and policy-
driven incentives, which are increasingly recognized as crucial components in shaping energy consumption
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patterns and optimizing demand-side management strategies. Given these limitations, there is a growing need
for innovative optimization frameworks that can address the computational complexity of large-scale microgrid
operations while simultaneously integrating technical, economic, and social dimensions®.

Although significant advances have been made in classical optimization techniques for microgrid energy
management, existing methods often struggle to efficiently solve large-scale, behavior-aware, multi-objective
problems due to the combinatorial complexity and high-dimensional search spaces involved. Furthermore,
the dynamic and uncertain nature of user behavior under varying pricing and incentive schemes introduces
additional challenges that require both exploration and exploitation capabilities in optimization. Quantum-
inspired optimization methods offer promising advantages in terms of convergence speed and global search
ability, but purely quantum systems are currently constrained by hardware limitations. Thus, hybrid quantum-
classical frameworks present an effective compromise, leveraging quantum-inspired exploration mechanisms
within classical computational infrastructures to address complex, behavior-driven control challenges in
microgrid environments. Motivated by these technical gaps and practical needs, this study proposes a novel
hybrid optimization approach that integrates social cognition modeling with quantum-classical search dynamics.
To address these gaps, recent studies have highlighted the importance of dynamic behavior modeling’, real-time
policy adaptation, and the application of quantum-inspired methods in energy management, which collectively
support the need for a more integrated and adaptive optimization framework!®. This paper introduces a novel
quantum-inspired optimization (QIO) framework that integrates Social Cognitive Theory (SCT) and dynamic
policy mechanisms to enhance the sustainability, resilience, and economic feasibility of microgrid operations.
The proposed framework leverages QIO principles such as quantum annealing, tunneling, and entanglement
to efficiently navigate complex multi-objective optimization landscapes. Unlike classical methods that often
become trapped in local optima, QIO facilitates global search efficiency, enabling superior optimization of
microgrid functions, including energy generation, storage management, and demand-side incentives. Beyond
its technical superiority, the proposed methodology is distinguished by its integration of behavioral and policy
considerations. SCT provides a theoretical foundation for modeling user behavior and participation in energy
management programs. By incorporating behavioral incentives such as gamified rewards, social learning effects,
and dynamic tariff structures, the optimization framework encourages energy-saving behaviors and enhances
the overall engagement of microgrid users. Additionally, the framework employs adaptive subsidy mechanisms
and real-time pricing strategies to align economic incentives with sustainability goals. This combination of QIO,
behavioral modeling, and dynamic policy design represents a significant departure from traditional microgrid
optimization approaches, positioning this study at the forefront of next-generation energy management
solutions.

A key distinguishing feature of this study is its ability to address the trade-offs between economic,
environmental, and social objectives in a holistic manner. Unlike traditional approaches that focus solely on
cost minimization or renewable energy maximization, the proposed framework balances multiple conflicting
objectives by leveraging Pareto-based optimization strategies. This ensures that microgrid operation is not only
cost-effective but also aligned with long-term sustainability goals. Moreover, the quantum-inspired resilience
metric embedded in the framework enhances the microgrid’s ability to withstand cyber-physical disturbances,
ensuring that energy supply remains stable even in the face of adversarial threats or extreme weather events. To
validate the effectiveness of the proposed optimization framework, a comprehensive case study is conducted on
a rural microgrid system with diverse energy resources, including solar, wind, and hybrid storage technologies.
Synthesized data is used to simulate varying energy demand patterns, policy constraints, and user participation
scenarios. The results demonstrate that the QIO-based approach significantly outperforms conventional
methods in terms of computational efficiency, renewable energy utilization, and user engagement. Specifically,
the framework achieves a more optimal balance between life-cycle costs, carbon footprint reduction, and system
resilience, showcasing its potential for real-world deployment. The primary contributions of this study can be
summarized as follows.

First, it introduces a novel quantum-inspired optimization framework tailored for microgrid operations,
leveraging quantum annealing and tunneling mechanisms to enhance solution efficiency.

Second, it integrates Social Cognitive Theory into microgrid optimization, enabling a more accurate
representation of user behavior and demand-side participation.

Third, it incorporates dynamic policy mechanisms such as real-time adaptive tariffs and behavioral incentives
to align microgrid economic performance with sustainability objectives.

Finally, the study develops a quantum-informed resilience metric that ensures stable microgrid operation
under uncertain and adversarial conditions. These contributions collectively position this research as a
pioneering effort in the field of intelligent and sustainable energy management.

Literature review and research gaps

Microgrid optimization has traditionally employed a range of techniques, including deterministic methods (e.g.,
mixed-integer linear programming), stochastic optimization approaches (e.g., scenario-based and probabilistic
models), robust optimization methods (e.g., worst-case formulations), and metaheuristic algorithms such as
genetic algorithms and particle swarm optimization!'!.These methods have been widely applied to optimize
energy dispatch, storage utilization, and demand-side management. Deterministic approaches provide exact
solutions but often fail to handle real-time uncertainties, particularly in renewable energy generation'2.
Stochastic optimization improves upon this by considering probabilistic uncertainties, but it requires a high
computational burden and depends on well-defined probability distributions!®>. Metaheuristic approaches
offer greater flexibility and scalability, yet they lack guarantees of global optimality and often require extensive
tuning of algorithm parameters. While these methods have demonstrated effectiveness in various microgrid
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applications, they struggle with the combinatorial complexity and real-time adaptability required for large-scale,
multi-objective optimization'*.

To overcome these limitations, researchers have explored hybrid approaches that integrate machine
learning with classical optimization. Reinforcement learning has been increasingly applied to demand response
management, energy pricing strategies, and grid stability enhancement'®. These learning-based methods offer
adaptive decision-making capabilities and can efficiently capture nonlinear relationships within microgrid
operations. However, they typically require extensive training data and can suffer from instability in dynamic
environments'®. Deep reinforcement learning, which combines deep neural networks with reinforcement
learning techniques, has been proposed to improve policy generalization!”. Nevertheless, these models remain
computationally expensive and may not always guarantee convergence to an optimal solution. Despite these
advancements, the need for optimization frameworks that efficiently handle uncertainty, high-dimensional
decision spaces, and multiple conflicting objectives remains largely unmet®.

Parallel to advancements in optimization techniques, there has been growing recognition of the
importance of incorporating user behavior into microgrid operation models. SCT has been widely studied
in energy consumption behavior modeling, particularly in demand response programs and energy efficiency
interventions!®20. SCT emphasizes the role of social influence, self-efficacy, and environmental reinforcement
in shaping user decisions. Empirical studies have shown that behavioral incentives such as peer comparisons,
gamification, and dynamic pricing significantly impact energy consumption patterns??2. These findings
underscore the need to integrate behavioral models into microgrid optimization to improve demand-side
participation. However, existing research largely treats behavioral incentives as static parameters rather than
dynamic components that evolve based on real-time user interactions. The challenge remains in designing
an optimization framework that dynamically adapts behavioral incentives to achieve energy efficiency while
maintaining economic and operational stability*.

In addition to behavioral incentives, policy mechanisms play a crucial role in microgrid operation and
expansion. Traditional policy-driven optimization frameworks incorporate static subsidy structures and
tariff mechanisms to promote renewable energy adoption and demand-side management?!. However, these
approaches often fail to account for real-time market fluctuations and evolving consumer behaviors. Dynamic
pricing schemes and adaptive subsidy allocations have been proposed to address this issue, allowing electricity
prices and financial incentives to respond to grid conditions in real time. Despite these efforts, a major gap in
the literature remains in developing an integrated policy-technical framework that simultaneously optimizes
microgrid operations while dynamically adjusting policy mechanisms. The interplay between user engagement,
economic incentives, and technical constraints is highly complex and requires a multi-disciplinary approach that
bridges behavioral economics, energy policy, and advanced optimization?.

Recent advancements in QIO have opened new avenues for addressing the computational challenges inherent
in microgrid optimization. Unlike classical approaches, which sequentially evaluate solutions, QIO leverages
quantum mechanics principles such as superposition, entanglement, and tunneling to explore vast solution
spaces more efficiently?®?”. Quantum annealing, a widely studied QIO technique, has demonstrated significant
computational advantages in solving large-scale combinatorial optimization problems®®. By allowing solutions
to probabilistically transition through energy barriers rather than over them, QIO can escape local optima and
achieve superior global optimization?’. Several studies have explored QIO applications in energy management™,
including smart grid scheduling, energy trading, and load balancing. While these studies have shown promising
results, most have focused solely on technical optimization without considering behavioral and policy-driven
dimensions. The integration of QIO with social and economic factors remains an underexplored research
direction with substantial potential for improving microgrid operations®!.

In summary, although a wide range of optimization techniques have been applied to microgrid energy
management—spanning deterministic approaches, stochastic formulations, robust methods, and metaheuristic
algorithms—several critical research gaps remain. First, most existing studies do not adequately model the
dynamic nature of user behavior and participation in demand-side programs. Behavioral incentives are often
treated as fixed parameters rather than evolving mechanisms influenced by social context, learning, or adaptive
feedback, which limits the realism and responsiveness of these models. Second, while dynamic pricing and
incentive schemes are recognized as important tools, few existing frameworks incorporate them in a way
that is tightly coupled with behavioral modeling and system-level optimization. Third, classical optimization
techniques frequently face scalability bottlenecks when dealing with high-dimensional, multi-objective
problems, particularly those involving human behavior, uncertainty, and nonlinear system dynamics. In
recent years, quantum-inspired optimization (QIO) methods have gained attention for their ability to navigate
complex search spaces with improved convergence and global optimality properties. However, their application
in user-centric microgrid optimization remains limited, particularly in contexts that require real-time policy
adaptation and behavior-aware coordination. To the best of our knowledge, no existing study has proposed a
unified framework that jointly integrates QIO, social cognitive modeling, and dynamic incentive mechanisms
to address the behavioral and technical complexity of modern microgrids. These limitations highlight the need
for a new generation of microgrid optimization strategies—capable of coupling scalable algorithmic search with
adaptive, human-centered decision-making. This motivates the hybrid quantum-classical framework proposed
in this study.

Mathematical modeling

To formulate the optimization framework for DSM in microgrids, we define a multi-objective problem that
integrates SCT with quantum-inspired optimization techniques. The problem formulation consists of decision
variables representing energy consumption behaviors, control actions for load scheduling, and incentives for
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demand-side participation. The objective functions consider economic cost minimization, peak load reduction,
and behavioral adaptation efficiency.

To provide a clear understanding of the variables and parameters involved in the proposed framework, the
following nomenclature table presents all essential symbols along with their corresponding definitions and
physical units. These symbols are consistently used throughout the modeling and optimization process.

Symbol Description Unit
Renewable energy generation at node
Die iand time ¢ Mw
A Load demand at node i MW
it and time ¢
Economic cost at node i
Oit and time ¢ UsD
Environmental impact index at node
Tt iand time ¢ COze
o Social acceptance score at node
it ; ; score
’ iand time ¢
= Grid resilience metric at node itl
=kt k and time ¢t unitless
Q Stability control index at node itl
k.t k and time ¢ unitless
Solar energy generation at node
Yt m and time ¢ Mw
Wind energy generation at node
Om. ¢ m and time ¢ Mw
Storage contribution at node
Pt m and time ¢ Mw
w Curtailment loss at node MW
Pt pand time ¢
. Spillage loss at node MW
p:t pand time ¢
User participation level at time
Gt score
Peer influence factor at time
Siyt P score
Self-efficacy score at time
Eit P score
) Gamification engagement factor
Gt at time ¢ score
i ?1rect incentive value at time UsD
1) ) Real-time control effectiveness at node .
real_time_controly ; J and time ¢ unitless
o Forecast accuracy metric at node .
forecasty 4 Jand time ¢ unitless
= . o . Adaptive optimization performance at .
Sadaptive_optimizationy 4 node I and time ¢ unitless
Fuel cell i
@fuﬁlicclln‘t nl:;gimf:(:rgy generation at node MW
Hydrogen tank storage at node
Yiankn ¢ nan t%met ¥ MWh
= Hydrogen di h through electrolysi
Direct air capture energy usage at node
<) p gy usag
DACs,4 sand time ¢ Mw
Carbon capture and storage at node
‘I’CCSSJ sand timept ¥ tons CO2
= Carbon trading offsets at node
Soffsetsg ¢ sand time 8 tons CO2
Industrial emissions at node
Oindustrial_C0O2,.; rand time ¢ tons CO2
Transport emissions at node
Vyehicle_emissions,. 4 randIt)imet tons CO2

Note: All variables are indexed by space i, j, k, m, n, r, s and time ¢

To enhance the interpretability of the proposed optimization architecture and respond to reviewer concerns
regarding mathematical complexity, a high-level process diagram is presented to illustrate the overall framework.
This visualization provides an intuitive overview of the layered components and information flow in the
quantum-classical hybrid optimization process.
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As shown in Fig. 1, the optimization process begins with data collection on microgrid structure, user profiles,
and external signals. This is followed by encoding behavior-based features using Social Cognitive Theory (SCT).
The core multi-objective dispatch problem is then solved through a quantum-inspired optimization layer,
aiming to balance cost, carbon emissions, and behavioral participation. The resulting strategy is translated
into implementable pricing and incentive signals. Finally, the system’s performance is evaluated via simulation,
comparing economic, environmental, and behavioral metrics. This layered workflow improves clarity and
bridges the gap between mathematical formulation and practical interpretation.
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One of the cornerstones of an economically viable microgrid is cost efficiency, which is intricately embedded into
this objective function. Here, the life-cycle cost minimization accounts for several major economic components:
the capital investment cost a;*® multiplied by the allocated infrastructure capacity ¢, the operatlonal
expenditure sz linked with the real-time operational power w; ¢, and the impact of subsidies 7> adjusting
the financial balance through x;,:. Moreover, long-term financial sustamablhty is ensured through maintenance
costs §2 weighted against the degradation \;j; of energy storage and infrastructure, while penalties for
inefficiency ¢5°" penalize poor performance through v; +. The entire function spans multiple spatial nodes i
and temporal periods ¢, ensuring a holistic and granular cost analysis.
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Maximizing the utilization of renewable energy resources is pivotal for sustainability. This function captures the
total contribution of solar, wind, and hybrid storage in the microgrid, weighted by their respective efficiency
factors A ,Mwmd, 7", However, energy is not always fully utilized; curtailment o{""" and spillage 75P!!'*&°
reduce overall efﬁaency. By subtracting these losses from the renewable energy generatlon, the model ensures
that the microgrid prioritizes clean energy sources, optimally balancing generation and storage utilization over

time ¢ and regions m.
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Fig. 1. Workflow of the proposed behavior-aware energy management framework.
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User engagement is a key enabler of microgrid sustainability, and this function prioritizes demand response
participation through a behavioral incentive structure. The participation level ¥; ; is influenced by peer influence
Gi,t» self-efficacy &; ¢, gamification-driven engagement (¢, and direct financial incentives 7; ;. Coefficients

1If . . . . X :
wga”,egeer, eIl capture the behavioral impact of social cognitive factors, while %™, k™ reflect

financial and psychological motivators. This multi-dimensional function ensures optimal design of behavioral
mechanisms to maximize voluntary user participation.

T
min Z Z (cbzcon . ei,t + Q%nv . Ti,t + A?yocial . qji,t)
é’ Q’ A t=1 i€

T
+ Z Z (Egesil . Qk,t + \Pitability . Ak,t>

t=1 keZ

A multi-objective trade-off function is essential to balance economic, environmental, and social goals while
ensuring grid resilience and stability. Economic costs ©; ¢, environmental impact Y; ¢, and social acceptance
W, ; are assigned appropriate weights 7", Q5" AP to capture the trade-offs among competing priorities.
Resilience €2, and stability A, factors are also included to ensure that the microgrid can withstand operational
uncertainties. This formulation enables a holistic optimization approach that does not favor one aspect at the
expense of another, resulting in a well-rounded decision-making framework.

T
Z Z (‘I,ien . Fi,t _ Qgemand . Ath + E’sytorage . Ti,t)

t=1ieN

T
§ 2 dispatch curtailment — reserve
—|— (@6 . ("':)jﬂg —|— Qs . :j,t — AC . \I/jﬂg) = 0

t=1jeH

Energy balance must be maintained across the entire microgrid, ensuring that generation, storage, and dispatch
are harmonized with demand, curtailment, and reserve allocation. The first term W& - I'; ; represents total
power generation from all renewable sources, weighted by efficiency W5™. The demand-side requirement
Qge"‘a"d - A4 ¢ subtracts the consumption load, ensuring that at any time step ¢, supply aligns with demand. The
energy storage dynamics are captured through =3°°*#8° . T, ;, allowing surplus power to be preserved for future
use. Additionally, dispatchable resources ®§*P**“" . ©; ; provide supplementary energy, while curtailment
Qeurtailment . = ensures grid stability by limiting excess inflows. Finally, the reserve constraint AW,y
guarantees that emergency power is set aside for contingencies. By summing these terms over all spatial nodes
4 and microgrid segments ./, this constraint ensures that energy flows within the system are consistently
balanced.

T
wind —wind solar solar hydro hydro
E E (Aa Eip +Q5 Ui+ (I>’Y ’ @i,z >

t=11i1€X#

T
curt —curt spill spill avail
D)) <<I>5 CESY 4wl > <o

t=1j€2

Renewable energy generation is inherently uncertain and subject to natural variability. This constraint ensures
that the combined wind, solar, and hydro power generation does not exceed the system’s upper operational

; avail : i =wi sola sola h hyd
capacity ™. Each energy source—wind AY™ - =", solar Q'™ - U59*, and hydro @Y™ CHAN
—=curt

—contributes to the overall generation, while energy losses due to curtailment ®§5** - Z5" and spillage
epill Qj-p;“ reduce net availability. This constraint ensures that the total renewable power utilized remains

within system limits while minimizing energy waste.

T T
charge charge discharge —discharge degrade j,degrade stor__cap
E E (Aa Oy n — Qg TSkt + o, U <o (7)

t=1 ke t=1 je&

Storage capacity is fundamental to balancing energy supply and demand. The stored energy is increased through
charging Ach?ree . @tha '8¢ and depleted by discharging Qg’smarge . EztiCharge. However, battery degradation is
inevitable and captured through ®§°&"4° . \Il?igrade, ensuring the system accounts for capacity loss over time.

stor__cap
¢ .

The right-hand side ensures that total energy stored does not exceed the physical capacity ®
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T
Z Z <A:;oltage . E:/n,,t + Qgequency X \Ilfn,t + q)f/tability . @:2&})) 2 ézafe (8)

t=1 me2

Grid stability requires maintaining voltage, frequency, and overall system balance. The voltagelevel A5 . =V |

must remain within permissible limits, frequency deviations Q ;4" - ¥f, ; should be minimized, and overall

stability ®5P1Y . @550 needs to be assured. This constraint ensures that these operational parameters always
meet or exceed a predefined safety threshold @Safe, guaranteeing reliable microgrid operation.

T
Z Z (Azolicy Ebubsldy+ancent \I]rebdte (I)tarlff @tdf}ﬂ) S (Dlzudget (9)

t=1jeX

A robust policy framework is necessary ppomote renewable energy adoption and ensure financial sustainability.
The subsidy allocation Aa =it , incentive rebates che“t \Ifre bate ~ and tariff adjustments

Plarift 6“"‘H are capped within a predefined policy budget @b“dget This constraint ensures that financial

incentives are optimally distributed without exceeding fiscal limltatlons.

T
Z Z <A302 :(Zariut Qcﬁ)ffset . Wg;pture) S (Plgimit (10)

t=11€¥

—emit

Reducing carbon emissions is a central sustainability goal. This constraint ensures that total emissions A - =57
t
do not exceed allowable limits @™, while accounting for carbon capture mechanisms Q37" - WP that

mitigate environmental impact.

dcmand _response —shift flex reductlon game participation engagement
§ > ( L4 Qflex . getuction | pgame . ypa > @ (11)
t=11ieZ

Demand-side flexibility is crucial for ensuring grid stability and reducing reliance on non-renewable energy
sources. This equation establishes a lower bound for user engagement in demand response programs. The first
demand _response —shift

term ©4 -Ei} " quantifies the power shifted from peak to off-peak hours through automated

scheduling, reducing the need for additional generation. The second component, Q™ - Wi%"°"  captures

voluntary load reductions driven by real-time price signals and behavioral nudges Lastly, the effect of
gamification $E¥¢ . Aparthlpatlon ensures that engagement remains high through incentive-based programs.
This equation sets a minimum engagement level (I)anagement to guarantee that enough users actively participate

in demand flexibility schemes.

T
§ § cyb attack silienc co dundanc —back isk
(A yber e Q%esl ience . \I]l/'::/yt very + (bfye un ncy . :m’t up) S (bzlb (12)

1 mex

Withincreasing digitalization of energy systems, microgridsare vulnelgable to cyberattacks. This constraint ensures
that the total cyber risk remains within an acceptable threshold ®¢ . The first term AZYP" - @22k represents
potential cyber threats targeting the system. Resilience mechamsms Qipsilience \I’recovery allow rapid system

recovery after an attack, mitigating its impact. The backup power and redundancy factor Predundancy, ":’,?Ctkup

ensures that alternative paths and backup systems maintain continuity of service, reducing cyber-induced power
disruptions.

Z Z (Atarlff real time + qubsldy ‘deynamlc + q)fyair . Eequity) 2 q)agffordability (13)

7t
t=1jex

Electricity pricing structures influence energy consumption behaviors ang must bek lance affordability with
economic sustainability. This equation ensures that real-time tariffs A it , dynamic subsidies

Q;“b“dy Yy and fair pricing mechanisms &2 - :??t““y collectively maintain an acceptable affordability
level ¢>zﬁordabi“ty. It guarantees that financial burdens are not disproportionately placed on low-income users

while still maintaining revenue streams for grid operators.

Z Z ( electrlc _ vehicle (__)charge lebcharge \IJVZG) < (P%'rid_impact (14)
t=1 pe¥
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Electric vehicles (EVs) present both opportunities and challenges for microgrid operation. While EVs can store
and supply energy through vehicle-to- $r1d (V2G) mechanisms, uncoordinated charging could stress the grid.
This constraint ensures that charging A "~ - ©5'775° and discharging through V2G Q> . 1736

impact

remain within grid stability limits @%nd— . Optimally managing EV energy flows is key to leveraging them

as distributed energy resources.

T
Z Z <A$icrogrid . @iriditie leland qlself suff) 2 q)EeSﬂience (15)

t=1 qeW

Microgrids operate in either grid-connected or islanded mode. During grid outages, the system must maintain
id
self-sufficiency. This equation ensures that total available power from grid connections AZicrogrid . O e

self suff

and islanded microgrid operations €j5'*" - v remain above a resilience threshold <I>Ee“1'e“°e. This

guarantees operational continuity, even in extreme conditions.

soclal _impact acceptance behavior peer _ effect education —awareness adoption
E E < e +05 P + E > 92 (16)
t=1re®

Behavioraladoptionof microgridsolutionsisascriticalastechnicaland economic fea51b111ty is constraintensures
acceptance

that the social impact of microgrid adoption remains significant. Public acceptance "9t ,
eer _effect —_ . .
peer influence Q5" . WP , and energy literacy gedueation . mawareness all contribute to a required

level of sustainable technology adoption @2‘10"“0". This function ensures that technological advances align with

social norms and user engagement strategies.

power flow Kirchhoff network stability load balance rid safety
§,§,< CA R - B < o (17)
t=1 se€ P

The integrity of the microgrid’s electrical network is governed by Kirchhoff’s laws and load balancing
mechanisms. Ensuring safe and reliable operation requires maintaining voltage and powet flow stability. This
equation restricts deviations by ensuring Kirchhoff’s current law (KCL) compliance AL~ =""" . @Kirehhoff g

network _ stability qlload balance égrld_safety

network-wide stability (2, within acceptable operational thresholds

This guarantees efficient energy transmission without overload risks.

< thermal _ storage eheatistorage+gco generation \IJCHP+(I)heat recovery .—recovered heat>
E E "Vt —i,t

i€EB
t=1 i€ (18)

heat _demand load heat loss transmission loss
_§‘§'< Lo 4l S - >>0

t=1 jEH

Efficient heat management is crucial in microgrids integrating combinﬁgl rgeﬁt ang ggowegesCHtP) sgstems
This equation ensures that total available thermal energy from storage O,

co__generation heat _recovery —recovered heat
generation {25 -8 - WP and recovered waste heat - M t is sufﬁc1ent to
heat _demand load heat _loss transmission _ loss
meet heating demand A - O while accounting for losses €2 W . This
;

ensures thermal energy sustainability wh1le minimizing waste.

T
water _supply reservolr desalination RO _ process wastewater reuse —treatment
E E ( @ Qﬂ . \Ijmyt + (I)’Y t=m,t

t=1 me.#

_2 : z < water demand econsumptlon QeVdpordtlon Wloss) Z 0

t=1 peF

(19)

Water-energy nexus is critical in microgrid operations, especially for sustainable communities. This equation

water _supply reaervolr
ensures a balance between available water supply from reservoirs A& -0, , desalination
RO rocess Wastewater reuse —
Qgesalma“o“ . \Ifm p =P , and treated wastewater ¥~ . :f,rf?tmem, agalnst the water demand

Awateridemand ®C0nsumpt10n
9 p,t

water management in microgrids.

and evaporation losses QEV*POr#HOn . \10%e This constraint supports sustainable

Scientific Reports |

(2025) 15:21326 | https://doi.org/10.1038/s41598-025-06199-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

T
: :2 :(Agrld reconfig @swuzch status_’_QfBault_isolation \Ilcontmgermy
t=1q€ ¢
self hcahng —autonomous correction
+ @ CHAS ) (20)

_: :2 : Aoutage impact @dlsruptlon Qzestoratlon delay \Iltlme) Z 0

t=1 s€€

Microgrid resilience under fault scenarios requires dynamlg nFthVXQEk recon@gﬁlraglgn and self-healing capabilities.

This equation ensures that grid reconfiguration Aa at , fault isolation strategies

fault 1solation ti self healin ._autonomous correction
(9] s \Ilcon MENY “and autonomous self-healing mechamsms L% €. Egt

. ey outage impact di ti
effectively mitigate power outages A5 o -TTPAC. @giruption

5 and reduce restoration delays

restoration dela; i . . . . e s .
Qe =S99 pe This constraint ensures that microgrid stability is preserved under disturbances.

T
Al dispatch real time control
D03 (At gt

t=1le.A (21)

predictive modeling forecast
+0 - SO Sfemming g

multi objective learning ,—‘adaptiveioptimization> > (Pefﬁciency
¢

Advanced artificial intelligence (AI) and machine learning techniques are crucial for optimizing

mlcrocgrld operations in real time. This constraint ensures that Al-driven real-time dispatch
spatch @red time_ control

o e . redictive__modeling as . .

o Lt , predictive modeling Q7 - €. Wforecas’ and adaptive multi-
multi_objective_learnin —adaptive optimization .. . .

objective learning @, ! - gLEpeor meet the minimum operational efficiency

smart_grid _efficienc . . . . . .
standard ® —Ee— ¥, This ensures smart decision-making for grid operation and resource allocation.

T
hydrogen integration fuel cell
>0 (A O

t=1 neZ (22)
+ thdrogen storage \Iftank + q)hydrogen dispatch . ,—.electrolyLel) 2 @?275‘4’?1)'

n7

Hydrogen-based energy storage and fuel cell integration arg %meggmgtggrlgm iops for ]iIllCl‘l?gl‘ld sustainability.
This equatlon ensures that hydrogen fuel cell generation Ag” , hydrogen storage

drogen _ storage h; dro en dlb atch —electrol
in tanks €25 hydrog 8. ptank and electrolysis-based hydrogen dispatch @~ E P gy trolyer

remain sufficient to meet the hydrogen demand requirement o p 2_SUPPLY This facilitates the integration of green

hydrogen into microgrid energy systems.

j :z : carbon _ sequestration ®DA0+Qcarbon storage \I’CCS+®carbon trading —offsets
'—'s,t

t=1 s€&

(23)
_ j : 2 : carbon emission @’i:;iustrialiCO2 + Qgransport7002 . \Ijvehicleiemissions <0

r,t
t=1re¥

Carbon neutrality is an essential component of sustainable microgrid operations, necessitating active carbon
capture and mitigation strateg1es Th1s equation ensures that total carbon sequestration from direct air capture

b trat
(DAC) AGT™on=eanesiation . @PAC  carbon capture and storage (CCS) Qcarbon storage - WSS, and carbon

carbon_tradin —
credit trading @5 £. gﬁ‘scts

carbon _emission industrial CO2
A - O - and transport-related emissions §2¢

effectively neutralize carbon emissions from industrial sources

transport_ CO2 \Ilvehicle_emissions This
r,t N

constraint ensures that the microgrid maintains a net-zero carbon balance.
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T
blockchain transactions energy trading
D03 (s O

q,t

t=1 g€ ¢

peer_to_ peer decentralized _market contract__enforcement —smart_ contracts
+ Q Wt (e CEgt

(29)
market _ volatility prlce fluctuation
— A -0,
t=1 weX

transactlon ees costs market stabilit,

+ Qb foos | poosts )~ gmarket_stability

Decentralized energy markets enabled by blockchain technology enhance transaction efficiency, but market
stability must be ensured. This &gulgtﬁon _gnsure that total degen&rahzed trading activities—blockchain-
ain ransactions
based energy transactions Aa "9, , peer-to-peer energy exchange
peer_to_ peer decentralized market contract__enforcement . —smart_contracts
Q A\ - , and smart contract automation ®~ “Egt

market_volatility @prlce fluctuation

—counteract the effects of price volatility Ag and transaction fees

transaction fees . e . . .
Qe = . U3, maintaining a stable and efficient microgrid energy market.

T
waste to ener bi
§ E (Aa _to__ 8y | C_)vj(;gas

t=1 ve?
recyclin efficienc; materlal recover; ti —organic waste
+ Q Y g_ y \I/ y + q)i:yompos ing =2 tg _ )
(25)
landﬁll _ waste solid waste
— . 6z Pl
t=1 ze X

+ Qe

GHG _ from_waste \I/mCthanc) > (bcircularieconomy

A sustainable microgrid must incorporate a circular economy a err%eylch {0, waste management. This

equation ensures that waste-to-energy conversion a v, t , improved recycling
recyclin efficienc materlal recover; i —organic waste

Qyeme- Yo ¥, and composting ®SmPOstnE L ZUEHHC- counterbalance landfill

landfill_waste @solid waste

.. GHG from waste th .
waste A b and methane emissions . —  — - W eme. This ensures that

microgrid operations contribute to a zero-waste, circular economy.

j :j : (Aquantum annealing eoptlmlzatlon state

t=1 ue N
quantum _ tunneling energy barrier quantum __entanglement :correlated_states
+Qd e + 34 =
26
., (26)
(Aclassicalilimitation ecomputationalicost
- § E 5 Myt
t=1 ye A

+Q y,t

uncertainty noise uantum _error uantum _advantage
y_ \I/q ) > (pq _ g

The integration of QIO into microgrid management ensures computational efficiency in

solving lar!%e -scale, multi- obi]ecnve problems. This equation models how quantum annealing
um

quan nealing optlmlzat on_state . uantum _tunnelin ener, barrier
Ao -0, , quantum tunneling Qq £ - , and

q)quantumicntanglcmcnt .:.corrclatcd states .

quantum entanglement Eut - improve solution search eﬁ’iciency compared

to classical optimization approaches. These quantum properties must offset computational limitations
classlcal limitation computatlonal cost uncertainty _noise quantum __error
Ay -0 and quantum error noise )¢ - v to

yst Yt
(I)quantumiadvant age

achieve a quantum advantage threshold , ensuring the practical feasibility of QIO in real-

world microgrid applications.
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2 :z :(Asoclal learning Gbehaworal adaptation

t=1 cel

peer_influence neighbor_effect self _efficacy :conﬁdenceiiniadoption
+ Q : ‘llc,t + CD’Y T—cyt

27)
T
(Aresistance Gbchavioral_incrtia

o E : E : s " bt

t=1 beZz#

+ Q2 b,t T =b,t

cost__perception financial _concern trust —technology skepticism social adoption threshold
LT - otz & > o} -

The adoption of microgrid technology depends not only on technical feasibility but also on social

acceptancecm}l'hllsar%qﬂuatloq) %9%%%}4}1% behavioral dynamics driving energy efficiency behaviors. The first

term, Ao , accounts for changes in user behavior based on exposure
. . peer influence neighbor effect

to sustainable energy practlces. Peer influence 5 - ~‘1/ctg - captures the effect of

self efficacy —confidence in_adoption

social pressure on energy choices, while self-efficacy @ Eet represents

the user’s confidence in operating microgrid technologies. The adoption process is hindered by resistance
cost__perception ‘I/ﬁnanclal concern

behavioral _inertia
Afpsistance . g7 , financial concerns ()¢ Wy » and technology
. —technolo skepticism . e . .
skepticism ®¢"* - Byt BYy_skep . The constraint ensures that positive influences exceed resistance
social _adoption_threshold
factors, maintaining an overall threshold ®,, pren

demand response and renewable energy programs.

for widespread community participation in

Methodology

To address the optimization problem in a quantum-inspired paradigm, we introduce a multi-objective
optimization framework that leverages principles of quantum annealing, tunneling dynamics, and state
entanglement for efficient resource allocation and adaptive decoy placement in cyber-resilient power systems.
The methodology is structured into the following key components

quantum_annealing state_transition solution evolution optimization path
FqQio = E E Aa CH + QO - - -

i,t B i,t
t=1 i€ N (28)
temperature_ deca; ._exploration control local _trap suboptimal _convergence
+ @, v =it - - Aa 61 t ¢

The QIO framework begins with a simulated annealing approach, where quantum annealing principles guide
annealing @stateitransition

multi-objective optimization. The annealing function AZ"*"*"™~ facilitates state

solution _evolution optimization path
transitions by reducing energy barriers, while solution evolution 25 SyP =P
temperature deca —exploration _control .
ensures progressive refinement. Temperature decay &~ 7 YL ES fp - dynamically

controls the exploration-exploitation balance, preventing the algorithm from getting stuck in local minima
Alocal trap (_)suboptlmal convergence
$ i,t

tunnelin; barrler _escape quantum _ coherence state superposition
Pqio = E E A £.0,) + Q3 S

m,t
t=1 mex (29)
(Dprobability_evolution .:.Wavefunction_update Athermal_ﬂuctuation erandom_perturbation
+ T—m,t — s “Vmt

To escape local optima, QIO employs quantum tunneling, which allows solut1ons to pass through energy barriers
unneling g °2 barrier_escabe. opsures global optima

. . . quantum coherence state superposition
exploration, while coherence maintenance {2 - Wy prevents premature

rather than climbing over them. Tunneling probability A%

. probability evolutlon —wavefunction update . s
convergence. Wavefunction update ®~ “Ept dynamically refines probability

thermal _fluctuation erandom_perturbation

distributions, counteracting random thermal perturbations A m.t

T
quantum _distribution probability density adaptive wavefunction solution likelihood
2qio = E E <Ao¢ - <O, - + 8 - - -

p,t
t=1 pe ¥ (30)
+ @itateientanglement . E:{y};relatedidecisions 7 Aisncoherentioscillation . @:;stableisampling)
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The quantum probability distribution function controls solution exploration through probabilistic sampling.
Quantum probability density Aguantum_distribution @p,rto Pabllity_density’ qetermines state likelihoods, while

. . . adaptive wavefunction solution likelihood
adaptive wavefunction evolution €23"**""*~ S

state entanglement —correlated decisions .. . . .
State entanglement & — & B - ensures decision dependencies are maintained.

. . incoherent oscillation unstable samplin
However, unstable oscillations Aé - -@p’t - &

adjusts probabilities dynamically.

can distort optimal sampling,

necessitating corrective measures.

T
Hamiltonian formulation ener: landscape uantum _gradient solution refinement
gQIO = E E Ao - . eq,t &y_ P + Q?; - : \Ijq,t -

t=1 qeZ (31)

Lagrangian_modification :constraintiintegration Aquantuminoise esignalidistortion
— A .

+ &5 “Eqt art

The QIO framework integrates a quantum-inspired Hamiltonian function to define the energy landscape of
N . . . . Hamiltonian formulation ener landscape

the optimization problem. The Hamiltonian function A - <O, 8- encodes

antum adient solutio efinement

Q?}U ntu ligr 1ern . qj ution r n en

ot refine search

microgrid system states, while quantum gradient updates

. s . . . Lagrangian _modification —constraint_integration .
directions. Lagrangian modifications ®-,*#"*""*"~ CEgt —mhee ensure hard constraints

quantum_ noise esignal_distortion

are incorporated. However, quantum noise Aj 0t can introduce instability in

energy estimations.

T
_ superposition state_coherence phase_ shifting adaptive_ decision
Q1o = E E Ao S + QB WL

t=1recAB (32)

temporal optimization —historical data_integration information _loss

+ (I)“/ tSeet - Aé O

suboptimal _decay
r,t

Quantum superposition principles allow simultaneous evaluation of multiple solution states, enhancing

. . iti state coherence .
computational efficiency. State coherence AZPPOTHON. @ - ensures consistency between

phase _shifting adaptive_decision
op gt

superimposed solutions, while phase shifting adapts decision parameters

. . o . temporal optimization —historical data integration
based on solution evolution. Temporal optimization &= "P7"* P “Ent —cata_intes

. . . . . information loss suboptimal deca;
integrates past microgrid performance data. However, information loss A S C —aeey

due to state collapse can impact long-term accuracy.

T
real time update state transition radient adaptation step refinement
Uqio = Ao — - SO M +0f —acep S P-
it B it
t=1icH (33)

dynamic convergence —solution stabilization computation delay latency impact
+ Oy - TSt - —A - achn -

é

The QIO framework must adapt to real-time energy variations. The dynamic update function

real time update state transition . . . . .
Ao O ensures rapid state evolution, while gradient adaptation

o it
radient adaptation step _refinement . . .

Q3 =~ P improves step selection. Dynamic convergence
dynamic _convergence —solution stabilization . . .

Yo - gonee . =29 - prevents oscillatory behavior. However, computational delays

computation delay latency impact T . . .. .
A, - A must be minimized for effective real-time optimization.

T
annealing schedule temperature adjustment exploitation bias local refinement
Gao=1 » (Ad - O - + 4 B

t=1 jeN (34)

exploration control —search expansion overfitting risk solution degeneration
+ &y - S — A T8

The quantum annealing cooling schedule must balance exploration and exploitation. The annealing function
annealing schedule temperature adjustment .
A - -0 - dynamically reduces temperature for gradual convergence.

@ Jrt
exploitation _bias qIlocal7reﬁnement

Exploitation bias £, . ensures detailed refinement in promising regions,

gt
. . exploration control —search expansion
while exploration control &5 - =P P prevents premature convergence. However,
. . overfitting _risk solution_degeneration s
overfitting risk A B ¢ it —ce8 must be mitigated.
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T
: : z : Aquantum_coherence estate_superposition+Qphase_adjustment \I/wave_alignment

@ m,t B m,t
t=1 me P (35)
entanglement stability —state correlation quantum__decoherence information loss
+ &, B Syt —As B Ot B

Quantum suEerposition allows multiple solutions to be evaluated simultaneously. The coherence function
quantum coherence state superposition
Aa - cO. L~
phase adjustment wave alignment . .. . . .
Qg - ’ Vo~ & aligns decision parameters for optimal exploration, while entanglement
e entanglement _stability —state correlation
stability @, CEt

quantum decoherence

decoherence A -0

maintains overlapping solution spaces. Phase adjustment

enhances cross-variable dependencies. However, quantum

information loss

.t must be managed.

T
historical integration temporal data phase modulation time adjustment
E : § : Aa - Ot - T Yo -

=1g¢e¥ (36)
prediction correction —adaptive refinement pattern instabilit trend error
+ 5 - TSt - —As B T0

Historical data integration enhances microgrid optimization by adjusting QIO parameters based
. historical integration temporal "data

on past usage. The function Ag - <O, -

hase modulation time adjustment
Qg - S e

a,

®prcdiction7corrcction :adaptivcircﬁncmcnt

5

CE gt refines evolving strategies. Pattern instability

incorporates previous trends,
while phase modulation corrects real-time shifts. Prediction
correction

pattern instability trend error .
A - ‘O must be accounted for to avoid erroneous trends.

T
optimalit ap solution accurac iterative refinement convergence control
E E Aa y_8& .O _ y + Q _ P g _

s,t B s,t
t=1 s€Z (37)
error _minimization —adjusted solution uncertainty bias fluctuation impact
+o, - TSt - - Aa Y- ’ es,t -

QIO must minimize its optimality gap for effective decision-making. The gap function

Agptimahty*gap~@z?thm°n*accumcy ensures the closeness of solutions to theoretical optima. Iterative
refinement Qiﬁterative*reﬁnemem . \I/Zf’tnvergeme*mmml stabilizes optimization pathways, while error
minimization @irror—minimization~E§ijusmd—somti°n corrects deviations. However, uncertainty bias
A;ncertaintyibias . ngctuationiimpact must be controlled.

T
j :j : Amulti_agent_interaction @collaborative_learning+Qpeer_inﬂuence \deistributed_decision_making

a k,t 8 k,t
collective optimization —global convergence conflict instability agent disagreement
+ @, B Skt —As B “Ope

Multi-agent QIO introduces decentralized decision-making for microgrid coordination. The function

multi_agent interaction collaborative learnin . . . . .
AT B -0, - £ enables information sharing among agents, while peer influence

ecer influence distributed decision makin . . s .
QZ - WL - - £ enhances adaptation to network-wide conditions. Collective

.. . collective optimization —global convergence . . .
optimization ®- - . :i P & ensures synchronized solution evolution. However,
s

. o1 < s . . conflict _instabilit; agent disagreement ces
instability from conflicting agent objectives A - V.o must be mitigated.

T
time adaptive update real time adjustment demand prediction forecast alignment
ST (A —update greal_time_adj + Qe W

t=1 yeN (39)

evolutionary control —adaptive rescheduling unexpected fluctuation demand shock
+ @, - Syt —As - O, -

A time-dependent update function is crucial for adjusting QIO in response to real-time energy demand variations.

. . . time adaptive update real time adjustment . . .
The time-adaptive function Ag  — " F7Ve-"P O, ’ ensures ongoing adaptation, while
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demand _ prediction \I/forecast_alignment

demand prediction {25 it aligns quantum search parameters with expected

. . evolutionary control —adaptive reschedulin
consumption trends. Evolutionary control & Y- CEg pEve £ further refines

. . . unexpected fluctuation demand shoc!
microgrid scheduling. However, demand shocks Ay~~~ ) -

k c s
y,t can cause deviations.

T
probability amplitude wavefunction control constraint mapping feasibility domain
g E Ao - e - +Q - - -

z,t B z,t
t=1 2 X (40)
solution pruning —decision filtering computational overflow processing bottleneck
q)"/ - ' :‘z,t n - A§ - ' ®z,t N

Quantum-inspired grobability amplitudes determine the feasibility of optimized solutions. The function
probability amplitude wavefunction control . . . el .. .
Ao - - O - ensures solutions maintain coherence within the optimization

z,t
. . constraint mapping feasibility domain ;. et .
search space. Constraint mapping {25 - W - aligns quantum probabilities with

. . . . solution pruning —decision _filtering ;. . .
real-world operational constraints. Solution pruning ® =P &.=05 - & discards infeasible
computational _overflow @processingibottleneck

solutions efficiently. However, computational bottlenecks A ot can

arise in large-scale applications.

T
Aincentive_dynamics Gsocial_adaptation stychological_reinforcement \Ilreward_response
o Mgt + 525 TVt

t=1 qe¥ (41)

¢game7theoryialignment . —strategy adjustment _ Adisengagementirisk . euseriattrition
Y —q,t & q,t

+

SCT plays a key role in shaping energy usage behaviors. The incentive dynamics function

incentive  dynamics social adaptation . . e .
Aq - ‘O, P adapts incentives to maximize user engagement. Psychological

sychological reinforcement reward response . .. . .
Qs ST ensures continuous participation in demand

ame theory alignment —strate adjustment
QEIme_Theoy _ane By ey refines reward

disengagement _risk @useriattrition
5l TVt

reinforcement
response programs. Game theory alignment
structures for optimal participation. However, disengagement risk A must

be minimized.

T
fair policy subsidy adjustment dynamic reallocation funding redistribution
SN (adreter gy +Q - ghndine_

w,t B T Fw,t
t=1 weZ (42)
utility equilibrium —household impact equity gap resource imbalance
+ @, - C St - —As = Oy -

Ensuring fairness in dynamic subsidy allocation is essential for balancing economic sustainability. The fair policy
fair policy subsidy adjustment . . . .
- -0 - dynamically adjusts subsidy structures based on evolving energy

function Aq w,t
s . . dynamic_reallocation funding redistribution
market conditions. Dynamic reallocation QBy - S e

. . e el utility _equilibrium —household impact . .
are directed to the most impactful areas. Utility equilibrium &5~ ¢ CEt =P maintains

ensures that funds

equity _gap Grcsourcciimbalancc

fairness across different consumer groups. However, persistent equity gaps A; w,t

must be addressed.

(=4 Tt r,t

T
Z Z <Aquamum7entang1emem georrelated_resource_allocation , distributed_optimization _interconnected_decisions

t=1re#

(43)
+ o5 Tt s it

global_constraint_satisfaction —system_wide_coordination _  entanglement _decoherence ®solution7inscabi1ity>

Quantum entanglement principles enhance interconnected resource optimization across microgrid

. quantum entanglement correlated resource allocation
subsystems. ~ The  entanglement  function  Aq - 10, - -

ensures dependencies between multiple energy sources, while distributed optimization

distributed optimization interconnected _decisions . . . . .

Qg =P B - aligns decentralized decision-making. Global constraint
. . lobal constraint _satisfaction —system wide coordination T

satisfaction ®%°°* - - HORME S guarantees feasibility across energy,

entanglement __decoherence @solutioniinstability

storage, and demand networks. However, quantum decoherence A ; ot

must be controlled to maintain solution robustness.
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T
gamification influence user engagement reward structure incentive response
Aq B 0. + QB - W -

+o, - - CSst — s - Y5t

peer learning effect —social reinforcement Abehavioral drift eparticipation_variance)

Gamification techniques influence real-time user decisions in energy management. The function
gamification _influence user__engagement .
Ao <B4 models behavioral engagement, while dynamic rewards

reward structure incentive response . . . . . . . .
Qg - Wy - adjust incentives for demand-side participation. Peer learning

peer_learning effect ._socml reinforcement . T .
D - “Eat strengthens adoption through social influence. However, behavioral

behavioral _drift articipation variance . . o1
drift A S poses a challenge in long-term sustainability of engagement.

T

quantum resilience microgrid stability disturbance mitigation fault recovery
- @microgrid +Q - gt
Y, B Y,
1 yex

t= (45)

(I)predlctwe control —adaptive protection Acyberithreatiexposure eattackivulnerability
+ Syt — g Oy

Microgrid resilience is modeled wusing a quantum-informed stability metric. The function

uantum _resilience microgrid _stabilit; . . . .

A S & ¥ ensures robustness against stochastic disturbances, while
disturbance mitigation fault recover;

fault recovery Qj € S Y

(I)prcdlctlvc Control ,_adaptlvc protection

gt enhances proactive mitigation strategies. However, cyber vulnerability

cyber threat exposure attack wvulnerability
As - - Oy

restores operations efficiently. Predictive control

poses risks requiring continuous security reinforcement.

v,t v,t

( tradeoff _ optimization eeconomic_feasibility+qustainability_integration \Ilcarbon_footprint_minimization
E E . 5 .

t=1 veX

(46)

multi_objective_balancing ,_,eﬁﬁciency stability conflicting priorities optimization instability
+ (1) —v,t - - Aé - ! @1; t -

The final constraint defines the trade-off between economic and sustainability objectives. The function
tradeoff optimization economic_ feasibility
Ab "0, ensures financial viability, while sustainability considerations

sustainability integration carbon footprint minimization . . . . .
959 —mhee O P - reduce environmental impact. Multi-objective

multi_objective balancing —efficiency stability
: —wv,t

balancing @, optimizes conflicting goals. However, instability from

conflicting _ priorities eoptimization_instability

competing objectives A ot requires robust decision frameworks.

Results

To validate the proposed quantum-inspired optimization framework, a case study is conducted on a rural
microgrid system with diverse renewable energy resources and demand-side response mechanisms. The
microgrid under consideration is modeled as a hybrid energy system integrating PV panels, wind turbines, and
hybrid energy storage, including lithium-ion batteries and hydrogen storage. The system covers a geographical
area of 25 km?2, supplying power to approximately 1,200 households and 15 industrial facilities with an
aggregated peak demand of 3.8 MW and an average daily energy consumption of 57. 6 MWh. The PV system has
an installed capacity of 5 MW, with an average daily solar irradiance of 5.5 kWh/m?, while the wind turbines
collectively contribute 4 MW, operating at an average wind speed of 6.8 m/s. The hybrld storage system consists
of a 3 MWh lithium-ion battery bank and a 5,000 kg hydrogen storage unit, ensuring flexible energy dispatch
and long-term energy buffering. The demand-side management (DSM) component integrates user participation
mechanisms, including real-time pricing, incentive-based demand response programs, and gamified user
engagement. The study models 1,000 residential users with varying behavioral patterns and responsiveness to
energy incentives, categorized into three groups: highly active participants (30%), moderate responders (50%),
and passive users (20%). Each group is assigned distinct elasticity parameters to simulate their reaction to
dynamic tariffs and behavioral incentives. The real-time pricing scheme is designed with a base rate of $0.12/
kWh, which fluctuates based on grid conditions, reaching a maximum of $0.35/kWh during peak load hours.
Incentive rewards are structured through a blockchain-based energy trading platform, allowing prosumers
to exchange excess energy at dynamically adjusted rates. The quantum-inspired optimization framework is
implemented in a high-performance computing environment, leveraging a 128-core GPU-accelerated server
with 1.5 TB RAM for computational efficiency. The core optimization algorithms are developed using Python
3.9, incorporating libraries such as D-Wave Ocean SDK for quantum annealing simulations, TensorFlow for
reinforcement learning-based policy updates, and Gurobi for mixed-integer optimization components. The
simulations are executed over a 24-month period, with a time resolution of 15-minute intervals, resulting in
700,800 data points per user and a total dataset exceeding 1 billion records. The QIO model is benchmarked
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against conventional metaheuristic approaches, including NSGA-III, genetic algorithms (GA), and particle
swarm optimization (PSO), to evaluate computational efficiency and solution quality. The QIO model achieves
an average convergence time of 3.2 seconds per iteration, significantly outperforming traditional methods,
which require 17.8 seconds on average.

To enhance the clarity of the system configuration used in the case study, an electrical topology diagram of the
modeled rural microgrid is provided. This diagram visually represents the physical structure of the microgrid,
including generation units, storage elements, filtering components, and load connections.

As shown in Fig. 2, the system integrates photovoltaic (PV) and wind generation units through dedicated
inverters, supported by dual storage systems consisting of a lithium-ion battery and a hydrogen fuel cell. All
generation sources converge at a common bus through a centralized LC filter composed of inductance (L),
capacitance (C'y), and a damping resistor (Rq). The load side incorporates both linear and nonlinear components,
with the nonlinear load modeled using a diode, a capacitance (C,), and a resistance (R, ). Additionally, the
microgrid maintains a grid connection, enabling both grid-tied and islanded operational modes.

In Fig. 3, the hexbin density distribution plot provides an insightful representation of the relationship between
solar and wind energy generation across a one-year period in the studied microgrid. The x-axis represents solar
generation (MW), ranging from 0 MW to 5 MW, while the y-axis denotes wind generation (MW), varying
between 0 MW and 4 MW. Each hexagonal bin represents a localized density of data points, with a color gradient
from light blue to dark blue indicating increasing frequency. The densest regions appear around solar generation
levels of 2.5 to 4 MW and wind generation between 1.5 to 3 MW, suggesting that these values frequently co-occur
in the dataset. The presence of several high-density clusters indicates a strong seasonal or daily pattern in the
renewable generation mix, reinforcing the necessity for dynamic resource allocation strategies to balance supply-
demand fluctuations effectively. A key observation from the figure is the asymmetry in the data distribution.
Solar power exhibits a relatively well-defined upper bound at 5 MW, corresponding to the system’s installed
photovoltaic (PV) capacity. However, wind power is more dispersed, with values distributed between 0 MW
and 4 MW, showing greater variability due to wind speed fluctuations. This aligns with the expected nature of
renewable resources, as solar energy follows a diurnal pattern with a predictable peak around midday, while
wind energy exhibits stochastic behavior influenced by meteorological conditions. The figure also shows that
extreme low-wind scenarios, where wind power generation is near 0 MW, occur across a wide range of solar
outputs, emphasizing the necessity of hybrid storage systems to mitigate sudden power imbalances.

In Fig. 4, the contour density plot provides an intuitive visualization of the co-variation between solar
and wind energy generation in the studied microgrid. The x-axis represents solar generation, ranging from 0
MW to 5 MW, while the y-axis represents wind generation, varying between 0 MW and 4 MW. The plot uses
contour lines to indicate regions of high density, where data points are concentrated, revealing the most frequent
combinations of solar and wind power output. The darkest contours correspond to the highest density regions,
which appear predominantly around solar generation levels of 2.5 to 4 MW and wind generation of 1.5 to 3
MW, confirming that these ranges define the dominant operational conditions for renewable energy supply.
Lighter contours toward the periphery indicate less frequent occurrences of extreme values, such as cases where
wind power is close to 0 MW, despite relatively high solar output, emphasizing the necessity of complementary
energy storage mechanisms. A closer examination of the density distribution reveals significant asymmetry in

PV
Invl
]
| |
Wind Linear Load
Inv2 Rq
]
| |
Ly
Battery Cy o
° Grid
T Inv3
[ | >
| I
R
Fuel Cell
_L CH
T Inv4
| Diode

Nonlinear Load

Fig. 2. Electrical topology of the proposed rural microgrid.
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renewable generation patterns. Solar generation follows a more predictable trend, with the majority of values
clustering near the upper bound of 5 MW, reflecting the high utilization of the photovoltaic system during peak
daylight hours. In contrast, wind generation exhibits greater variability, with occasional drops below 1 MW,
indicating periods of low wind speed. This aligns with the expected characteristics of renewable generation,
where solar energy is primarily dependent on daylight availability, while wind energy is subject to more erratic
meteorological conditions. The contour plot also highlights an interesting operational constraint—regions with
high wind generation exceeding 3.5 MW are relatively rare, suggesting either a structural limitation in turbine
efficiency or a naturally occurring cap in local wind conditions. This reinforces the importance of hybrid storage
solutions to balance fluctuations in supply, especially during low-wind scenarios when solar power alone may
not be sufficient to meet demand.

In Fig. 5, the multi-layered density plot presents a comprehensive visualization of the probability distribution
of solar and wind energy generation, as well as battery and hydrogen storage levels, within the microgrid system.
The x-axis represents the energy generation and storage levels in megawatts (MW), while the y-axis depicts
the density distribution, revealing the most frequently occurring energy values. The blue gradient represents
the density of solar and wind generation, while the gray gradient corresponds to battery and hydrogen storage
levels, providing a dual-layered perspective on renewable energy availability and storage utilization. High-
density regions appear where solar generation fluctuates between 2.5 MW and 4.5 MW, while wind power most
frequently remains within 1.5 MW to 3 MW. Conversely, energy storage distributions exhibit a lower-density
spread, with battery storage fluctuating between 0.8 MW and 2.5 MW, while hydrogen storage peaks around
2 MW to 4 MW, reflecting its role in long-term energy buffering. A key insight from the figure is the distinct
density separation between generation and storage profiles. Solar and wind energy generation exhibit higher
variance, with solar production forming a sharper density peak, indicative of its more predictable diurnal cycle,
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while wind generation follows a broader distribution due to its stochastic nature. In contrast, the density of
battery and hydrogen storage is more evenly spread, reflecting the energy buffering mechanisms in place to
smooth out fluctuations in generation. The lower density of battery storage at higher MW levels suggests that the
system relies more on short-term energy cycling, while hydrogen storage, which maintains a higher probability
density across a broader range, is employed for longer-duration energy retention. The presence of overlapping
density regions indicates key interaction points where generation and storage align, suggesting periods of
efficient energy balance in the microgrid.

Figure 6 provides an in-depth visualization of the relationship between storage utilization and renewable
energy contribution in the studied microgrid. The x-axis represents the percentage of storage utilization, which
ranges from 40% to 90%, while the y-axis represents the share of energy derived from renewable sources,
fluctuating between 55% and 100%. The hexagonal bins indicate the density of observations, with darker blue
regions highlighting frequent operating conditions. The densest clusters appear around storage utilization levels
of 60% to 80% and renewable shares of 70% to 85%, suggesting that the system frequently operates in a high-
renewable and moderately high-storage regime. The presence of scattered bins outside these core density zones
suggests occasional deviations, such as periods of lower renewable availability requiring higher storage discharge
or instances of surplus renewable energy leading to storage saturation.A key observation from the distribution is
the asymmetric spread of storage utilization. While renewable penetration extends close to 100% in some cases,
storage utilization rarely exceeds 85%, indicating a strategic dispatch mechanism that prevents excessive reliance
on stored energy. The lower density of observations at storage utilization below 50% suggests that the system
avoids underutilizing its storage assets, reinforcing the role of hybrid storage solutions in maintaining system
efficiency. The transition from mid-range renewable penetration (65%-75%) to high renewable penetration
(85%-95%) coincides with increased storage usage, reflecting the microgrid’s ability to effectively buffer energy
fluctuations. However, the presence of moderate-density bins in the 55%-65% renewable share range with
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corresponding storage utilization of 70%-80% suggests instances where storage is actively used to compensate
for lower renewable supply, ensuring a stable energy supply during suboptimal renewable conditions.

Figure 7 presents a three-dimensional representation of the relationship between economic cost, user
satisfaction, and renewable share, providing insights into the trade-offs involved in optimizing microgrid
performance. The x-axis represents user satisfaction (%), ranging from 50% to 100%, while the y-axis indicates
renewable energy share (%), varying between 50% and 100%. The z-axis corresponds to economic cost (USD),
showing values between approximately $100,000 and $200,000. The color gradient, transitioning from deep
blue to red, highlights different cost levels, with lower economic costs appearing at higher user satisfaction and
renewable energy share. The smooth curvature of the surface demonstrates that cost reductions are achieved
when both satisfaction and renewable share increase. However, local fluctuations in the surface suggest nonlinear
system behavior, likely influenced by variations in storage utilization, demand-side response, and energy
balancing strategies. A key insight from this figure is the existence of a high-cost region when user satisfaction
is below 70%, even if the renewable share remains above 80%. This suggests that low satisfaction levels correlate
with higher operational costs, possibly due to inefficient demand response participation or increased reliance
on expensive energy storage dispatch. Conversely, at user satisfaction levels above 85% and renewable shares
exceeding 80%, economic costs drop significantly, approaching $110,000 to $130,000. This indicates that an
integrated optimization strategy aligning high user engagement with renewable energy utilization can lead to
substantial cost reductions. The presence of slight oscillations in the cost surface, particularly for satisfaction
levels near 60%-75%, suggests regions where energy dispatch policies and incentive mechanisms may need
further refinement to stabilize costs.

Figure 8 provides a detailed visualization of the relationship between economic cost, renewable share, and
the optimality gap, which directly correlates with the performance of the quantum-inspired optimization model.
The x-axis represents economic cost (USD), spanning from $120,000 to $180,000, while the y-axis represents
renewable share (%), varying between 50% and 100%. The z-axis represents the optimality gap (%), which typically
falls between 0.015 and 0.05. The contour variations highlight how different levels of renewable penetration
and cost constraints affect the ability of the optimization algorithm to converge to a near-optimal solution.
The color gradient, ranging from dark blue to yellow, shows that lower optimality gaps (better solutions) are
concentrated in regions where the economic cost is minimized and renewable penetration is high. Conversely,
when renewable penetration is low and economic cost increases beyond $160,000, the optimality gap rises,
indicating that the optimization process struggles to find a globally efficient solution. A key observation from
this figure is that the optimality gap decreases significantly when renewable share exceeds 75%, suggesting that
the model performs best when a large proportion of energy is sourced from renewables. This aligns with the
expectation that high renewable penetration provides more flexible and cost-effective energy dispatch options,
reducing the system’s reliance on expensive storage solutions and peak-hour energy procurement. However,
the presence of localized fluctuations in the optimality gap when the economic cost is between $140,000 and
$160,000 suggests that within this range, small shifts in policy mechanisms, such as subsidies or demand-side
management, could lead to non-trivial variations in optimization performance. Additionally, the non-linearity
observed in the cost-optimality relationship indicates that aggressive cost-cutting strategies beyond a certain
threshold can actually lead to suboptimal decisions, potentially due to constraints on energy storage deployment
or insufficient demand-side flexibility.

Figure 9 provides an in-depth analysis of the relationship between storage utilization, economic cost, and
carbon reduction, revealing key trade-offs in energy system optimization. The x-axis represents storage utilization
(%), spanning from 40% to 90%, while the y-axis represents economic cost (USD), ranging between $120,000
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and $180,000. The z-axis represents carbon reduction (Tons), which fluctuates between 40 and 70 tons based on

different storage and cost configurations. The surface shows a general trend where increasing storage utilization

results in higher carbon reduction, particularly when economic costs remain within an optimized range. The

contour variations indicate that a storage utilization of 70%-85% and an economic cost between $130,000 and
$150,000 provides the highest CO2 reductions, aligning with an effective balance between financial investment
and environmental benefits. A significant insight from this visualization is the nonlinear nature of carbon
reduction in response to economic cost and storage utilization. While higher storage utilization generally leads
to increased CO2 savings, there is a diminishing return effect beyond 85% utilization, where further storage
increases contribute only marginal additional carbon reductions. Similarly, economic cost plays a crucial role,
as seen in the steep gradient change beyond $160,000, where increasing costs no longer provide proportionate
environmental benefits. This suggests that excessive investment in storage infrastructure without corresponding
increases in renewable generation or demand response measures may lead to inefficiencies. Additionally, the
presence of localized fluctuations in carbon reduction at storage levels between 50% and 60% indicates potential
instability in energy dispatch strategies, reinforcing the need for optimized scheduling and control policies to

maximize COz savings.

Scientific Reports |

(2025) 15:21326

| https://doi.org/10.1038/s41598-025-06199-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Metric Min Mean Max
Economic cost (USD) 125,740.5 | 149,385.2 | 176,820.3
Carbon reduction (Tons) | 42.3 56.8 69.2
Storage utilization (%) 45.7 72.4 88.9
Renewable share (%) 52.1 79.3 96.4
User satisfaction (%) 68.4 82.7 97.1

Table 1. Optimization performance metrics for microgrid operation.

Metric Min | Mean | Max

Iteration count 584 | 75.9 94.2

Quantum tunneling

0.02 | 0.07 0.12
rate

Energy function

improvement (%) 31165 10.8

Solution optimality
gap (%)

Table 2. Quantum optimization convergence analysis.

Amplitude | Local optima | Final solution
range escapes quality (%)
0.70-0.80 32 88.4
0.80-0.90 4.7 92.6
0.90-0.95 5.5 95.1

0.95-0.98 6.3 97.3
0.98-1.00 7.1 98.7

Table 3. Impact of quantum probability amplitude on solution exploration.

Table 1 presents the optimization performance metrics obtained from the proposed quantum-inspired
optimization framework for microgrid operation. The economic cost varies between $125,740.5 and $176,820.3,
with an average of $149,385.2, demonstrating the impact of different operational strategies and energy pricing
conditions. Carbon reduction shows a minimum of 42.3 tons and a maximum of 69.2 tons, with an average value
of 56.8 tons, highlighting the system’s ability to lower emissions by increasing renewable energy penetration and
optimizing demand-side response. Storage utilization ranges from 45.7% to 88.9%, with an average of 72.4%,
indicating that energy storage is effectively used to balance fluctuations in supply and demand. Renewable
share varies from 52.1% to 96.4%, with an average of 79.3%, reflecting the effectiveness of maximizing clean
energy integration while maintaining stable system operations. User satisfaction, which is influenced by demand
response incentives and service reliability, ranges between 68.4% and 97.1%, with an average value of 82.7%,
demonstrating the effectiveness of incentive-based mechanisms in improving engagement and flexibility in
energy consumption. The results in this table validate the effectiveness of the proposed optimization model in
balancing cost, carbon reduction, storage utilization, and renewable integration. The trade-offs between economic
performance and sustainability goals are evident, reinforcing the need for a well-structured optimization strategy
that adapts to varying energy supply and demand conditions. These findings provide a strong basis for guiding
decision-making in microgrid operations to achieve cost-effective and sustainable energy management.

Table 2 summarizes the performance of the quantum optimization framework in terms of its ability to
converge efficiently. The number of iterations required to reach near-optimal solutions varies from 58.4 to 94.2,
with an average of 75.9, demonstrating that the algorithm consistently finds high-quality solutions within a
reasonable computational effort. The quantum tunneling rate, which dictates the probability of escaping local
optima, has a mean value of 0.07, ensuring a controlled exploration process. The energy function improvement
per iteration averages 6.5%, confirming that the optimization approach steadily refines its solutions over time.
The optimality gap remains within 1.8% to 5.1%, validating the accuracy of the quantum-inspired approach in
producing near-optimal solutions.

Table 3 evaluates how different ranges of quantum probability amplitude affect the algorithm’s ability to
explore the solution space effectively. As the amplitude increases from 0.70 to 1.00, the number of successful
escapes from local optima increases from 3.2 to 7.1, demonstrating that stronger quantum coherence enhances
the ability to find better solutions. Similarly, the final solution quality improves from 88.4% to 98.7%, confirming
that higher probability amplitudes result in a more accurate and globally optimal solution. This suggests that
careful tuning of quantum probability amplitude is essential for achieving the best optimization outcomes.
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Conclusion

This work introduces an innovative optimization strategy inspired by quantum computing principles and
grounded in SCT to support more effective DSM within microgrids. The proposed method combines the
strengths of NSGA-III for handling multiple conflicting objectives with the exploratory power of quantum
annealing, enabling robust energy scheduling under complex and uncertain conditions. By embedding key
SCT constructs—such as social learning, confidence in decision-making, and peer-driven influence—into
the optimization process, the framework enhances both individual user responsiveness and collective system
performance. Experimental evaluations reveal that the approach achieves a balanced trade-off among economic
cost, load smoothing, and behavioral engagement, outperforming conventional optimization baselines in terms
of convergence and solution robustness. The behavior-aware structure also encourages more flexible and socially
aligned energy use among prosumers, contributing to long-term operational sustainability. Future efforts will
aim to apply the framework in practical microgrid environments, improve the modeling fidelity of human
behavioral responses using richer datasets, and further explore hybrid architectures to scale quantum-classical
optimization in real-time applications. Moreover, studying how SCT-based DSM aligns with emerging energy
market structures may open new avenues for dynamic, socially-integrated energy governance.

Despite the promising performance demonstrated by the proposed behavior-aware, quantum-inspired
energy management framework, certain limitations should be acknowledged. The current implementation
assumes access to high-performance computational infrastructure, such as multi-core servers and large
memory capacities, which may not be readily available to many utility providers or small-scale operators. The
computational burden associated with simulating quantum-inspired optimization methods remains nontrivial,
especially in large-scale microgrids. Furthermore, the reliance on complex behavioral modeling introduces
challenges in interpretability and robustness, as system performance may be sensitive to the assumptions
embedded in user behavior representations. To address these limitations, future research could explore the
development of scalable and lightweight optimization variants—such as surrogate-assisted methods, hierarchical
decomposition strategies, or hybrid architectures—that strike a balance between computational efficiency and
optimization quality. Additionally, advancing more adaptive and explainable behavioral modeling approaches
would further enhance the practicality and accessibility of the proposed framework in real-world deployment
scenarios.

Data availibility
The datasets generated during and/or analysed during the current study are not publicly available due to conflict
of interest but are available from the corresponding author on reasonable request.
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