
Dual decoding generative 
adversarial networks for infrared 
image enhancement
Yang Yu1, Lin Jiang1, Qijun Hu2, Qijie Cai3, Qiang Zeng1 & Xin Sun1

Infrared imaging technology is vital for security monitoring, industrial detection, and medical 
diagnosis. However, atmospheric thermal radiation degrades its quality, causing contrast reduction, 
texture blurring, and non-uniform noise. To address these challenges, this paper introduces a 
novel infrared image enhancement method using a dual decoding generative adversarial network 
(2D-GAN). First, internal and external skip connections are designed to enhance high-frequency detail 
transmission and mitigate gradient vanishing in deep networks, with local details being preserved 
as a result. Second, a cross-layer attention mechanism is proposed to adaptively adjust feature 
map weights spatially and across channels, with information loss during encoding-decoding being 
minimized and texture clarity and structural coherence being improved. Finally, a joint loss function 
is designed to integrate pixel-level accuracy, semantic consistency, and global structural coherence, 
with image realism and perceptual quality being enhanced consequently. Experiments demonstrate 
superior performance over existing methods in comparative and ablation studies on public datasets, 
confirming excellent enhancement capabilities and generalization.
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In recent years, with the widespread application of infrared images in fields such assecurity monitoring, 
industrial detection and medical diagnosis, their significance has become increasingly prominent. Infrared 
images are formed by infrared scanners that receive and record the thermal radiation emitted by target objects. 
As a passive imaging technology, infrared imaging relies on the thermal radiation characteristics of the target 
object. Compared with conventional optical images, infrared images exhibit a smaller grayscale variation 
range and are not linearly related to the target’s reflective properties. They generally have lower resolution and 
contrast. Additionally, images captured by infrared sensors often contain strong clutter noise, resulting in a low 
signal-to-noise ratio (SNR) and degraded visual quality. During the image acquisition process, factors such 
as atmospheric interference in thermal radiation transmission, differences in the detection range of imaging 
devices, and variations in the temperature range of target objects1–4 contribute to common issues in infrared 
images, including insufficient brightness, low SNR, and blurred details5,6. These challenges significantly impact 
subsequent processing tasks such as feature extraction, image segmentation, and object detection. As a result, 
infrared images typically require enhancement to improve image quality and visualization effects, ensuring more 
accurate and effective image analysis. Image enhancement technology aims to adjust image intensity values 
to improve visual quality, enhance contrast, and reduce noise. However, image enhancement is inherently 
subjective: if an image has low contrast, its intensity must be increased; conversely, if the image has high contrast, 
its intensity should be reduced to achieve proper visualization. In general, infrared images tend to have low 
contrast, making intensity enhancement a necessary step for improving their visual representation7.

In recent years, deep learning-based methods have achieved remarkable progress in infrared image 
enhancement, with Generative Adversarial Networks being widely adopted8. Through adversarial training, 
GANs can learn the distribution of infrared image features and generate enhanced images with higher 
quality. However, existing infrared image enhancement methods still face several challenges, such as loss of 
fine details, over-enhancement, and increased noise9–13. For instance, GAN-HA14 introduces a heterogeneous 
dual-discriminator network to simultaneously learn the thermal radiation information of infrared images and 
the texture details of visible images. However, this method relies on large-scale training data, making it less 
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effective in small-sample scenarios. Additionally, the lightweight GAN-based image fusion algorithm proposed 
by Wu et al.15 has made notable progress in computational efficiency, enabling more effective deployment of 
infrared image enhancement in embedded systems. Nonetheless, its generalization ability remains limited when 
dealing with complex backgrounds and varying illumination conditions. Another lightweight adversarial-based 
infrared image enhancement method16 enables efficient enhancement through edge-side deployment. However, 
its performance in enhancing target details in high-brightness regions is still suboptimal, leading to a loss of fine 
details in some bright areas, ultimately affecting image quality.

To address the limitations of existing approaches, this paper proposes a novel Dual Decoding Generative 
Adversarial Network (2D-GAN) to improve infrared image enhancement quality. The proposed method 
integrates internal and external skip connections, a cross-level attention mechanism, and a joint loss function 
to enhance feature transmission and optimize perceptual quality. The dual decoding structure enables the 
network to better capture both global information and local details of infrared images, facilitating a more 
refined enhancement process. The internal and external skip connections effectively mitigate information loss 
during encoding-decoding by preserving multi-scale feature consistency. Furthermore, the cross-level attention 
mechanism adaptively allocates positional weights across feature maps, optimizing enhancement in different 
regions and ensuring a more natural appearance of the generated images while preventing over-enhancement 
or detail loss. To further improve perceptual quality, the method incorporates a joint loss function that balances 
feature representation at multiple scales, ensuring both fine-grained texture details and overall structural 
coherence. Overall, this work makes four key contributions to infrared image enhancement:

•	 A double decoding generative adversarial network is introduced to enhance infrared image features across 
multiple scales, leveraging internal and external skip connections for improved detail preservation.

•	 A cross-layer attention mechanism is developed to adaptively weight spatial features in the feature map, facil-
itating region-specific enhancement while enhancing texture clarity and structural coherence.

•	 A joint loss function integrating WGAN-GP, MSE, VGG and Efficient Net is formulated to enhance image 
realism and perceptual quality through pixel-level accuracy, semantic consistency, and global structural co-
herence.

•	 A cross-scenario validation framework is established, with comparative experiments and ablation studies on 
public datasets confirming superior performance and generalization over existing methods.

The remaining sections are organized as follows: In section “Related work”, we review the relevant literature and 
analyze the limitations of current infrared image enhancement techniques. In section “Methods”, we introduce 
the implementation of 2D-GAN in detail, including the network architecture and loss function design. In section 
“Experimental results and analysis”, we describe the experimental dataset and experimental environment, and 
evaluate the performance of 2D-GAN through a series of experiments, while comparing it with existing methods. 
In section “Discussion”, we discuss the challenges encountered during the experiment, analyze the limitations 
of this method, and explore future research directions. Finally, in section “Conclusion”, we conclude this paper.

Related work
Overview of methods
Traditional infrared image enhancement methods mainly rely on histogram equalization (HE), which improves 
image contrast by adjusting pixel value distribution. Although this method enhances image visibility to some 
extent, its global adjustment strategy often leads to detail loss, noise amplification, and over-enhancement. To 
overcome these limitations, researchers have proposed various improvements in recent years.

For example, Wang et al.17 proposed an infrared image enhancement method based on multi-scale multi-
rectangular fusion. This method extracts image features at different scales through multi-scale mapping, 
enriching texture details and improving scene adaptability. Rivera-Aguilar18 adopted differential evolution to 
optimize histogram equalization, achieving adaptive pixel distribution adjustment and effectively avoiding 
oversaturation. Lu19 combined normal histogram matching with sharpening processing to improve brightness, 
contrast, and sharpness; however, its enhancement effect is limited by the selection of the reference histogram, 
resulting in low adaptability. Although these methods alleviate some of the shortcomings of HE, they still rely 
on global transformation strategies, making it difficult to achieve fine-grained local adaptive adjustments in 
complex infrared scenes, which may lead to the loss of local details or excessive enhancement.

Regarding detail enhancement in infrared images, Branchitta et al.20 proposed a dynamic range segmentation 
algorithm based on bilateral filtering (BF) in 2009, laying the foundation for subsequent layered filtering 
enhancement methods. In recent years, researchers have further optimized infrared image enhancement by 
integrating adaptive filtering, multi-scale fusion, and Retinex theory. For instance, the adaptive guided filtering 
method combined with global-local mapping21 enhances local details and optimizes global contrast, effectively 
improving image clarity. However, in complex scenes, this method may lead to over-enhancement and is highly 
sensitive to filtering parameters, limiting its generalization ability.

To further enhance contrast stability, a method combining multi-scale guided filtering and contrast-limited 
adaptive histogram equalization (CLAHE)22 decomposes images into different detail levels and applies CLAHE 
to the base layer to enhance overall brightness and contrast. While this method performs well in low-contrast 
image enhancement, it may cause excessive contrast in local regions, affecting visual consistency. Moreover, 
Song et al.23 proposed an adaptive histogram equalization method combining guided filtering and Gaussian 
filtering. This method first decomposes the original infrared image into a base layer and a detail layer using 
guided and Gaussian filtering, then applies adaptive histogram equalization to the base layer to improve overall 
brightness and contrast. For the detail layer, guided filtering is used for regularization, and a detail gain function 
is constructed to enhance detail information. Finally, the base and detail layers are fused to obtain the enhanced 
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infrared image. Although this method achieves effective detail recovery, it may still result in detail smoothing 
and is highly dependent on parameter selection, limiting its adaptability in complex scenarios.

Additionally, the multi-scale Retinex and sequential guided filtering method24 incorporates the Retinex model 
for multi-scale processing and employs sequential guided filtering to enhance details while suppressing noise, 
thereby improving the visual quality of infrared images. However, the non-linear processing of Retinex may lead 
to detail smoothing, and its strong dependence on parameter selection limits its adaptability. Although filtering-
based enhancement methods have made significant progress in detail recovery and contrast optimization, they 
still face challenges such as noise sensitivity, parameter dependence, and localized over-enhancement.

In recent years, deep learning technology has achieved remarkable advancements in infrared image 
enhancement. Unlike traditional methods, deep learning approaches learn image enhancement mappings in an 
end-to-end manner, enabling adaptive adjustment strategies that achieve more precise detail preservation and 
noise suppression. For instance, Cheng25 proposed a lightweight adversarial generative network that enhances 
images through multi-layer feature fusion and multi-scale loss optimization while significantly reducing 
computational complexity. Tang26 developed an edge gradient enhancement method that substantially improves 
gradient features in infrared and visible image fusion. Xie27 incorporated Retinex-Net to develop a low-light 
infrared image enhancement method, effectively improving overall image quality. However, deep learning-based 
methods still face challenges such as data scarcity and high computational costs.

Generative adversarial network
Since their introduction in 2014, generative adversarial networks (GANs) have achieved remarkable progress 
in various image processing and computer vision domains28. In recent years, their applications have expanded 
significantly, demonstrating enhanced capabilities in medical imaging, image fusion, image restoration, image 
generation, image colorization, and super-resolution29.

In medical imaging, GANs have been employed to generate synthetic medical images, addressing challenges 
such as patient privacy protection and data scarcity. For instance, they can produce realistic MRI and PET 
scans, improving the training of diagnostic models30. In the field of image fusion, researchers have developed 
a lightweight GAN based algorithm that integrates the convolutional block attention module (CBAM) and 
Depthwise Separable Convolution (DSConv), enabling efficient fusion of visible and infrared images for real-time 
applications on embedded devices15. In satellite image processing, GANs have been applied to super-resolution 
tasks, learning from high-resolution data to reconstruct fine details in low-resolution images, thereby enhancing 
clarity and information richness31. In the realm of super-resolution, the Photo-Realistic Super-Resolution GAN 
(SRGAN) has been widely used to upscale low-resolution images while preserving intricate details, significantly 
improving image quality32. For image restoration and inpainting, models such as the Contextual Attention GAN 
have demonstrated strong capabilities in reconstructing damaged images with high fidelity33.

GANs have also played a key role in image-to-image translation. Conditional GANs (cGANs) learn 
transformation mappings between different domains, enabling effective style transfer34. In text-to-image 
synthesis, GAN based models have been used to generate semantically coherent images from textual descriptions. 
Reed et al.35 proposed an early model for this task, while Zhang et al.36 introduced a conditional GAN capable 
of generating clear images under adverse weather conditions, such as rain and snow. Another approach by 
Zhang et al.37 utilizes a stacked GAN model to produce high-resolution images based on textual descriptions. 
Unsupervised image enhancement has also benefited from GANs, as demonstrated by Ni et al.38, who developed 
a model that learns image-to-image mappings without requiring supervised training data.

GANs have further advanced image colorization. Shafiq and Lee39 proposed a method that combines a 
transformer-based architecture with a GAN framework, effectively capturing global image context and enhancing 
visual quality. In medical image synthesis, Ju et al.40 introduced the Hybrid Augmented Generative Adversarial 
Network (HAGAN), which preserves structural textures and tissue details. This model incorporates an Attention 
Mixed Generator, a Hierarchical Discriminator, and a Reverse Skip Connection between the Discriminator and 
Generator.

Overall, these developments underscore the transformative impact of GANs on contemporary image 
processing and computer vision, demonstrating their versatility and efficacy across a wide spectrum of 
applications. To elucidate the architectural evolutions that have driven these advances, we now review both 
generator and discriminator designs.

Generator
The generator serves as the principal component of a generative adversarial network (GAN), with its 
architectural design decisively impacting the quality and diversity of generated images. Early implementations 
relied on multilayer perceptrons (MLPs), which were insufficient for synthesizing high-resolution content. 
This limitation motivated the transition to deep convolutional neural networks (DCNNs), which exhibited 
marked improvements in image fidelity. In recent advancements, several novel generator frameworks have 
emerged, StyleGAN241 introduces path length regularization and an expanded network capacity to ensure 
stable convergence and enhanced sample diversity at high resolutions; U-GAT-IT42 integrates adaptive layer-
instance normalization with attention mechanisms, enabling unsupervised image-to-image translation models 
to emphasize semantically critical regions and refine textural details; Real-ESRGAN43 employs purely synthetic 
training data augmented by higher-order degradation modeling and embeds a U-Net–based discriminator 
alongside spectral normalization within the generator, thereby achieving superior performance in real-
world super-resolution scenarios; TransGAN44 provides the first demonstration that a wholly transformer-
based generator can accomplish high-fidelity, high-resolution image synthesis, establishing a new paradigm 
for generator design. These cutting-edge architectures collectively offer valuable guidance and theoretical 
underpinnings for the development and optimization of the W-GAN generator in the present study.
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Discriminator
The discriminator serves as a fundamental component of GANs, exerting a decisive influence on adversarial 
training stability and the quality of generated images. Liu et al.45 developed a Polarization Image Quality 
Discriminator that performs weighted evaluations across different polarization channels to guide the fusion 
network’s training, thereby significantly enhancing contrast and preserving edge details in the fused output. 
Cong et al.46 introduced a Dual-Discriminator architecture that imposes adversarial constraints on style and 
content separately, effectively improving the realism and aesthetic quality of the enhanced images. Song et al.47 
proposed a Triple-Discriminator framework, wherein local patches from infrared images, visible-light images, 
and their difference images are independently classified; this design accentuates differential information to extract 
fine-grained details and salient object contours, markedly boosting clarity and texture retention in the fusion 
results. Zhang et al.48 devised Dual Markovian Discriminators that independently assess patches from infrared 
and visible modalities and jointly train with the generator to estimate and optimize both distributions; this 
method obviates the need for manual rule design, adapts end-to-end to cross-modal features, and achieves lower 
parameter counts and computational complexity compared to fuzzy logic–based approaches, rendering it more 
suitable for real-time infrared enhancement. In contrast, fuzzy-logic–based discriminators address uncertainty 
by embedding membership functions and rule-based inference within the network. However, these rule bases 
are typically handcrafted from expert knowledge and are not amenable to joint end-to-end optimization with 
network weights, thereby impairing the model’s ability to generalize to complex imaging scenarios49. As a 
result, such discriminators frequently exhibit excessive smoothing, loss of fine structural details, and substantial 
computational overhead, which limits their applicability to real-time infrared image enhancement.

Attention mechanisms in image enhancement
In recent years, with the rapid advancement of deep neural networks in image processing, attention mechanisms 
have emerged as a pivotal technique for enhancing image enhancement performance due to their ability to 
adaptively weight salient regions in feature maps while suppressing redundant information. Xu et al.50 proposed 
an underwater image enhancement method based on cross-attention, which establishes mutual attention 
between different channels and spatial positions to adaptively focus on critical visual cues, significantly improving 
the quality of low-contrast and color-distorted underwater scenes. Zhou et al.51 designed a Pixel-Weighted 
Channel Attention Module (PCAM) that captures inter-channel dependencies and adaptively recalibrates 
channel features based on the degree of image degradation, substantially enhancing detail preservation and 
visual fidelity in image restoration. Chen et al.52 introduced a multi-attention framework grounded in non-local 
attention, embedding the non-local means concept into convolutional neural networks to adaptively capture 
long-range contextual information via weighted aggregation of global pixel pairs, thereby markedly improving 
detail recovery and visual quality in multi-exposure low-light images. Dong et al.53 proposed a shared-weight 
attention mechanism in a CNN–graph attention network for hyperspectral image classification, wherein 
identical weight vectors are utilized across all graph attention layers to compute inter-node attention coefficients, 
significantly reducing parameter counts and enhancing computational efficiency. Concurrently, Wang et al.54 
incorporated Multi-Head Self-Attention (MHSA) within the LeWin Transformer module of Uformer, enabling 
more effective capture of long-range dependencies and multi-scale features in image denoising, deraining, 
and deblurring tasks, resulting in notable improvements in restoration quality. Collectively, these attention 
mechanisms, by dynamically emphasizing critical information and suppressing noise, have demonstrably 
elevated the representational capacity and generalization ability of enhancement models across diverse tasks, 
thereby providing robust support for image enhancement in underwater, infrared, polarization, hyperspectral, 
and multi-exposure low-light scenarios.

Methods
Basic principles of generative adversarial networks
The basic principle of generative adversarial networks55 (GAN) is to train two models through games: generator 
and discriminator. The generator and discriminator train and optimize each other during the game. The 
generator receives random noise as input and generates samples through a series of transformation and mapping 
operations. The discriminator receives the samples generated by the generator and the real samples and outputs 
the probability value of judging the sample to be a real sample. The goal of the generator is to generate as realistic 
samples as possible to fool the discriminator so that it cannot accurately distinguish between generated samples 
and real samples, while the goal of the discriminator is to judge the authenticity of the samples as accurately 
as possible. The two compete with each other, learn from each other, and adjust their parameters to improve 
performance by constantly alternating optimization training, until the distribution of samples generated by the 
generator is close enough to the distribution of real samples, and the discriminator cannot effectively distinguish 
them. The basic structure diagram of GAN is shown in Fig. 1.

As shown in Fig. 1, random noise is input to the predefined generator model for training. During the training 
process, the generator G will generate a fake image G(z) similar to the real image distribution. The generated 
G(z) is input into the discriminatorD together with the corresponding real image x. The discriminator model 
will identify the two images and give a judgment result. The optimization goals of the generator model and the 
discriminator model confront each other, and their losses can be expressed as formula (1):

	
min

G
max

D
V (G, D) = Ex∼Pdata(x)[logD(x)] + Ez∼Pnoise(z)[log(1 − D(G(z)))]� (1)

among them, E is the expected value of the distribution function, x is the real sample, z is random noise, Pdata(x) 
is the distribution of the real sample, Pnoise(z) is the distribution of the noise, and G(z) is the sample generated 
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by the generator network. D(x) is the probability that the discriminator network determines that the real sample 
is true, and D(G(z)) is the probability that the discriminator network determines that the generated sample is 
true.

Image enhancement network based on 2D-GAN
To enhance infrared images, this chapter designs a dual-decoding generative adversarial network (2D-GAN), 
whose network structure is shown in Fig. 2. The generation network of 2D-GAN consists of a basic encoding-
decoding network, internal skip connections, external skip connections, and cross-level attention modules. The 
discriminative network adopts a Markov discriminator containing four convolutional layers.

In Fig. 2a, the input of the 2D-GAN generation model is an infrared image of size 128 × 128. In the first 
encoding stage, convolution and batching with a kernel size of 4 × 4 and a step size of 2 are mainly used. 
Normalization and Leaky ReLU (Leaky Rectified Linear Unit) activation are used to extract features. The 
decoding stage uses transposed convolution with a kernel size of 4 × 4 and a stride of 2, along with batch 
normalization and Leaky ReLU activation. Internal skip connections are used to receive feature information 
from the encoding stage, thereby reducing information loss in this process.The operation of the second stage 
is similar to the first stage, but it takes the intermediate image output by the first stage as input. It then encodes 
this image and integrates the feature information of the first stage through external skip connections during 
encoding. During decoding, the second stage uses cross-level attention to weigh the coding features of the first 
stage. It does so by using both the corresponding coding feature information from the first stage and the feature 
information obtained by decoding from the previous layer. These features are then integrated with the coding 
features of the second stage to complete the decoding process.

In the generative model of the 2D-GAN network, more comprehensive information is captured through the 
encoding process, and this information is gradually restored during the decoding stage, which helps the network 
better understand the relationship between different areas in the image and can also effectively improve The 
network’s ability to understand and enhance image details. Compared with one decoding, two decodings can 
better reconstruct the fine structure and edge details of the image, thereby improving the quality and clarity of the 
image. In general, the network structure used in this article can provide stronger feature expression capabilities 
and better detail retention capabilities, which helps the model achieve better performance and results in image 
processing tasks.

The discriminative model structure used by 2D-GAN is shown in Fig. 2b. The real and generated images 
of size 128 × 128 are converted into block outputs of size 8 × 8 through 5 convolutional layers. The first 4 
convolutional layers use a kernel size of 4 × 4 and a stride of 2, with batch normalization and Leaky ReLU 
activation. The last layer uses a stride of 1. The discriminative model divides the generated image and the real 
image into multiple overlapping patches and performs independent evaluation and discrimination on each 
patch. By comparing the similarity of each patch, the discriminative model can discover inconsistencies and 
errors in local areas and punish them. Compared with the global discriminator, the Markov discriminator used 
in this article pays more attention to the local details and structure of the image and can evaluate the authenticity 
of the generated image in more detail, allowing the generative model to generate higher-quality images.

Internal skip connections
In the encoder–decoder network, the skip connection plays the role of transferring the feature information 
extracted by the low-level network to the high-level network56. It enables the network to retain the high-
resolution information of the image and helps to enhance the image texture and some details.

The inner skip connection designed in this paper aims to solve the problem of loss of detailed information and 
the problem of gradient vanishing in the infrared image enhancement task. By establishing a direct connection 
between the encoder and the decoder, the inner skip connection realizes the reuse of feature information, which 

Fig. 1.  Generative adversarial network structure.
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allows the detailed features of the lower layers in the network to be transferred to the higher layers and fused 
with the semantic information of the higher layers, thus improving the overall performance, expressiveness, 
and generative effects of the network. For the network, skip connections can be regarded as an information 
shortcut, allowing gradients to be propagated directly back to the lower-level network, avoiding the problem of 
gradient disappearance during network training. This enables the 2D-GAN network to stack layers deeper to 
better capture the high-level semantics of images.

Specifically, in the network decoding stage, the inner skip connection passes the feature map f i
e  of the same 

resolution corresponding to the encoding stage to the decoding stage. The feature map f i−1
d  from the previous 

decoding stage is processed by transposed convolution, batch normalization, and activation function to obtain 
a feature map with doubled resolution. This feature map is then concatenated with f i

e  to obtain the feature map 
fd

i of this decoding stage.This process can be expressed by formula (2):

	 f i
d = Concat(ReLU(BN(ConvT (f i−1

d ))), f i
e)� (2)

among them, ConvT (·) is the transposed convolution operation with a kernel size of 4, a stride of 2, and a padding 
of 1, which doubles the size of the feature map. BN is the batch normalization operation with a momentum 
parameter of 0.8. The activation function is denoted as ReLU, and Concat represents the concatenation of feature 
maps along the channel dimension.

Internal skip connections play an important role in the main architecture of the network. They enable the 
network to have better context awareness, attend to both low-frequency structural information and high-

Fig. 2.  2D-GAN network structure.
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frequency detail information in the image, promote image generation and detail recovery, and help improve the 
quality and accuracy of image enhancement.

External skip connections
The external skip connections transfer characteristic information from the decoder in the previous encoding-
decoding network to the encoder in the subsequent encoding-decoding network. This approach improves the 
encoder’s understanding and representation of input data while reducing the risk of information loss during 
encoding. Additionally, it helps maintain a high-quality feature representation, enhancing the network’s 
perceptual ability and image generation quality.

As shown in Fig. 3, the external skip connection performs channel dimensionality reduction on the features 
fd1

i  from the first decoding stage and passes them to the second encoding stage. These features are then 
compared with the corresponding features from the second encoding stage at the same depth. After integration 
and downsampling, the next-stage encoding feature fe2

i+1 is obtained.
This process can be expressed as formula (3):

	 f i+1
e2 = conv2(ReLU(BN(conv1(concat(conv1(f i

d1 , f i
e2 ))))� (3)

where f i
d1  is the feature at depth i in the first decoding stage. conv1 is the convolution operation that preserves 

the spatial size of the input feature map while reducing the number of channels by half. conv2 is the convolution 
operation that reduces the spatial size of the input feature map by half.

In the architecture of the generative network, the introduction of external skip connections helps to optimize 
the training and generation effects of the network. By transferring the feature information of the decoder in the 
first stage to the encoder in the later stage, the network can not only obtain the high-level semantic information 
from the first decoding stage, but also, when combined with the inner skip connection in the first encoding-
decoding network, extract detailed feature information from one encoding stage in the third stage. In this way, 
the integration of information from multiple parties allows the network to utilize richer feature representations 
to generate more accurate and detailed image results. This connection method also helps alleviate the vanishing 
gradient problem of the network and accelerates model convergence.

Cross-level attention
In infrared image enhancement tasks, over-enhancement often occurs in the pursuit of higher quality infrared 
images. Over-enhancement refers to the over-processing of the image, resulting in sharpening, unnaturalness, 
color distortion, and other problems in the enhanced image. To avoid over-enhancement, this paper designs a 
cross-level attention module. By adding an attention module to the network, the model can automatically learn 
the weight of each position in the feature map, thereby processing different areas to varying degrees during 
the enhancement process and helping the model focus more on retaining the naturalness and coherence of the 
image.

Under the adjustment of the attention mechanism, the model can avoid excessive enhancement of these areas 
by giving lower weights to the existing brightness and details in the image, thus avoiding sharpening, serious 
exposure, and other artifacts. In addition, the cross-level attention module can achieve a weighted fusion of 
shallow network features and deep features, which improves the expressive ability of the model and the quality 
of the generated results, allowing the network to better capture the semantic information and detailed features 
of the image.

The structure of the cross-level attention module is shown in Fig. 4. Its two inputs are the first encoding stage 
feature f i

e1  and the second decoding stage feature f i−1
d2

. The output is the weighted feature f̂ i
e1 .

In Fig. 4, convolution and batch normalization operations with a kernel size of 1 × 1 are performed before 
the feature maps are added. Sigmoid represents a function that maps the data to a value between 0 and 1. After 
weighing the features, it is still necessary to combine the feature information from the second encoding stage 
to ensure that the detailed features of the image are effectively enhanced. It is worth noting that in the second 

Fig. 3.  External skip connection structure.
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decoding stage, the target of cross-level attention is the feature from the first encoding stage. This is equivalent to 
the network decoding the features from the first encoding stage twice, and the second decoding also incorporates 
information from the first decoding stage. The advantage of this is that it can prevent feature loss in multiple 
rounds of encoding and decoding and help the network obtain higher-level semantic information.

Loss function
The proposed 2D-GAN network utilizes multiple loss functions to optimize the image generation process 
and achieve high-quality image enhancement. Specifically, the loss functions include Wasserstein GAN with 
Gradient Penalty (WGAN-GP), Mean Squared Error (MSE) loss, Visual Geometry Group (VGG) loss, and 
EfficientNet loss. By comprehensively considering the contributions of these loss functions, the quality of the 
generated images can be effectively improved.

Adversarial losses include generation loss and discriminative loss, which employ adversarial training to 
encourage the generator to generate more realistic and visually coherent images. Unlike Least Squares GAN 
(LSGAN)57, our method adopts Wasserstein GAN with Gradient Penalty (WGAN-GP)58, which improves 
training stability by enforcing the Lipschitz constraint. The generator G aims to generate realistic enhanced 
images, while the discriminator D is optimized to distinguish real images from generated ones. The adversarial 
loss is defined as follows:

	

{
LD = Ex∼Pfake [D(G(x))] − Ey∼Pdata [D(y)] + λE[(∥∇x̂D(x̂)∥2 − 1)2]
LG = −Ex∼Pfake [D(G(x))] � (4)

where y is the reference image, x is the input image to be enhanced, and G(x) is the generated image from 
the generator. The third term in LD  is the gradient penalty, which enforces the 1-Lipschitz constraint on the 
discriminator, improving training stability and reducing the risk of mode collapse.

The MSE loss function is based on Gaussian prior, and its function is to improve the network’s enhancement 
effect on infrared images. It compares the generator-enhanced image and the reference image pixel-by-pixel 
and calculates the square of the difference between them. Specifically, for each pixel, the mean square error loss 
function calculates the difference between the enhanced image and the reference image, squares the difference, 
and then sums or averages all pixels. Its definition formula is shown in formula (5):

	
LMSE = 1

W H

W∑
i=1

H∑
j=1

[∥∥yi,j − G(x)i.j

∥∥
2

2
]

� (5)

where W  and H  are the width and height of the image, respectively. The mean square error (MSE) loss function 
encourages the model to generate an enhanced image that closely matches the reference image at each pixel 
position. If the enhanced image is very similar to the reference image at the pixel level, the MSE loss approaches 
zero, whereas a large discrepancy results in a higher loss value. The MSE loss function is sensitive to outliers, but 
its negative impact can be mitigated through the combination of multiple loss weights.

Perceptual Loss aims to measure the perceptual difference between the generated image and the target image. 
It measures the similarity between generated and target images by comparing their differences in high-level 
feature representations. It is able to focus more on the perceived quality of an image rather than just pixel-level 
differences. By introducing perceptual losses, generative models can better capture the semantic and textural 
features of target images, thereby generating more realistic and high-quality images.

VGG loss is a perceptual loss function based on the VGG network. The VGG network is a deep convolutional 
neural network that consists of multiple convolutional layers and pooling layers, and can extract semantic 
information and texture features of the image. The pre-trained VGG network has learned rich image feature 
representations by being trained on the large-scale image dataset ImageNet. The core idea of VGG loss is to use 
the pre-trained VGG network to extract feature representations of images and compare the differences in these 
feature representations between the generated image and the target image. Its expression is shown in formula (6):

Fig. 4.  Cross-level attention mechanism structure.
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LV GG = 1

CW H

C∑
i=1

W∑
j=1

H∑
k=1

∥∥ϕi,j,k(y) − ϕi,j,k(G(x))
∥∥

2� (6)

where C, W, and H are the number of channels, width, and height of the feature map respectively, and ϕ(x) 
represents the feature representation of the image in the Block5_conv2 layer in the VGG network.

EfficientNet Loss follows a similar principle but extracts feature representations from a pre-trained 
EfficientNet-B0 model, focusing on global structure and efficient feature encoding. Unlike pixel-wise losses, it 
leverages hierarchical features to preserve both fine details and overall coherence. The formulation is given in 
Eq. (7):

	
LEff = 1

CW H

C∑
i=1

W∑
j=1

H∑
k=1

∥∥ϕi,j,k
Eff (y) − ϕi,j,k

Eff (G(x))
∥∥

2� (7)

where ϕEff (x) denotes the features extracted from the final feature layers of EfficientNet-B0.
The total loss used by the 2D-GAN network is a weighted combination of the above losses and is defined as 

follows in formula (8):

	 Loss = LG + λ1LMSE + λ2LV GG + λ3LEff � (8)

where λ1, λ2, and λ3 are the weighting coefficients for MSE loss, VGG loss, and EfficientNet loss, respectively.
The adversarial loss and MSE loss ensure that the generated image closely resembles the target image at the 

pixel level, while the combination of VGG and EfficientNet allows the generator to capture both local fine details 
and global structural consistency. This integrated approach enhances the realism and perceptual fidelity of the 
generated images.

Experimental results and analysis
Data settings
Experimental data

	1.	 ImageNet database

Low-contrast grayscale images resemble infrared images in their characteristics. The images lack clarity, and 
the boundaries between the target and background are blurred. Traditional methods are generally trained on 
preprocessed visible-light images. In our experiment, 5004 images were randomly selected from the benchmark 
dataset ImageNet59 for training, and 500 images were used for validation. First, these images were converted 
into grayscale to obtain high-quality grayscale images. Then, a random contrast function was applied within 
a predefined contrast factor range to reduce contrast. Gaussian noise and blur were further added to decrease 
image brightness, thereby generating the corresponding low-quality grayscale image. As shown in Fig. 5, the 
first row contains high-quality reference images, while the second row presents the corresponding low-quality 
input images.

	2.	 Sober–Drunk database

The Sober–Drunk Database infrared image dataset was created by Koukiou from the University of Patras in 
Greece. It collects infrared images of the face, eyes, sides, and hands of people before and after drinking. Relevant 

Fig. 5.  High-quality reference image and low-quality input image examples.
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data were collected through FLIR’s A10 thermal infrared camera, which operates at a wavelength of 7.5 µm 
to 13.0 µm60. Each time, a sequence of 50 thermal infrared image frames with a resolution of 128 × 160 was 
collected, and the sampling period between frames was 100 ms.

In this article, due to the relatively short sampling period between frames, the similarity between some 
images is high, so the sample images need to be screened and quantitatively enhanced to prevent model 
overfitting. Therefore, some images were selected from the original dataset as basic sample data. Each sample 
contains infrared images from four perspectives of the face, eyes, hands, and sides. The basic sample images 
were horizontally flipped, rotated, cropped, partially covered, and blurred, combining multiple augmentation 
methods to enhance the data. An example of data enhancement on an ordinary facial infrared image is shown 
in Fig. 6. The final number of sample images obtained was 1120, including 640 drinking samples and 480 non-
drinking samples. The experiments in this chapter used facial data for model training, and the training set, 
validation set, and test set were divided in a ratio of 7:2:1.

Environment and parameter settings
During the experiment, the system used was Windows 11; the graphics card model was NVIDIA GeForce RTX 
3080; the processor was a 3.8GHz AMD Ryzen 7 5800X 8-Core Processor; the programming language was 
Python; and the deep learning framework used was PyTorch. The parameters of this experiment were designed 
as follows: the batch size was set to 8, the number of epochs to 101, the initial learning rate to 0.0003, and the 
Adam optimizer was used. The environment configuration used in the experiment was shown in Table 1.

To assess the computational complexity of the proposed model, we evaluated the number of floating-point 
operations (FLOPs), parameter count, and inference time. The FLOPs and parameter count were computed 
using the thop library, while the inference time was obtained by running the model 100 times on a single image 
and calculating the average execution time. The results are summarized in Table 2.

Evaluation index
Image quality evaluation methods can be divided into two categories: subjective evaluation and objective 
evaluation. Among them, the subjective evaluation method is based on statistical significance. It uses a sufficient 

Accessories Parameter

Operating system Windows 11

Processor AMD Ryzen 7 5800X

Graphics card NVIDIA GeForce RTX 3080

Machine with RAM 32GB

Experiment platform PyCharm2021

Table 1.  Experimental environment configuration.

 

Fig. 6.  Infrared facial image data augmentation.
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number of observers to make a qualitative assessment of the image quality. Objective evaluation methods are 
mainly divided into two types: full-reference and no-reference methods61.

Full-reference image quality evaluation assesses an image by analyzing the difference between it and an ideal 
reference image62. Commonly used full-reference image quality evaluation metrics include Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity Index (SSIM).

The peak signal-to-noise ratio is based on image pixels and evaluates image quality by calculating the 
difference between corresponding pixels of the evaluated image and the reference image. Its calculation is given 
in formula (9):

	
P SNR = 10 × lg MAXI

2

1
MN

∑M

i=1

∑N

j=1

∣∣R(i,j)−F (i,j)
∣∣2 � (9)

among them, MAXI  is the maximum pixel value of the image, typically set to 255. R is the reference image, F 
is the image to be evaluated, and M and N are the width and height of the image, respectively. A higher PSNR 
value generally indicates better image quality. However, since it is based on the global statistics of pixel values, it 
overlooks local visual factors. In some cases, an image may have a high PSNR value, yet its perceptual quality as 
judged by the human eye may be poor.

Structural similarity is based on structural information. The similarity between the structures of two images 
is computed based on the correlation between image pixels, and the image quality is measured in terms of 
brightness, contrast, and structure. It is defined in formula (10):

	
SSIM(X, Y ) = (2µX µY +C1)(2σXY +C2

(µ2
X

+µ2
Y

+C1)(σ2
X

+σ2
Y

+C2) � (10)

where µX  and µY  denote the average gray values of image X and image Y, σXY  denotes the covariance between 
them, σ2

X  and σ2
Y  are their variances, and C1 and C2 are constants used to stabilize the denominator when it is 

close to zero. SSIM takes values in the range [0, 1], where a value closer to 1 indicates greater similarity between 
the two images. SSIM evaluates image quality from multiple aspects and is one of the most important objective 
metrics.

The reference-free method, also known as the no-reference evaluation method, breaks away from the 
dependence on a reference image and evaluates image quality based on the statistical characteristics of the image. 
Commonly used no-reference image quality evaluation metrics include Average Gradient (AG), Information 
Entropy (IE), and Enhancement Measure Evaluation (EME).

The average gradient can measure the detail and texture variations in the image, reflecting its ability to 
represent fine structures. The specific formula is given by formula (11):

	
AG = 1

MN

M∑
i=1

N∑
j=1

√
(∆xF (i, j))2 + (∆yF (i, j))2� (11)

where ∆xF (i, j) and ∆yF (i, j) respectively represent the first-order differences in the x and y directions of 
pixel (i, j) in the evaluated image F. A higher AG value indicates greater image brightness and richer detail.

Information entropy quantifies the amount of information in an image from the perspective of information 
theory. It is defined in formula (12):

	
IE = −

255∑
i=0

p(i)log2p(i)� (12)

where p(i) denotes the probability of gray level i occurring in the image. A higher IE value generally indicates 
better image quality.

Comparative experiment
To validate the effectiveness of the proposed method, we compare our model with several publicly available 
infrared image enhancement algorithms. Specifically, we consider traditional enhancement techniques such as 
histogram equalization (HE) and contrast-limited adaptive histogram equalization (CLAHE), which are widely 
used for improving image contrast. Additionally, we include guided filtering-based image enhancement (GF)63, 
Single-Scale Retinex (SSR)64, and Multi-Scale Retinex (MSR)65, which leverage image decomposition and 
illumination correction to enhance details while preserving structural consistency. Beyond these conventional 
methods, we also compare our method with deep learning-based approaches, including the Brightness-based 
Convolutional Neural Network for Thermal Image Enhancement (TIECNN)66, which employs convolutional 

Model FLOPs (G) Parameters (M) Inference time (ms)

Generator 61.32 12.18 9.417

Discriminator 3.46 1.46 1.113

Table 2.  Computational complexity and inference time.
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neural networks to improve the perceptual quality of thermal images, and the Fully-Convolutional Underwater 
Image Enhancement GAN (FUnIE-GAN)67, a generative adversarial network originally designed for underwater 
image enhancement but also applicable to infrared image enhancement tasks. This comprehensive comparison 
enables a rigorous evaluation of our method’s performance in contrast to both traditional and deep learning-
based approaches.

Each algorithm was tested comparatively on Dataset 1. The evaluation metrics used include Average Gradient 
(AG), Information Entropy (IE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM). 
The experimental results are shown in Figs. 7, 8, 9, and Table 3.

Histogram Equalization (HE) significantly enhances image contrast, as indicated by its high AG values. 
However, this often leads to structural distortions and increased noise. As shown in Fig.  8b, HE introduces 
blocky artifacts, particularly in high-brightness regions, causing unnatural intensity distributions. This effect is 
further reflected in its low PSNR (9.1228) and SSIM (0.3746) scores in Example 3, indicating a significant loss of 
structural coherence. Overexposed regions in Figs. 7b and 8b highlight its instability under varying illumination.

CLAHE partially mitigates these issues by locally adjusting contrast, leading to improvements in PSNR and 
SSIM compared to HE. However, as seen in Figs. 7c and 8c, CLAHE struggles with uneven brightness adaptation 
across different regions. This is particularly evident in Fig. 9c, where darker regions remain under-enhanced, 
limiting visibility improvements in low-light conditions.

Guided Filtering (GF), Single-Scale Retinex (SSR), and Multi-Scale Retinex (MSR) provide moderate 
enhancements but show limited improvement in image clarity. Their lower AG values suggest weaker contrast 
enhancement, while their PSNR values, all below 16, indicate a lack of fine detail preservation. As seen in 
Figs. 7d–f and 8d–f, these methods enhance brightness but introduce excessive smoothing, leading to a loss of 

Fig. 7.  Example 1 experimental results.
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high-frequency textures. This effect is particularly noticeable in Fig. 9f, where fine structures appear blurred. 
Their SSIM values, remaining below 0.5, further confirm their limited ability to retain the original image 
structure.

Although traditional methods enhance image contrast, they often introduce noise and fail to preserve fine 
structural details. To address these limitations, deep learning-based methods have been explored. TIECNN 
achieves higher PSNR and SSIM scores than conventional methods, yet it tends to overexpose bright areas, 
leading to loss of detail, as seen in Figs. 7 and 8. Similarly, FUnIE-GAN achieves higher SSIM and PSNR scores 
compared to traditional methods, indicating better structural preservation and noise suppression. However, as 
seen in Figs. 8h and 9h, the method struggles to retain details in dark regions, leading to texture flattening and 
reduced perceptual quality.

In contrast, the proposed 2D-GAN based method consistently outperforms all other approaches in terms of 
PSNR, SSIM, AG, and IE, ensuring both contrast enhancement and fine detail preservation. The self-attention 
mechanism employed in the model enables better retention of local and global structural information, ensuring 
high-quality enhancement under varying illumination conditions. As shown in Table 3, the 2D-GAN method 
consistently outperforms TIECNN and FUnIE-GAN across all four evaluation indicators. These findings 
underscore the effectiveness and superiority of the proposed approach in infrared image enhancement, further 
validated by both quantitative analysis and qualitative visual assessments presented in Figs. 7, 8, and 9.

Ablation experiment
To further verify the effectiveness of the network structure and each proposed component, ablation experiments 
were conducted on both the overall network architecture and its main components. The main structures and 

Fig. 8.  Example 2 experimental results.
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Method OG HE CLAHE GF SSR MSR TIECNN FUnIE Ours

Img1

AG 6.0248 21.5455 20.3509 10.9852 7.8593 7.9757 19.6100 21.7028 21.3267

IE 6.2390 7.9608 7.7017 6.6686 6.6707 7.7514 7.8571 7.9113 7.9210

PSNR 7.8692 23.3966 14.2653 8.2680 8.8879 9.1173 21.3133 25.0579 25.5274

SSIM 0.3474 0.8459 0.7579 0.3994 0.4578 0.4520 0.8584 0.9166 0.9258

Img2

AG 5.1035 21.4965 18.1191 7.0424 12.0773 10.4535 14.2562 16.0262 17.1275

IE 5.8133 7.8804 7.1668 5.9153 7.7584 7.7491 7.4697 7.5638 7.7395

PSNR 10.6677 14.9974 16.1804 10.4561 15.0742 15.1718 21.5889 23.6008 26.9968

SSIM 0.4025 0.6304 0.7429 0.3764 0.6604 0.6363 0.7852 0.8452 0.8953

Img3

AG 4.0684 27.9084 13.6946 6.4984 10.3271 9.9790 12.4966 13.4100 15.8442

IE 5.0308 7.1811 6.8459 5.2812 6.9053 6.9398 6.6147 6.7015 7.0372

PSNR 15.3018 9.1228 23.4671 15.9015 8.8818 9.1681 23.3151 24.0755 27.2207

SSIM 0.4728 0.3746 0.7807 0.4856 0.4685 0.4754 0.8177 0.8379 0.8839

Table 3.  Comparison of results of various infrared image enhancement methods. Best values for each metric 
are in bold.

 

Fig. 9.  Example 3 experimental results.
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components tested include a dual-decoding network structure, inner skip connections, external skip connections, 
and a cross-level attention module. For these four components, five different network configurations (C1–C5) 
were evaluated.Among them, C1 represents a network with a single encoding-decoding structure. C2 adds inner 
skip connections based on C1. C3 adopts a U-shaped dual-decoding structure as the main body of the network 
and incorporates both inner and external skip connections. C4 also employs a U-shaped dual-decoding structure 
as the main body but removes the external connections and introduces the cross-level attention module. Finally, 
C5 uses both inner and external skip connections along with the attention mechanism on top of the U-shaped 
dual decoding structure, forming the complete network design of this paper.

The dataset and evaluation metrics used in this experiment are the same as those in the previous section and 
will not be detailed here. Figs. 10 and 11 show examples of test-set images under different network configurations. 
The specific results of the ablation experiments are presented in Table 4.

As can be seen from Fig. 10 and 11, compared with the original image, although the C1 network effectively 
enhanced the brightness and contrast of the image, the image became blurred, lost a lot of details, and the 
enhanced image introduced grid noise. Overall The quality is poor; the human visual effects of the C2 and C3 
networks are better. The difference is that the tones are different but the details are better preserved; the C4 
network enhances the image contrast and further enhances the brightness of the bright parts of the image. At 
the same time It weakens the brightness of the dark parts, and also obviously introduces grid noise, and loses a 
lot of dark details in the original image; the visual enhancement effect of the C5 network is also better, and the 
brightness and contrast are better enhanced. And the details remain intact.

In Table 4, C2 adds inner joins to C1. Compared with the experimental results of the two, except for the IE 
indicator, C2 is not much different from C1, and the results of other indicators are far better than C1. Through 

Fig. 10.  Examples of experimental results for different network configurations.
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comparison, it can effectively Prove the effectiveness and importance of internal skip connections; compared 
with C5, C3 does not add cross-level attention. From the experimental results, although C5 is equivalent to C3 
results in average PSNR and SSIM indicators, C5 has better performance in AG and IE. The performance on all 
indicators is significantly better than C3, with AG and IE values increasing by 6.67% and 2.51% respectively, 
indicating the effectiveness of cross-level attention in the network; C5 adds external skip connections based on 
the structure of C4. Compared with C4, the results have extremely high improvements in the four indicators 

Main structure of the network c1 c2 c3 c4 c5

Inner skip connections ×
√ √ √ √

external skip connections × ×
√

×
√

Cross-level attention × × ×
√ √

AG 6.4158 11.0332 11.8112 6.7855 12.5988

IE 6.9469 6.8513 6.9448 4.1879 7.1194

PSNR 21.5558 25.3429 28.6659 13.7420 27.7329

SSIM 0.5269 0.8353 0.8788 0.1951 0.8811

Table 4.  Ablation study on the effectiveness of key components. Best values for each metric are in bold.

 

Fig. 11.  Examples of experimental results for different network configurations.
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of AG, IE, PSNR, and SSIM. From a numerical point of view, the four indicators have increased by 85.67%, 
70.00%, 101.8%, and 351.6% respectively, which fully verifies that Understand the effectiveness and importance 
of external skip connections. Combined with the experimental results of the three network structures of C2, 
C3, and C4, compared with the ordinary encoding and decoding network, the dual decoding network structure 
can only show its advantages when external skip connections are added, which fully proves the advantages of 
external skip connections. importance. C5 is the complete network proposed in this article, and its comprehensive 
experimental results are also the best.

Combining the ablation experiment results from Figs. 10 and 11 and Table 4, we can see—based on both 
human visual inspection and subjective-objective indicators—that each component (inner skip connections, 
external skip connections, and the cross-level attention module) is effective and crucial. These findings fully 
confirm the superiority of the network proposed in this article.

To better investigate the effectiveness of the cross-level attention mechanism, we compare it with pixel 
attention and multi-head attention. By analyzing the data presented in Table 5, we evaluate the impact of different 
attention mechanisms on model performance and verify the advantages of cross-level attention.

Experimental results demonstrate that the cross-level attention mechanism outperforms other attention 
mechanisms in multiple key metrics. In terms of AG, cross-level attention achieves the highest score, surpassing 
both pixel attention and multi-head attention. This indicates that cross-level attention can more effectively 
enhance image edge details and texture features, thereby improving overall image sharpness.Regarding IE, cross-
level attention achieves 7.1194, outperforming both pixel attention and multi-head attention, suggesting that 
it retains more information during the image enhancement process and thus increases the richness of image 
content. Furthermore, in SSIM, cross-level attention achieves the highest score, significantly higher than pixel 
attention and multi-head attention, indicating its ability to better preserve structural consistency and produce 
enhanced images that more closely resemble the original.For PSNR, cross-level attention achieves 28.6535, which 
is close to pixel attention but significantly better than multi-head attention, demonstrating its effectiveness in 
maintaining image quality and reducing noise.

Overall, the cross-level attention mechanism exhibits superior performance across multiple evaluation 
metrics, effectively enhancing image clarity, richness, and structural integrity. These findings further validate the 
feasibility and advantages of the proposed mechanism in image processing tasks

In addition to network structure, the choice of loss functions plays a crucial role in the enhancement 
process. To further investigate the impact of different loss components, we designed five loss configurations for 
comparative analysis. L1 employs only a simple adversarial loss to evaluate its role in generating realistic images; 
L2 uses only MSE to strengthen pixel-level supervision and improve enhancement quality; L3 employs only VGG 
loss to analyze the role of perceptual loss in maintaining semantic consistency; L4 utilizes only EfficientNet loss 
to explore its contribution to global structural fidelity; and L5 adopts the complete loss combination (WGAN-
GP, MSE, VGG, and Efficient Net) to provide comprehensive optimization constraints. The experimental results 
are presented in Table 6.

The ablation study evaluates the impact of different loss components on the enhancement process by 
comparing five configurations (L1–L5). The results highlight the contributions of adversarial, pixel-level, and 
perceptual losses in optimizing image quality.

Using only an adversarial loss results in the weakest performance, with SSIM dropping to 0.7921 and AG at 
8.4531, indicating that while adversarial training helps generate realistic images, it lacks sufficient constraints 

Loss function L1 L2 L3 L4 L5

WGAN-GP ×
√ √ √ √

MSE × ×
√ √ √

VGG × × ×
√ √

EfficientNet × × × ×
√

AG 8.4531 10.7532 11.2134 11.7658 12.5988

IE 5.1027 6.5321 6.8312 6.9725 7.1194

PSNR 22.4358 25.7312 27.0123 27.6859 28.6535

SSIM 0.7921 0.8451 0.8623 0.8745 0.8811

Table 6.  Ablation study on the effectiveness of loss functions. Best values for each metric are in bold.

 

Attention mechanism Pixel attention Multi-head attention Cross-level attention

AG 11.9877 12.0637 12.5988

IE 6.9873 7.0633 7.1194

PSNR 28.7329 27.6342 28.6535

SSIM 0.8648 0.8634 0.8811

Table 5.  Comparison of different attention mechanisms in the ablation study. Best values for each metric are 
in bold.
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for accurate reconstruction. Adding MSE significantly improves image quality, increasing SSIM to 0.8451 and 
PSNR to 25.7312, by enforcing pixel-wise supervision, reducing artifacts, and enhancing detail preservation. 
However, relying solely on MSE does not fully capture high-level structural information, limiting perceptual 
improvements.

Introducing VGG loss further refines structural consistency and texture sharpness, leading to a noticeable 
increase in SSIM to 0.8623, demonstrating the effectiveness of perceptual supervision. The addition of EfficientNet 
loss further enhances global coherence, complementing VGG loss by improving feature representation and 
maintaining natural contrast. The full loss configuration, which integrates all components, achieves the best 
overall performance, with AG reaching 12.5988 and SSIM improving to 0.8811, confirming that a combination 
of adversarial, pixel-wise, and perceptual losses leads to the most balanced and high-quality image enhancement.

The findings suggest that MSE is crucial for pixel accuracy, perceptual losses contribute to structural 
consistency, and EfficientNet further refines global coherence. The study validates that combining all loss 
functions results in optimal infrared image enhancement, striking a balance between realism, detail preservation, 
and structural fidelity.

Image enhancement results
The Sober–Drunk data set is enhanced using the 2D-GAN based infrared image enhancement method proposed 
in this article. Examples of images before and after enhancement are shown in Fig. 12.

By observing Fig. 12, it can be seen that the contrast of the image enhanced by the 2D-GAN network has been 
significantly improved, the overall image is clearer, and the details are well preserved. The average index results 
obtained from the experiment are shown in Table 7.

Combining the information in Fig. 12 and Table 7, it can be seen that all indicators of the enhanced image 
have improved, indicating that the infrared image enhancement method based on 2D-GAN can effectively 
enhance the quality of infrared images.

Discussion
Although our method generally exhibits strong enhancement performance, several challenges persist during 
training and evaluation. Chief among these is the model’s tendency to over-enhance low-contrast images, 
resulting in unnatural textures and structural distortions. This issue largely stems from the model’s high 
sensitivity to local intensity variations, occasionally leading to excessive sharpening and the loss of originally 
subtle details. When the intensity distribution is overly complex, the model also struggles to maintain balanced 
enhancement across different regions, ultimately producing inconsistent outputs.

To address these issues, we introduce a cross layer attention mechanism that dynamically allocates feature 
weights across different layers of the network, thereby preserving local details while maintaining global structural 
consistency. Additionally, by combining multiple loss functions, we enhance training stability and effectively 
mitigate mode collapse in adversarial training, further improving overall generation quality.

Despite these optimizations, certain limitations remain. The multi-scale processing and adversarial training 
introduce computational complexity, posing challenges for real-time applications—particularly in resource-
constrained environments. The model also remains sensitive to input variations and occasionally produces 

Original image After enhancement

AG 4.8826 6.4653

IE 6.9263 7.1802

PSNR 18.3806 21.4032

SSIM 0.9189 0.9641

Table 7.  Comparison of the values of various indicators before and after Sober–Drunk data set enhancement.

 

Fig. 12.  Infrared facial image enhancement results.
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inconsistent enhancement under extreme intensity changes or highly dynamic backgrounds. Moreover, its 
generalization to real-world infrared images with various noise patterns and sensor characteristics is still an 
open question, requiring additional validation under diverse imaging conditions.

Future research will focus on improving computational efficiency, refining attention mechanisms, and 
strengthening generalization to ensure broader applicability. As infrared imaging gains increasing importance 
in security monitoring, industrial inspection, and medical diagnosis, these advancements will further enhance 
the practical utility and effectiveness of the proposed approach in real-world scenarios.

Conclusion
This paper presents a 2D-GAN based infrared image enhancement method is proposed to address the problems 
of low contrast, blurred details, and high noise in infrared images.In the proposed method, a dual decoder 
structure is introduced to enhance the network’s ability to extract and represent key features, thereby improving 
the quality of enhanced images. Internal and external skip connections are designed to minimize information 
loss, preserve details, and maintain structural coherence during enhancement. A cross-layer attention module 
is developed to dynamically capture long-range dependencies and multi-scale context, improving texture clarity 
and structural coherence in generated images. A joint loss function is formulated to optimize enhancement 
quality, incorporating perceptual loss, deep feature similarity, and pixel-level supervision that work synergistically 
to refine local textures while preserving global structural coherence. The performance of the proposed method 
is evaluated on the ImageNet and Sober–Drunk datasets. Experimental results demonstrate that the 2D-GAN 
method achieves superior performance in infrared image enhancement, effectively improving visual quality and 
structural fidelity. In the future, we will further extend the method to larger datasets and explore its applicability 
in practical scenarios such as security monitoring, industrial inspection, and medical diagnosis, aiming to 
enhance its generalization capability and robustness.

Data availability
The datasets generated and analyzed during the current study are available from the following sources: the Ima-
geNet database hosted by Princeton University and Stanford University at https://image-net.org/download, and 
the Sober–Drunk Database provided by Koukiou from the University of Patras, Greece, at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​
Y​u​Y​a​n​​g​8​8​8​8​8​/​S​o​b​e​r​–​D​r​u​n​k​-​D​a​t​a​b​a​s​e. The code used in this study is available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​A​d​r​i​a​n​n​a​
j​l​/​2​D​-​G​A​N​​​​​.​​
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