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Perceptual learning can significantly improve visual sensitivity even in fully matured adults. However, 
the ability to generalize learning to untrained conditions is often limited. While traditionally, 
perceptual learning is attributed to practice-dependent plasticity mechanisms, recent studies suggest 
that brief memory reactivations can efficiently improve visual perception, recruiting higher-level 
brain regions. Here we provide evidence that similar memory reactivation mechanisms promote 
generalization of offline learning mechanisms. Human participants encoded a visual discrimination 
task with the target stimulus at retinotopic location A. Then, brief memory reactivations of only five 
trials each were performed on separate days at location A. Generalization was tested at retinotopic 
location B. Results indicate remarkable enhancement of location B performance following memory 
reactivations, pointing to efficient offline generalization mechanisms. A control experiment with 
no reactivations showed minimal generalization. These findings suggest that reactivation-induced 
learning further enhances learning efficiency by promoting offline generalization mechanisms to 
untrained conditions, and can be further tested in additional learning domains, with potential future 
clinical implications.

Visual perception is critical for daily function and can be remarkably enhanced even in fully developed adult 
humans through the process of perceptual learning, resulting in an improved ability to detect, discriminate, and 
recognize visual information1–9. While such perceptual learning changes are long-lasting10,11, they are often 
limited in their ability to be generalized to untrained stimuli in similar settings and tend to be highly specific to 
the trained stimulus features (e.g. orientation, and retinotopic location7,12–16).

Typically, perceptual learning requires repetitive exposure to visual stimuli1,17–21. Consistently, it is attributed 
to practice-dependent neural plasticity mechanisms3,22, which have been predominantly documented in early 
visual brain regions11,12,23,24. These practice-dependent mechanisms have been associated with the distinctive 
specificity previously documented in perceptual learning, as neural coding in early visual brain areas is 
commonly specific to low-level visual features25. Over the last decade, additional studies have pointed to 
potential mechanisms that may enable generalization of perceptual learning26–33. Thus, accumulating evidence 
indicates that perceptual learning can engage higher-level cortical regions12,34–42.

A plethora of studies originating from fear-conditioning in rodents and extending to additional forms of 
learning and memory including in humans, have provided evidence suggesting that reactivation of a previously 
consolidated memory opens a time window for its modulation43–54. Such reactivation mechanisms may enable 
degradation, strengthening, or updating of existing memories. Recent studies have demonstrated that brief 
exposures to a previously encoded perceptual task enable perceptual learning by potentially triggering offline 
memory reactivation-reconsolidation cycles47,49,55. This reactivation-based learning was shown to recruit greater 
engagement of higher-level brain regions such as the intraparietal sulcus and the precuneus55. Unlike early visual 
areas, these higher-level brain regions are not specific to basic stimulus features, raising the hypothesis that, in 
parallel to other mechanisms, brief memory reactivations may also facilitate offline generalization mechanisms 
of perceptual learning.

To address this question, we leveraged the reactivation-induced learning paradigm49, replicated in Kondat 
et al.55. In this paradigm, human participants encode a visual texture discrimination task, then the memory 
is reactivated on separate days, and performance is tested on the final day of the study. Similar to standard 
learning paradigms in the texture discrimination task10–12,37,56–58, offline learning is evaluated as the between-
session improvement in discrimination thresholds between the encoding and the test sessions49,55. Therefore 
in the current study, to evaluate generalization of these learning mechanisms, the final test was performed at 
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a novel, untrained retinotopic location, and offline improvement between the encoded and the novel location 
was measured. Accordingly, participants initially encoded a visual discrimination task with the target stimulus 
located at retinotopic location A. Then, brief memory reactivations of only five trials each were conducted on 
separate days at location A. Generalization was later tested at retinotopic location B. A control group performed 
the task in retinotopic location A and then at location B without memory reactivations.

Methods
Participants
Fifty-eight healthy adults aged 18–40 years (9 males, average age 24.13 years SD = 3.71), participated in the 
study. All Participants provided written informed consent to participate, and the procedure was conducted in 
accordance with a protocol approved by Tel Aviv University’s Ethics Committee. All methods were performed 
in accordance with the relevant guidelines and regulations. The participants had normal or corrected-to-normal 
vision, were not video gamers59, did not participate in other visual experiments during the study, and reported at 
least 6 h of sleep the night before each experimental session (performed during daytime). Two participants were 
not included in the analysis due to an extreme encoding threshold (z-score > 2.5).

Stimuli and task
Participants performed a standard texture discrimination task, TDT1, with a 10ms target screen, followed by 
a 100ms mask (Fig.  1a). Observers had to discriminate whether a target array consisting of three diagonal 
bars (appearing 5.46° from the center of the visual field, either in the lower right (LR) or the lower left (LL) 
quadrant) was horizontal or vertical, and responded by pressing one of the two mouse buttons. Consistent 
with previous studies using the texture discrimination task, no feedback for correct or incorrect responses was 
provided10–12,37,56–58,60. The target stimulus was embedded in a background consisting of horizontal bars (19 × 19 
bars, 0.57° × 0.04° spaced 0.86° apart, 0.04° jitter). Fixation was enforced by a forced-choice letter discrimination 
task, in which observers had to discriminate whether a rotated letter, presented in the center of the screen, was 
a T or an L, by pressing one of the two mouse buttons, with auditory feedback for incorrect discrimination. 
As maintaining fixation is fundamental for the peripheral target task, studies have designed and executed this 
paradigm so that participants are instructed to provide their responses to the fixation task first, highlighting the 
importance of fixation. Accordingly, participants provide their response for the fixation task (central T or L) first, 
and then respond to the target task (peripheral horizontal or vertical bars). Both responses are given while a black 
screen is presented. Importantly, as the task has been designed to enforce fixation at the center of the display1, 
auditory feedback for errors is provided only for the central fixation task and participants with low fixation task 
performance are excluded61. In the current study, the fixation performance was high, 94.9% ± 0.01 (Reactivation 
group) and 94.8% ± 0.01 (No Reactivation group) at the SOA closest above the threshold of the peripheral target 
at the encoding session, and also in the reactivation trials, 92.6% ± 0.06, pointing to compliance with the fixation 
instructions. In addition, fixation performance increased in the second generalization session (97.9% ± 0.01 for 
the Reactivation group and 96.5% ± 0.001 for the No Reactivation group), impying that participants in both 
groups maintained fixation on the central task.

Display size was 15.4° × 3 15.1°, viewed from 108 cm on a 20-in (50.8-cm) CRT HP p1230 monitor, refresh 
rate 100 Hz, mean texture luminance 84 cd/m2. The time interval between the target stimulus and the mask 
(stimulus-to-mask onset asynchrony, SOA, measured from the onset of the target to the onset of the mask) 
ranged from 40 ms to 340 ms (40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 300, and 340 ms) and was 
pseudo-randomized across trials. Each block consisted of 2 trials per SOA (for a total of 252 trials over nine 
blocks). To familiarize the participants with the task at each retinotopic location, pre-training blocks consisting 
of 10 trials were conducted prior to the performance in the encoding and generalization sessions49,55,61,62. Of 
note, pre-training at location A was provided only before the encoding sessions, while pre-training at location 
B was provided only before the generalization sessions. Thus, participants had no prior exposure to location B 
before the day of the generalization measurement. These pre-training blocks were conducted initially with an 
SOA of 500 ms and then repeated with an SOA of 340 ms until subjects achieved 90% accuracy. A maximum of 
10 blocks overall was provided, after which participants who did not reach this criterion in the encoding session 
did not continue to the experiment (mean number of pre-training blocks = 2.8 ± 1.2). Three participants did 
not reach this criterion. Pre-training at the encoding session was followed by an additional short familiarization 
block of 1 trial per SOA, without any minimum performance requirement. This block was designed to familiarize 
participants with the general temporal variance of the task, and therefore performed only before the initial 
encoding session. Then, participants continued to the main session (nine blocks as described above). To ensure 
reliable measurements in both locations, participants were required to reach above 80% correct responses on the 
three longest SOAs and above 0.8 finger errors (see below). All sessions were performed in a dark, quiet room.

Experimental design
The memory of twenty-seven participants was encoded in a standard texture discrimination task (TDT) 
session with the target stimulus presented in retinotopic location A (either LR or LL; encoding session; Fig. 1b, 
Reactivation group), during which the discrimination threshold was measured. Participants then returned for 
three sessions on separate days, during which the encoded memory was reactivated with only five near-threshold 
memory reactivation trials49,55. Reactivation trials were set individually at the SOA given in the initial session 
that was closest above threshold. For example, for a participant with a 126 ms threshold, the reactivation SOA 
would be set to 140 ms. The average reactivation SOA was 131.8 ± 6.5 ms. (for threshold measurement see Data 
analysis section), consistent with previous studies47,49,55. Generalization was later tested, using the same SOAs, at 
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retinotopic location B (LL or LR respectively; generalization session). All experimental sessions took place every 
other day (or with a 2-day interval on weekends).

Additional twenty-nine participants performed an encoding session at retinotopic location A (either LR or 
LL; Fig. 1b) and a generalization session on retinotopic location B (LL or LR, respectively) with no additional 
sessions between them (No Reactivation group). To maintain a similar generalization time interval between 
groups, the generalization session was performed ~ 9 days after the encoding session in both groups (mean 

Fig. 1.  Texture discrimination task (TDT) and experimental procedure. (a) TDT example trial. Observers 
were required to discriminate between a horizontal or vertical orientation of a peripheral target consisting of 
three diagonal bars appearing for 10ms. Green circles and arrows are presented for illustration purpose and 
did not appear in the task. Fixation was enforced by a forced-choice letter discrimination task (rotated T or L) 
at the center of the display and was followed by auditory feedback for incorrect discrimination. The target-
to-mask asynchrony (SOA, measured from the target’s onset to the mask’s onset) varied within the session to 
obtain a psychometric curve, from which the SOA discrimination threshold was derived. (b) Experimental 
procedure. An encoding session with the target stimulus appearing on location A (LR or LL) was performed 
by the Reactivation (blue) and No Reactivation (yellow) groups. The Reactivation group then performed 
three sessions in which the perceptual skill memory was briefly reactivated with only five reactivation trials 
on location A (represented by blue dots). Generalization was measured for the Reactivation and the No 
Reactivation groups nine days following the encoding session. Sessions were performed on separate days.
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intervals and SE of 9.0 ± 0.0 days for the Reactivation group and 9.1 ± 0.1 days for the No Reactivation group). 
Note that performance at location B was measured only at the test session, nine days following the encoding. 
This was consistently done for both groups. All sessions were performed during daytime.

Data analysis
The individual visual thresholds were calculated for the encoding and the generalization sessions using the 
standard Weibull fit for the psychometric curve with slope β and an additional finger-error parameter 1-p 
yielding the function18,63:

	
Y (x) = p

(
1 − 1

2e−( x
T )β

)
+ 1 − p

2

Where x is the SOA, Y is the success ratio (in the closed interval [0,1]) of target discrimination for a given SOA, 
and T is the threshold for the curve, defined as the SOA for which 81.6% of responses were correct when p = 1.

To first test for baseline differences in encoding thresholds, an independent sample t-test was conducted with 
location A threshold as the dependent variable and group as the independent variable.

To evaluate generalization, the difference between the discrimination threshold of the retinotopic locations 
(location A – location B; generalization score) was calculated for each participant. Then, one-way analysis of 
covariance (ANCOVA) with the experimental group as a fixed factor and threshold difference as the dependent 
variable was used to compare generalization between groups. The initial encoding threshold and the order of the 
retinotopic locations were included as covariates. To assess generalization amplitude, a post hoc paired sample 
t-test was conducted for each group.

To evaluate the correlation between performance in reactivation trials and the generalization score among 
participants showing generalization following memory reactivations, reactivation performance metrics were 
calculated as a percentage of correct responses out of the total 15 reactivation trials. Based on previous studies, 
we hypothesized a positive correlation between performance and reactivation trials50,55. To test this hypothesis, 
a one-tailed Pearson’s r coefficient was calculated.

To compare reactivation-induced generalization (improvement from location A to B) with same-location 
reactivation-induced learning gains measured in a previous study55 (improvement from location A to A), a one-
way ANCOVA was performed with group as the fixed factor, gain (generalization or learning) as the dependent 
variable, and the initial threshold as a covariate.

Results
We first verified that there were no baseline differences (t54 = 0.13, P = 0.90; B01 = 3.68 ± 0.009) between the 
Reactivation (mean threshold and SE = 122.99 ± 6.27 ms, n = 27) and No Reactivation (124.13 ± 6.47, n = 29) 
groups.

A significant difference in generalization was observed between the Reactivation (mean generalization 
19.72 ± 6.05 ms) and the No Reactivation (7.68 ± 5.92 ms) groups (F1,52 = 4.38, P = 0.04, Fig.  2a, b). Post-
hoc analyses confirmed significant generalization in the Reactivation group (t26 = 3.33, P = 0.003) and no 
generalization in the No Reactivation group (t28 = 1.27, P = 0.21). These results suggest that memory reactivation 
enables generalization of offline learning mechanisms.

Interestingly, following memory reactivations, a linear correlation was not observed between performance in 
reactivation trials and generalization score (Pearson’s r = 0.12, P = 0.27). Thus, while in our previous studies it has 
been shown that reactivation performance correlated with learning50,55, it did not correlate with generalization, 
suggesting that reactivation-induced learning and generalization mechanisms are not identical.

Comparing reactivation-induced generalization gains (19.72 ± 6.05 ms, improvement from location A to B) 
with same-location gains in reactivation-induced learning (31.46 ± 5.59 ms, improvement from location A to A, 
measured in our previous study using the same task55) reveals a significant difference (F1,44 = 5.80, P = 0.020), 
suggesting that only part of the learning is generalized to the untrained location (Fig. 3).

Discussion
The current study was designed to examine whether perceptual learning induced by memory reactivations, 
improves generalization of offline learning mechanisms. The results showed that generalization was remarkably 
enhanced following memory reactivations. In contrast, minimal generalization was evident without reactivations. 
The efficiency of learning can be expressed in various aspects. Generalization of learning is one such aspect, 
extending the learning scope beyond the specific training conditions. Therefore, it is often a highly desirable 
outcome of the learning process.

Recent evidence suggests that perceptual learning, typically driven by practice-dependent plasticity and 
demanding repetitive exposure to a stimulus, can also be induced through a distinct pathway with brief stimulus 
exposures on separate days49,55,64, which function as memory reactivations of a previously encoded skill. Notably, 
reactivation per se does not act as additional training, for example, performing all reactivation trials on the same 
day does not result in reduced thresholds49. Therefore, the brief memory reactivations may generate subsequent 
offline cycles of memory modulation through reconsolidation44,65,66. Such reactivations mediate perceptual 
gains by recruiting enhanced engagement of higher-order attention and control brain regions55.

Efficient generalization following memory reactivations may arise from this significant engagement of higher-
order regions55. Perceptual learning is often highly specific to the trained stimulus features1,7,12–16,67. Its neural 
mechanisms are predominantly attributed to changes in early visual areas, where neural coding shows specificity 
to simple visual features, such as orientation and location11,12,23,24,36,47,68,69. However, engagement of higher-
order brain regions has been documented in perceptual learning12,34–42, suggested to mediate global aspects of 
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the task and readouts from low-level regions, and indicating more complex learning mechanisms. The ability 
to generalize perceptual learning has been demonstrated under certain conditions26–33,70, including attentional 
manipulation33, double training30, removal of sensory adaptation32, and the association with higher-order brain 
regions that are not specific to simple visual features71–73. Moreover, studies have shown that generalization of 
learning is associated with parietal cortex activity57,74,75. Therefore, recent evidence indicating that reactivation-
induced perceptual learning is mediated by enhanced engagement of higher-level brain resources, including the 
parietal cortex55, may also explain generalization effects, as shown here.

Fig. 2.  Generalization. (a) Mean generalization score (main bars, left Y axis) and individual visual thresholds 
of locations A and B (thin lines, right Y axis), indicating that generalization is enhanced with reactivation-
induced learning (blue) compared to no memory reactivations (yellow). Error bars represent SE. * represent 
p value < 0.05, **p < 0.01. (b) Mean psychometric curves of the encoding (solid line) and the generalization 
(dashed line) sessions for the No Reactivation (yellow) and the Reactivation (blue) groups. A leftward shift 
indicates enhanced discrimination thresholds (see Methods, Data Analysis, and Supplementary Figure S1). 
Transparent envelopes represent SE.
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Although remarkably significant, reactivation-induced generalization gains were lower in magnitude 
compared to same-location gains in reactivation-induced learning measured in our previous study55, and while 
reactivation performance correlated with learning50,55, it did not correlate with generalization. Of note, such 
comparisons should be interpreted cautiously since they are performed across studies. We did not incorporate 
both location conditions retested within the same design in light of previous findings61, suggesting that repeated 
measurements of location A performance may in itself influence generalization. Nevertheless, these findings 
may suggest that the reactivation-induced learning and generalization mechanisms are not identical, and that 
while learning is partially generalized, some of its aspects may remain specific to the trained features. Previous 
studies that documented learning transfer, trained participants with one feature (e.g., contrast) at one location, 
and a different feature (e.g., orientation) at a second location, showing generalization of the original feature to 
the second location30,31,70. The authors suggested that such generalization may result from central learning (in 
higher-level brain regions) transferred to the second location after its spatial attention (which is not feature-
specific) improved30. Other studies have also suggested that learning and generalization may be facilitated 
by the existence of higher-level components and their interactions with early regions23,71,76,77. Another study 
found that when a task was performed in location B immediately after location A, at the same session, it led to 
enhanced generalization and integrated learning across conditions, possibly due to the formation of a unified 
network following simultaneous consolidation of the two locations61. These approaches empirically pre-define 
and act upon the new retinotopic locations where learning is expected to be observed, potentially restricting 
generalization to these regions. However, memory reactivation may enable generalization not only to a single 
pre-defined additional location, but rather to any new location, pointing to a global generalization mechanism.

Beyond the association between early visual areas and specificity in perceptual learning, research has shown 
that specificity is increased with prolonged training56,78–80 which may lead to overfitting81. Specifically, Jeter et 
al.80 showed that the more training sessions one undergoes, the more specific the learning becomes, reducing its 
generalization. This interpretation may also be consistent with the results showing generalization in reactivation-
induced learning with minimal stimulus exposure.

A limitation of this study is that it did not examine generalization gains following repetition practice. 
Previous research has shown that reactivation-induced learning gains were comparable to repetition practice49 
and a replication of these results has been further documented55. However, while repetition practice gains have 
been consistently shown to be highly specific, with minimal generalization1,7,12–16,67, the current study employed 
a direct within-study comparison to a no-reactivation rather than to a repeated-practice condition.

In addition, an alternative hypothesis could suggest that participants have learned a more effective fixation 
point between the central fixation task and the peripheral task. It is important to note that the encoding trials in 
both groups, as well as the reactivation trials, were all performed in location A. However, only the Reactivation 
group showed enhancement of location B performance. Therefore, such a fixation point (between the central 

Fig. 3.  Reactivation-induced learning and generalization. Visual thresholds before (Encoding, target location 
A) and after learning (Test, target location A solid marker, target location B light marker). Pink - improvement 
in one retinotopic location following reactivation-induced learning, taken from our previous study using 
the same task55; Blue - improvement following reactivation-induced generalization; Also presented in thin 
yellow – generalization without reactivation. Experimental protocols are outlined on the right, with solid 
rectangles representing target location A and light rectangles representing target location B. * p < 0.05. Error 
bars represent SE.
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and the peripheral task) for performing the peripheral task at location A during encoding and reactivation 
trials, is not predicted to be efficient for performing the peripheral task at the new location B. In addition, this 
alternative hypothesis would predict that learning in the texture discrimination task should generalize to new 
locations, however, this is often not the case and learning in the texture discrimination task is commonly highly 
specific1,7,12–16. Nevertheless, it may be useful to leverage eye-tracking paradigms in future studies in the field. 
This may also potentially reduce the impact of dual-tasking on working memory and cognitive load.

The results of the current study indicate that brief memory reactivations enable generalization of offline 
visual perceptual learning mechanisms, further enhancing learning efficiency. Such benefits of learning and the 
understanding of their underlying mechanisms may have important implications for optimizing learning and 
skill acquisition across domains, and in rehabilitation requiring efficient re-learning and generalization.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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