Table 3 The DNN estimates degradation parameters, and the layers used in the network.

From: Recognition of anxiety and depression using gait data recorded by the kinect sensor: a machine learning approach with data augmentation

Component/hyperparameter

Type and description

Value

Input layer

Layer

FeatureInputLayer(size(4 for Depression − 2 for Anxiety))

Hidden layer 1

Layer sequence

FullyConnectedLayer(64) → batchNormalizationLayer → reluLayer → dropoutLayer(0.3)

Hidden layer 2

Layer sequence

FullyConnectedLayer(32) → batchNormalizationLayer → reluLayer → dropoutLayer(0.3)

Hidden layer 3

Layer sequence

FullyConnectedLayer(16) → reluLayer

Hidden layer 4

Layer sequence

FullyConnectedLayer(8) → reluLayer

Output layer

Layer sequence

FullyConnectedLayer(4 for Depression − 2 for Anxiety) → softmaxLayer → classificationLayer

Optimizer

Training option: adaptive moment estimation optimizer used for weight updates

‘Adam’

Max epochs

Training option: maximum number of training epochs

100

Minibatch size

Training option: number of samples per training mini-batch

16

Initial learning rate

Training option: starting value for the learning rate

1e-3

Shuffle

Training option: shuffles data at the beginning of each epoch

‘Every-epoch’

Validation patience

Training option: early stopping patience (stop if no improvement after 5 validations)

5

Cross-validation folds

Evaluation scheme number of folds used for cross-validation

10