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The Internet of Things (IoT) is emerging as a new trend mainly employed in developing numerous 
vital applications. These applications endure on a federal storage framework primarily concerned with 
multiple issues. Blockchain technology (BC) is one of the supportive methods for developing IoT-
based applications. It is employed to solve the problems encountered in IoT applications. The attack 
Distributed Denial of Service (DDoS) is one of the leading security attacks in IoT systems. Attackers 
can effortlessly develop the exposures of IoT gadgets and restrain them as fragments of botnets 
to commence DDoS threats. The IoT devices are said to be resource-constrained with computing 
resources and restricted memory. As a developing technology, BC holds the possibility of resolving 
security problems in IoT. This paper proposes the Metaheuristic-Optimized Blockchain Framework 
for Attack Detection using a Deep Learning Model (MOBCF-ADDLM) method. The main intention of 
the MOBCF-ADDLM method is to deliver an effective method for detecting DDoS threats in an IoT 
environment using advanced techniques. The BC technology is initially applied to mitigate DDoS 
attacks by presenting decentralized security solutions. Furthermore, data preprocessing utilizes the 
min-max scaling method to convert input data into a beneficial format. Additionally, feature selection 
(FS) is performed using the Aquila optimizer (AO) technique to recognize the most relevant features 
from input data. The attack classification process employs the deep belief network (DBN) technique. 
Finally, the red panda optimizer (RPO) model modifies the hyper-parameter values of the DBN 
model optimally and results in higher classification performance. A wide range of experiments with 
the MOBCF-ADDLM approach is performed under the BoT-IoT Binary and Multiclass datasets. The 
performance validation of the MOBCF-ADDLM approach portrayed a superior accuracy value of 99.22% 
over existing models.
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During the last decade, the IoT has become vital to real-time applications. It performs a pivotal role in providing 
critical services that have become essential in everyday life1. IoT has considerably impacted different sectors, 
including smart homes, cities, and medical care. It augments these regions by presenting the substance of 
consistent technologies2. As vast amounts of data exchange and the propagation of gadgets continue to increase, 
guaranteeing strong protection and safety has become essential for effective resource management. Several 
investigators have managed their efforts to deal with these challenges, focusing on incorporating BC with IoT3. 
BC technology is developing decentralization-related structures. The distributed computing system employs 
a point-to-point computing system to address billions of transactions created by IoT methods. Nevertheless, 
various fields are connected to IoT, including identity management, privacy, security, and more4. Among 
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security concerns, DDoS threats pose a severe attack. With the faster development of IoT settings, updating 
and enhancing related system security extents has become essential to oppose these attacks effectively5. Figure 1 
signifies the general structure of IoT-based DDoS attacks. IoT gadgets are resource-constrained with restricted 
computing resources and memory, security protection is absent in these gadgets. To mitigate and detect DDoS 
attacks in IoT, many solutions are projected6. The BC concept is derived from Bitcoin. It does not depend upon a 
third person to verify or store information around distributed nodes. It is a decentralized data structure formed 
by a sequence of blocks. BC is employed in multiple regions, comprising e-commerce, IoT, smart contracts, and 
more7. With decentralization, audibility, persistency, and anonymity features, BC technology precludes DDoS 
attacks in IoT.

Even though BC is a favourable technology for safeguarding the innovation and management of technology, 
it endures few susceptibilities linked to data confidentiality8. Innovative methods and technologies like intrusion 
detection systems (IDS) should be endorsed to address these concerns. IDSs have a significant challenge: 
observing the anomalous performance in the host or system9. The existing IDSs are ineffective in recognizing 
the vast array of attacks. Collective IDs have a specific capability of determining some attacks and moving for 
more processing. IDSs are classified into dual kinds depending on where the IDSs are employed, that is, host-
based ID systems (HIDS) and network-based ID systems (NIDS)10. The application of multiple deep learning 
(DL) methodologies for recognizing the threats with dual classification and categorizing diverse threats with 
multiple-class classification has become an active investigation region.

This paper proposes the Metaheuristic-Optimized Blockchain Framework for Attack Detection using a 
Deep Learning Model (MOBCF-ADDLM) method. The main intention of the MOBCF-ADDLM method is 
to deliver an effective method for detecting DDoS threats in an IoT environment using advanced techniques. 
The BC technology is initially applied to mitigate DDoS attacks by presenting decentralized security solutions. 
Furthermore, data preprocessing utilizes the min-max scaling method to convert input data into a beneficial 
format. Additionally, feature selection (FS) is performed using the Aquila optimizer (AO) technique to recognize 
the most relevant features from input data. The attack classification process employs the deep belief network 
(DBN) technique. Finally, the red panda optimizer (RPO) model modifies the hyper-parameter values of the 
DBN model optimally and results in higher classification performance. A wide range of experiments with 
the MOBCF-ADDLM approach is performed under the BoT-IoT Binary and Multiclass datasets. The key 
contribution of the MOBCF-ADDLM approach is listed below.

•	 The MOBCF-ADDLM model utilizes BC to establish a decentralized, tamper-proof infrastructure that im-
proves security against DDoS attacks. This approach enables real-time resistance and logging of malicious 
attempts. It strengthens the detection framework’s trustworthiness while mitigating reliance on centralized 
systems. It also contributes to reducing single points of failure common in conventional architectures.

•	 The MOBCF-ADDLM method employs min-max scaling during data preprocessing to normalize input fea-
tures within a defined range, which improves model stability and accelerates convergence. This preprocessing 

Fig. 1.  IoT networks-based DDoS attack detection.
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step confirms that no feature dominates due to scale differences, improving overall learning efficiency. It also 
contributes to cleaner data representation, assisting in more accurate DDoS attack detection.

•	 The MOBCF-ADDLM approach implements the AO model to perform effective FS by detecting the most 
relevant attributes from the dataset, thereby mitigating dimensionality and computational overhead. This 
selection process improves the model’s focus on impactful features, enhancing detection performance. It also 
assists in developing a more efficient and interpretable DDoS detection system.

•	 The MOBCF-ADDLM methodology utilizes the DBN method to accurately detect DDoS attacks by capturing 
intrinsic patterns in network traffic. At the same time, the RPO model is used to fine-tune hyperparameters 
for optimal performance. This integration improves detection precision and model generalization across var-
ying attack scenarios. It also contributes to constructing a robust and adaptive intrusion detection framework.

•	 The novelty of the MOBCF-ADDLM model is in the unique integration of BC technology to provide decen-
tralized security, incorporated with a hybrid AO-DBN-RPO model that integrates advanced FS, DL, and op-
timization techniques. This approach ensures accuracy and scalability in DDoS attack detection, addressing 
the limitations of conventional methods. By utilizing these cutting-edge technologies, the solution presents 
improved robustness and adaptability in dynamic attack environments.

The article’s structure is as follows: Section  “Related works” reviews the literature, Section  “The proposed 
methodology” describes the proposed method, Section “Experimental Validation” presents the evaluation of 
results, and Section “Conclusion” offers the study’s conclusions.

Related works
Vijay Anand et al.11 presented an innovative security structure that utilizes BC technology and lightweight 
cryptography for protecting electronic health records (EHRs). The projected model utilizes an amended elliptic 
scheme (AES) for protected key generation, lattice homomorphic re-encryption (LHoRe) for data encryption, 
and an improved Merkel tree (IMM) hashing methodology for data integrity. Key optimizer is accomplished 
using the Opposition-Based Coati Optimizer model, whereas encoded data is stored in the IPFS. Ilakkiya and 
Rajaram12 developed an innovative DAG-BC structure for MANET-IoT security. The methodology presented 
the secure trust-based Dijikstra’s model with several criteria for safeguarding data transfer. A deep packet 
examination was employed to recognize intrusions blocked by a blocking mechanism. Indrason et al.13 developed 
an automated and secured e-voting structure like MBCSD-IoT. A multi-level voting structure is intended for this 
objective, where most nodes contain a BC-assisted SDN-based IoT framework. BC is rooted in the IoT method 
to offer dependable security. In MBCSD-IoT, four stages of hierarchies are intended: country, booth, state, 
and district-level layers. Sharma et al.14 presented a progressive method to deal with these challenges around 
a multi-code trust and BC structure. Employing the immutable and decentralized features of BC technology 
and a multi-code-driven trust mechanism, this structure focused on generating robust, resilient, and secure 
settings for IoT gadgets. This model utilizes the transparency of BC to foster validation and trust in system 
transactions, considerably decreasing the attack surface for DDoS threats. Additionally, the integration of multi-
code methods strengthens the extent of safety. Kiran and Nalini15 developed the SprakGrid model. The projected 
study contains four consecutive stages: Primarily, the method implements user authentication to guarantee that 
legal users employ the elliptic curve-based chaos theory model that creates a secret key and stores it in BC. Then, 
query scheduling is implemented for resource finding, leveraging the soft actor-critic model by deliberating 
parameters of 3Ps that are accomplished by spark setting and scheduling optimum resources depending on the 
service request.

The author16 presented a PoAh-enabled structure of FL for DDoS threat recognition in IoT. In addition, 
BC is employed in the authentication layer with PoAh to ensure performance validation, higher security, 
and data authentication in IoT. Halim et al.17 developed a Chain of Things (CoT), a BC-based structure to 
improve IoT security applications. By employing decentralization of BC, transparent and immutable assets, and 
reliable data sharing, CoT safeguards secure communication and tamper-proof logging of IoT transactions. The 
presented structure combines smart contracts for scalability and automated policy enforcement, dealing with 
heterogeneous settings and dynamics of IoT. Ohri et al.18 introduced an innovative model combining Proof of 
Work (PoW) and Ethereum smart contracts to handle these challenges. Employing DoS attacks, BC with SDN, 
authentication, and spoofing threats are effectually reduced. This method discovers the possibility of Ethereum 
BC technology, specifically its PoW consensus algorithm and smart contracts, to improve access control 
inside multi-SDN settings. Kachavimath and Narayan19 developed a robust DDoS attack detection model for 
SDN utilizing an ensemble learning (EL) method that integrates extreme gradient boosting (XGBoost) and 
histogram-based gradient boosting (HGBClassifier) techniques with optimal feature selection for high detection 
accuracy. The model is examined by utilizing decision tree (DT), logistic regression (LR), random forest (RF), 
and an ensemble classifier approach. Sumathi and Rajesh20 proposed a hybrid grey wolf optimizer (GWO) + back 
propagation network (BPN) + self-organizing map (SOM) IDS for improved DDoS attack detection in cloud 
computing environments, addressing challenges such as overfitting, detection delay, and high false positive rate 
(FPR) through advanced feature selection and hyperparameter tuning techniques. Abdullah et al.21 proposed 
a federated learning-based DoS attack detection and classification model (FLDoSADC-DTL) technique for 
BC-assisted IIoT environments. The model utilizes a sand cat swarm algorithm (SCSA) for feature selection, a 
stacked auto-encoder (SAE) for detection, and a black widow optimization algorithm (BWOA) technique for 
hyperparameter tuning.

Sokkalingam and Ramakrishnan22 proposed a hybrid ML-based IDS that utilizes 10-fold cross-validation for 
feature selection and fine-tunes support vector machine (SVM) parameters using an integration of Harris Hawks 
optimization (HHO) and particle swarm optimization (PSO) models. Saraswathi and Dayana23 developed a 
robust IDS system for 6G networks by utilizing an LSTM-RNN model integrated with the NADAM optimizer 
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to detect growing cyber-attack patterns and address gradient vanishing issues. Sumathi, Rajesh, and Lim24 
presented an efficient IDS for DDoS attack detection utilizing a long short-term memory (LSTM) recurrent 
neural network and autoencoder-decoder-based DL technique, with optimized network parameters by using 
a hybrid HHO and PSO method. Wazid et al.25 developed a secure DL-based malware attack detection model 
(SDLMA-IITS) methodology for IoT-enabled intelligent transportation systems, integrating explainable AI 
(XAI) to enhance detection efficiency and security analysis. Sumathi and Rajesh26 developed a hybrid artificial 
neural network (ANN)-based IDS for DDoS attack detection using a backpropagation neural network (BPN) 
and multilayer perceptron (MLP), optimized with a hybrid HHO-PSO model for feature selection and tuning. 
Almseidin et al.27 introduced a hybrid detection model that investigates the capability to integrate PSO and 
GWO techniques to improve the DNN architecture to detect the Sunburst attack. The PSO model is employed 
for optimizing the learning rate and the number of hidden layers (HLs), while the GWO method is used to 
optimize the neuron weight. Sumathi and Rajesh28 detected DDoS attacks, specifically TCP SYN flood attacks, 
utilizing data mining and ML approaches while computing performance metrics. Mehmood et al.29 proposed a 
model to improve DDoS attack detection in software-defined networks (SDN) utilizing MLP and CNN models, 
enhanced with SHapley Additive exPlanations (SHAP)-based feature selection and Bayesian optimization (BO) 
model for accurate and efficient performance.

The limitations of the existing studies are high FPR, delayed convergence, overfitting, and poor scalability in 
complex environments, namely SDN, IoT, and cloud. Various IDS models face difficulty with real-time detection, 
adaptability to growing attack patterns, and multi-source DDoS detection. The lack of unified frameworks 
incorporating BC, DL, and ML with efficient FS and hyperparameter tuning is evident. Furthermore, most works 
lack explainability and transparency in predictions. A research gap exists in developing lightweight, explainable, 
and scalable IDS architectures with incorporated optimization and low detection latency across heterogeneous 
infrastructures.

The proposed methodology
This manuscript proposes the MOBCF-ADDLM model. The main intention of the MOBCF-ADDLM 
methodology is to deliver an effective technique for identifying DDoS threats in an IoT environment using 
advanced techniques. It involves various phases, including BC technology, min-max scaling, the FS process, 
attack classification, and parameter tuning. Figure  2 exemplifies the entire flow of the MOBCF-ADDLM 
methodology.

BC technology in DDoS attack
The BC technology is initially applied to mitigate DDoS attacks by presenting decentralized security solutions30. 
BC presents crucial merits in mitigating DDoS attacks, specifically in decentralized environments like IoT 
networks. Unlike conventional centralized solutions, BC confirms data integrity and tamper-proof records, 
making it difficult for attackers to manipulate or disrupt the detection system. Additionally, the decentralized 
behaviour of BC eliminates single points of failure, improving resilience against large-scale DDoS attacks. BC 
provides real-time automated responses to attacks by utilizing smart contracts and consensus mechanisms, 
thereby enhancing the efficiency of the detection and mitigating latency. BC also shows excellence over 
conventional centralized or less secure methods, giving both security and scalability in distributed systems. 
Figure 3 illustrates the structure of the BC technology.

The BC is a homologous system of removing nodes. All nodes promote the reproduction of economic 
transactions as a record and confirm the continuous transactions using the agreement device incorporated into 
the BC. Then, the transaction depends on a cryptographic hash model and becomes an assessment of the ledger, 
and the process is repeated. The hash is essential in joining the block; therefore, all blocks include its hash and 
the following hash of blocks. The strength of these transmissions is the compelling liabilities, which makes it 
firmer for the invader to interrupt utilizing the record. The invader requires the cooperation of the mainstream 
of the nodes to adjust the ledger’s stability. As a particular news source stated, BC platforms have become the 
base of the most noteworthy DDoS attacks. To prevent the repetition of such attacks, it is essential to identify 
the relevant platform applications to prevent forthcoming chapters. Let us address how the attackers produced 
attacks of DDoS on the IoT platform. The BC typically does not require a reliable third party to transact with 
its nodes. In the same way, BC allows tamper-proof and secure transactions; therefore, someone is capable of 
proving them. In general, there are dual DDoS attacks, such as the transaction attack of floods and the attack 
of UDPs. While in the transaction attacking flood, the invader transfers many spam transactions with proper 
mining, conveying fees, and underlining the transactions for a block. The BC gives original blocks for the chain.

Min-Max scaling
Furthermore, the min-max scaling method is employed for the data preprocessing process for converting input 
data into a beneficial format31. This method is chosen due to its effectualness in normalizing input features 
between a constant range [0, 1], ensuring uniformity across all attributes. This prevents any one feature from 
dominating the model due to scale differences, resulting in more balanced training. Unlike other techniques, 
such as Z-score normalization, which assumes a Gaussian distribution, Min-Max scaling does not require 
assumptions about the underlying distribution of the data, making it appropriate for diverse datasets. It also 
enhances the performance of optimization algorithms by accelerating convergence. The model is advantageous 
in DL techniques such as DBNs, where stable and well-scaled data is significant for accurate and efficient training.

The normalization of features is implemented over Min-max scaling, succeeding the given Eq.  (1). This 
model guarantees that each feature is rescaled to fit inside the interval [0,1], thus determining that the minimal 
and maximal values of some variable or feature should be (0,1), correspondingly.
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Fig. 2.  Overall flow of MOBCF-ADDLM approach.

 

Scientific Reports |        (2025) 15:22537 5| https://doi.org/10.1038/s41598-025-06568-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Cscaled = C − Cmin

Cmax − Cmin
� (1)

Cmin and Cmax characterize the minimal and maximal values of the feature vectors, respectively.

AO-based FS
Besides, the AO model implements the FS process to recognize the most relevant features from input data32. 
This model is selected for its superior capability to explore massive, high-dimensional search spaces. Unlike 
conventional techniques such as genetic algorithms or random search, this model can effectually detect the 
most relevant features and balance exploration and exploitation, thereby enhancing its convergence speed 
and robustness. This enables AO to choose optimal features that improve model accuracy while mitigating 
dimensionality, significantly improving computational efficiency. Additionally, the adaptability of the AO model 
to diverse dataset types and its robust performance in complex tasks make it a powerful tool in DDoS detection. 
By concentrating on the most relevant features, AO improves the capability of the technique to generalize and 
detect attacks accurately across varying conditions. Figure 4 specifies the steps involved in the AO model.

The AO model is stimulated by hawks’ searching behaviour, imitating their agility and efficiency in the prey-
searching process. The model generates an agent population that iteratively updates its locations inside the 
searching region to approach or reach the global best gradually. AO combines numerous optimizer approaches, 
containing random search, Levy flight (LF) stages, and swarm intelligence, improving global searching abilities 
and avoiding local best entrapment. The particular mathematical modelling procedure of the AO model is 
described below.

Fig. 3.  BC framework.
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Initialization Stage
During this first stage, the AO model randomly creates a set of hawk agents (solution vectors) to generate the 

primary population. All hawk agents’ location vector xi is uniformly distributed inside the described search space. 
The number of hawk agents within the population is fixed to N. For all hawk agent’s xi (i = 1,2, . . . , N), every 
dimension xi,j(j = 1,2, . . . , d) of its location vector is randomly initialized inside the stated limits [lbj , ubj ], 
is demonstrated:

	 xi,j = lbj + rand () × (ubj − lbj)� (2)

Now, rand () characterizes a randomly generated uniform number inside the range [0,1] .
The fitness value fi for every hawk agent’s location vector xi is computed utilizing the objective function 

f (x), is stated as:

	 fi = f (xi)� (3)

Fig. 4.  Steps involved in the AO technique.
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According to optimizer objectives, fitness values are measured to identify the optimal agent X∗ in the present 
population, as presented:

	
x∗ =

{
arg minXi f (xj) , if minimizing
argmaxXi f (xj) , if maximizing � (4)

LF step calculation
LF is a random stage with a long-tailed distribution used to improve the model’s global searching ability. The 

computation equation for the LF stage L is shown:

	
L = u

|v|1/β
× multiplier� (5)

Whereas u ∼ N(0, σ 2) : u denotes a normally distributed arbitrary number with standard deviation σ  and 
mean 0; v ∼ N (0,1):  v is an abnormally distributed arbitrary number with standard deviation one and mean 
0; β  denotes Levy index, commonly among (1, 3), controlling stage distribution features; σ  denote stage scale 

parameter, computed as:

	

σ =


Γ (1 + β ) sin

(
π β

2

)

Γ
( 1+β

2

)
β 2

(
β −1

2

)



1
β

� (6)

Now, Γ (• ) signifies the Gamma function.
Position Update.
The AO model iteratively upgrades the hawk agents’ location vectors to approach the global best solution 

slowly. It is separated into exploitation and exploration stages, established by the present iteration count. The 
exploitation and exploration stages are presented.

	(1)	 Exploration Stage

The model concentrates on a global search in the exploration stage to prevent trapping in local bests. It mainly 
upgrades hawk locations utilizing the succeeding dual tactics:

Tactic 1: Moving toward the best global direction, as presented in Eq. (7).

	
xnew

i = x∗ ×
(

1 − t

T

)
+ rand () × (x̄ − x∗)� (7)

Now, t signifies the present iteration count, T  denotes the maximal iterations, rand () is a randomly generated 
number in [0,1] , and X  is the population’s average location vector.

Tactic 2: LF incorporated with arbitrary agent impact, as described:

	 xnew
i = x∗ × L + xj + rand () × (y − x)� (8)

Now, L denotes LF step length, χ j  refers to the location vector of an arbitrarily chosen hawk agent, and x and 
y are pre-defined parameter vectors.

	(2)	 Exploitation Stage

In this stage, the model underlines local search to speed up convergence. It mainly updates hawk locations 
utilizing the following dual tactics:

Tactic 1: Fine-tune depending on average location and global optimal solution, as presented in Eq. (9):

	 xnew
i = α × (x∗ − x) − rand () × (rand () × (ub − lb) + lb) × δ� (9)

Whereas α  and δ  indicate controller parameters, ub and lb represent decision variables’ lower and upper 
limits.

Tactic 2: Complete adjustment according to the

	 xnew
i = QF × x∗ − (g2 × xj × rand ()) − g2 × L + rand () × g1� (10)

Now, QF = t
2× rand()−1

(1−T )2 ′
g1 = 2 × rand(−1, g2 = 2 ×

(
1 − t

T

)
.

Boundary Correction
Afterwards, the position was updated, and clipping was used to guarantee that Hawk agent location vectors 

x continued inside pre-defined limits.

	 xnew
j = clip

(
xnew

j , lb, ub
)

� (11)

Now, the clipping process limits every dimension of xnew
i  inside the [lbj , ubj ] range.

Fitness Selection and Evaluation.
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The fitness value f (xnew
i ) of upgrade hawk agents is calculated. According to optimizer goals, the novel 

f﻿itness is compared to the original, preserving the excellent agents, as demonstrated in Eq. (12).

	
xi =

{
xnew

i , if improved
xi, otherwise � (12)

At the end of every generation, the population is re-ranked to upgrade the global optimal solution X∗. The 
model ends after the maximal iterations T  are made or another convergence condition is encountered. Output 
the global optimal solution X∗ and its fitness value f (x∗).

The fitness function (FF) reveals the classification accuracy and the volume of chosen features. It exploits 
the accuracy of classification and lessens the set size of FSs. So, the FF mentioned below is employed to assess 
individual solutions, as revealed in Eq. (13).

	
F itness = α × ErrorRate + (1 − α ) × #SF

#All_F
� (13)

While ErrorRate is the classification rate of error utilizing the chosen features. ErrorRate is intended as the 
ratio of incorrect categories between 0 and 1. #SF  represents the number of preferred features, and #All_F  
means the total amount of characteristics in an original dataset. α  is generally applied to control classifier 
quality and sub-set length prominence.

Attack classification using the DBN model
The DBN technique is employed for the attack classification process33. This technique is chosen because it can 
model complex, high-dimensional data through a multi-layered, unsupervised learning process. The model 
outperforms automatically extracting hierarchical features, which is crucial for detecting complex patterns in 
DDoS attack traffic that conventional models might miss. The model shows excellence in capturing non-linear 
data relationships, resulting in more accurate classifications. Their DL architecture enables the model to enhance 
over time with massive datasets, making them highly adaptable for growing attack patterns. Moreover, DBNs are 
prevalent for their robust generalization capabilities, making them more resilient to overfitting and more reliable 
in real-world scenarios. DBNs are excellent for accurate, scalable attack detection in dynamic environments. 
Figure 5 depicts the framework of the DBN model.

Fig. 5.  Framework of DBN.
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DBN is an unsupervised ANN model that contains many stacked restricted Boltzmann machines (RBM). 
The RBM includes dual layers: the HL and the visible layer. During a DL model moulded by stacking RBMs, 
the output layer HL of the preceding RBM functions as the input layer for the succeeding RBM component, 
making sequential stacking RBMs to determine the framework of DBN. Eventually, an additional output layer 
was integrated into the final DBN structure.

	 p
(
v, h1, h2, . . . , hj

)
= p

(
v|h1)

p
(
h1|h2)

. . . .p
(
hj−1|hj

)
� (14)

Here, p
(
hj−1

∣∣ hj), j = 2,3, . . . l is the conditional probability distribution among (j − 1) and jth HL. The 
energy relations among hidden and visible neurons are depicted.

	
E (v, h; θ ) = −

m∑
i=1

vibi −
n∑

j=1

cjhj −
m∑

i=1

n∑
j=1

vihjω ij � (15)

Here, θ = {ω ij , bi, cj} is the network parameters; ω ij  depicts the weight between the HL and explicit layer 
neurons; bi signifies the bias of the layer neuron; and cj  is the bias of the HL neuron. m specifies the neuron 
counts in the visible layer, and n denotes neuron counts in HL.

The input X  of the DBN model is demonstrated:

	 X = v = [v1, v2, v3, . . . , vm]� (16)

In Eq. (16), X  specifies the set of relevant parameters.

	
p (v, h) = 1

Z
e−E(v,h)� (17)

Here, Z  represents the allocation function employed to fine-tune the allocation value of e−E(v,h). The neurons 
in HL and visible layers are fully connected in either direction. The hidden units are proficient in acquiring 
the co-relations of higher-order data offered in the visible layer. The activation function of system hidden and 
explicit neurons is calculated:

	
p (vi = 1|h) = σ

(∑ n

j=1
ω ijhj + bi

)
� (18)

	
p (hj = 1|v) = σ

(∑ m

i=1
ω ijvi + cj

)
� (19)

Here σ (x) represents function of sigmoid that are demonstrated:

	
σ (x) = 1

1 + e−x
� (20)

To train RBM related to the divergence learning model for finding the optimum weight ω ij  and constantly 
upgrade the attained novel biases and weights.

	 ω
(s)
ij ← ω

(s−1)
ij + λ (p (hi|vi; θ ) vi − p (hi+1|vi+1; θ ) vi+1)� (21)

	 ci ← ci−1 + λ (hi − hi+1)� (22)

	 bj ← bj−1 + λ (vi − vi+1)� (23)

Here, λ  represents the learning rate, and s is the RBM counts.

Parameter optimizer using RPO technique
Finally, the RPO technique modifies the hyper-parameter values34. The model effectively balances exploration 
and exploitation in complex optimization tasks. The red pandas are known for their intellectual behaviour 
and can navigate high-dimensional search spaces to find optimal hyperparameters that improve the model’s 
performance. Compared to conventional optimizers like grid search or even some evolutionary algorithms, RPO 
presents faster convergence and avoids local minima more effectually. Its lightweight computational behaviour 
is appropriate for large-scale models such as DBNs utilized in DDoS detection. By fine-tuning model parameters 
precisely, RPO significantly improves detection accuracy and reduces training time, making it a robust and 
scalable choice for real-time applications. Figure 6 demonstrates the RPO technique.

One of the nature-inspired advanced models is named RPO. RP’s foraging approaches and ability to climb 
trees were applied as the primary source of ideas for the RPO’s design. Its main design idea is stimulated by the 
dual natural behaviours of the red pandas: searching and climbing trees to relax. Dual stages of the recommended 
RPO model are modelled mathematically: an exploration stage depending on the searching approach of RPs 
and an exploitation stage according to the movements of RPs as they climb trees. The main benefit of the 
proposed model is that it doesn’t need a parameter adjustment process since no controller parameter is applied 
to mathematical models. It is an animal that generally lives at night. Due to its extraordinary climbing abilities, it 
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spends the whole day resting and sleeping in the highest places, like trees. Mathematical representations notified 
the RPO model’s design of the RP’s natural behaviours. The mathematical modelling of updated promising 
solutions in the exploitation and exploration stages is explained, utilizing the imitation of the RP’s natural 
behaviours.

Initialization.

Fig. 6.  Framework of DBN.
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From a mathematical view, a vector is applied to model every RP or candidate solution. Based on Eq. (24), a 
matrix is applied to mathematically model the RPs of the model population. RP’s first location in the searching 
region is arbitrarily established at the beginning of RPO performance utilizing Eq. (25).

	

X =




x1
?
xi

?
xN


� (24)

	 χ ii = lbj + rij (ubj − lbj) , i = 1,2, . . . , N, j = 1,2, . . . , M � (25)

Whereas X  refers to the population matrix of RP s’ positions, xi denotes ith RP, N  means RP s counts , 
xij  is its jth size (problem variable), M  presents the problem variable counts, rij  are randomly generated 
numbers within the range [0,1], ubj , and lbj represents upper and lower limits of the jth problem variable, 
correspondingly. A matrix is applied to exemplify the collection of estimated values for the objective function 
following Eq. (26).

	

F =




F1
...
Fi

...
FN




� (26)

As the algorithm executes, the solution presented becomes the optimal candidate solution discovered in the 
model’s iterations. Upgrading candidate solutions in the recommended RPO has dual stages: exploitation and 
exploration.

Exploration:
During the investigation of the targeted functional values, Eq.  (27) is used to model the collection of 

recommended food source places for all RPs. The equivalent RP should arbitrarily select an either suggested 
place as its eating place.

	 P Fi = {Xk|k ∈ {1,2, . . . N} and Fk < Fi} ∪ {Xbest}� (27)

Meanwhile, P Fi denotes a collection of recommended food sources for RP, and Xbest represents RP’s location 
with the objective function’s finest value. The following stage is to compute a novel location utilizing Eqs. (28) 
and (29).

Algorithm 1.  RPO model.
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	 Xp1
i : Xp1

ii = xii + r. (SFii − I.xij)� (28)

	
Xi =

{
Xp1

i , if F 1
i < Fi;

Xi, else
� (29)

Whereas Xp1
i  stands for original place of the ith RP according to the RPO’s initial step, Xp1

i,j  is its jth 
dimension, F p1

i  showing this value of the objective function, SFi symbolizes chosen food resource for ith RP, 
SFii specifies its jth dimension, r stands for the randomly generated number within the range (0,1), and I  
denote arbitrarily selected integer from the set {1,2}.

Exploitation:
The RP’s capacity for climbing trees and living is classified in the next phase of the RPO. They spend their 

whole days sleeping on trees. It has small movements after it moves nearer to and climbs the tree, which improves 
the capability of the presented RPO model to exploit and locate search in regions that make progress. Utilizing 
Eq. (30), an original place is primarily specified for all RPs. Then, utilizing Eq. (31), this novel location substitutes 
the previous place of the corresponding RPs when the objective function value is improved.

	
Xp2

i,j = xi,j + lbj + r. (ubj − lbj)
t

, i = 1,2, . . . , N, j = 1,2, . . . , M, t = 1,2, . . . , T � (30)

	
Xi =

{
Xp2

i , if F 2
i < Fi;

Xi, else
� (31)

Whereas T  refers to maximal iteration counts, Xp2
i,j  is its jth dimension, F p2

i  specifies its value of the objective 
function, r denotes a randomly generated number within the range [0,1], b characterizes the model’s iteration 
counter, and Xp2

i  represents the novel location of the ith RP according to the second stage of RPO. Algorithm 
1 specifies the RPO technique.

The RPO method presents the FF for attaining an enriched classification performance. It defines an optimistic 
numeral to epitomize the better outcome of the candidate solution.

	 fitness (xi) = ClassifierErrorRate (xi)

	
= no. of misclassified samples

T otal no. of samples
× 100� (32)

Experimental validation
Here, the performance analysis of the MOBCF-ADDLM method is examined under dual datasets, namely the 
BoT-IoT Binary and Multiclass datasets35. The latter holds 34 features, but only 25 are selected. In contrast, the 
BoT-IoT Binary dataset contains 2056 samples under dual classes such as attack and normal, as shown in Table 1.

Figure 7 illustrates the classifier outcome of the MOBCF-ADDLM approach on the BoT-IoT Binary dataset. 
Figure 7a and b shows the confusion matrices with precise recognition of 2 classes below 70%TRAPHA and 
30%TESPHA. Figure 7c depicts the PR values, demonstrating maximum outcomes all over classes. Figure 7d 
demonstrates the ROC analysis, showing proficient outcomes with a high value of ROC for two classes.

Table  2; Fig.  8 show the DDoS attack recognition of the MOBCF-ADDLM approach on the BoT-IoT 
Binary dataset. The results imply that the MOBCF-ADDLM approach correctly identified the samples. With 
70%TRAPHA, the MOBCF-ADDLM approach presents average accuy , precn, recal, Fscore, and MCC
of 98.54%, 98.25%, 97.47%, 97.85%, and 95.72%, respectively. In addition, with 30%TESPHA, the MOBCF-
ADDLM methodology presents average accuy , precn, recal, Fscore, and MCC of 97.41%, 97.00%, 96.24%, 
96.61%, and 93.24%, correspondingly.

Figure 9 demonstrates the training (TRAN) accuy  and validation (VALN) accuy  analysis of the MOBCF-
ADDLM methodology on the BoT-IoT Binary dataset. The figure highlights that the TRAN and VALN accuy  
values exhibit an increasing trend, which indicates the capability of the MOBCF-ADDLM approach to have 
maximal outcomes over various iterations. Followed by the TRAN and VALN accuy  remains closer over the 
epochs, which shows lesser overfitting and greater outcomes of the MOBCF-ADDLM approach, guaranteeing 
reliable prediction on hidden samples.

Figure 10 depicts the TRAN loss (TRANLOS) and VALN loss (VALNLOS) analysis of the MOBCF-ADDLM 
approach on the BoT-IoT Binary dataset. It is signified that the TRANLOS and VALNLOS values exemplify a 

BoT-IoT Binary Dataset

Classes No. of Samples

“Attack” 1579

“Normal” 477

Total 2056

Table 1.  Details of BoT-IoT binary Dataset.
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reducing tendency, informing the ability of the MOBCF-ADDLM methodology to balance a trade-off between 
data fitting and simplification.

The BoT-IoT Multiclass dataset holds 2056 instances under five classes, such as DDoS, DoS, Recon, Theft, 
and Normal, as depicted in Table 3.

Figure  11 presents the classifier outcomes of the MOBCF-ADDLM on the BoT-IoT Multiclass dataset. 
Figure 11a and b displays the confusion matrices with perfect recognition of 5 classes below 70%TRAPHA and 
30%TESPHA. Figure 11c shows the PR values, indicating optimal performance over all classes. Simultaneously, 
Fig. 11d illustrates the ROC values, signifying proficient outcomes with high ROC analysis for five classes.

Table  4; Fig.  12 represent the DDoS attack detection of MOBCF-ADDLM methodology on the BoT-IoT 
Multiclass dataset. The outcomes imply that the MOBCF-ADDLM methodology correctly recognized the 
samples. With 70%TRAPHA, the MOBCF-ADDLM technique presents average accuy , precn, recal, 
Fscore, and MCC of 98.97%, 97.24%, 96.15%, 96.67%, and 96.02%, respectively. Besides, with 30%TESPHA, 
the MOBCF-ADDLM technique presents average accuy , precn, recal, Fscore, and MCC of 99.22%, 98.38%, 
95.83%, 96.98%, and 96.55%, correspondingly.

Fig. 7.  BoT-IoT Binary dataset (a, b) confusion matrix and (c, d) PR and ROC curves.
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Figure 13 demonstrates the TRAN accuy  and VALN accuy  analysis of the MOBCF-ADDLM technique on 
the BoT-IoT Multiclass dataset. The outcome highlights that the TRAN and VALN accuy  values display a rising 
trend, which indicates the capability of the MOBCF-ADDLM approach to have maximum outcomes across 
various iterations. The TRAN and VALN remain closer across the epochs, which identifies lesser overfitting 
and shows the optimal result of the MOBCF-ADDLM approach, promising continuous prediction on unseen 
instances.

Figure 14 shows the TRANLOS and VALNLOS analysis of the MOBCF-ADDLM model on the BoT-IoT 
Multiclass dataset. It is represented that the TRANLOS and VALNLOS analysis demonstrate a diminishing trend, 
informing the proficiency of the MOBCF-ADDLM technique in balancing a trade-off between simplification 
and data fitting.

Table 5; Fig. 15 inspect the comparison results of the MOBCF-ADDLM method with existing approaches19,36,37. 
The results emphasized that the LR, XGBoost, HGBClassifier, H3SC-DLIDS, AE-MLP, XGBoost, RF, DT, Bi-
LSTM, and hybrid IDS approaches exhibited lesser performance. The proposed MOBCF-ADDLM technique 
exhibited superior performance with maximum accuy, precn, recal and Fscore of 99.22%, 98.38%, 95.83%, 
and 96.98%, respectively.

Table 6; Fig. 16 show the processing time (PT) results of the MOBCF-ADDLM methodology with existing 
models. Based on PT, the MOBCF-ADDLM technique provides the worst PT of 9.31 s, while the LR, XGBoost, 

Fig. 8.  Average of MOBCF-ADDLM model on BoT-IoT Binary dataset.

 

Classes Accuy P recn Recal F score MCC

TRAPHA (70%)

Attack 98.54 98.76 99.38 99.07 95.72

Normal 98.54 97.73 95.57 96.64 95.72

Average 98.54 98.25 97.47 97.85 95.72

TESPHA (30%)

Attack 97.41 97.83 98.68 98.25 93.24

Normal 97.41 96.18 93.79 94.97 93.24

Average 97.41 97.00 96.24 96.61 93.24

Table 2.  DDoS attack detection of MOBCF-ADDLM model on BoT-IoT binary dataset.
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Fig. 10.  Loss graph of MOBCF-ADDLM technique on BoT-IoT Binary dataset.

 

Fig. 9.  Accuy  curve of MOBCF-ADDLM model on BoT-IoT Binary dataset
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Fig. 11.  BoT-IoT Multiclass dataset (a, b) confusion matrices and (c, d) PR and ROC curve.

 

BoT-IoT Multiclass Dataset

Classes No. of Samples

“DDoS” 500

“DoS” 500

“Recon” 500

“Theft” 79

“Normal” 477

Total Samples 2056

Table 3.  Details of BoT-IoT multiclass dataset.
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Fig. 12.  Average of MOBCF-ADDLM model on BoT-IoT Multiclass dataset.

 

Classes Accuy P recn Recal F score MCC

TRAPHA (70%)

DDoS 99.24 97.83 99.18 98.50 97.99

DoS 98.96 97.94 97.65 97.80 97.11

Recon 98.68 96.75 97.61 97.18 96.32

Theft 99.44 96.36 89.83 92.98 92.76

Normal 98.54 97.33 96.47 96.90 95.95

Average 98.97 97.24 96.15 96.67 96.02

TESPHA (30%)

DDoS 99.68 99.26 99.26 99.26 99.06

DoS 99.51 98.15 100.00 99.07 98.74

Recon 98.70 98.76 96.36 97.55 96.68

Theft 99.51 100.00 85.00 91.89 91.96

Normal 98.70 95.74 98.54 97.12 96.30

Average 99.22 98.38 95.83 96.98 96.55

Table 4.  DDoS attack detection of MOBCF-ADDLM model on BoT-IoT multiclass dataset.
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HGBClassifier, H3SC-DLIDS, AE-MLP, XGBoost, RF, DT, Bi-LSTM, and hybrid IDS models attain greater PT 
values of 16.11 s, 12.98 s, 14.00 s, 14.68 s, 22.60 s, 15.28 s, 12.32 s, 13.96 s, 22.59 s, and 15.36 s, respectively.

Conclusion
In this novel, the MOBCF-ADDLM methodology is proposed. The main intention of MOBCF-ADDLM 
methodology is to deliver an effectual technique for recognizing DDoS threats in IoT environments using 
advanced techniques. First, the BC technology is applied to mitigate DDoS attacks by presenting decentralized 
security solutions. Furthermore, the data preprocessing stage employs a min-max scaling method for converting 
input data into a beneficial format. Moreover, the FS process uses the AO technique to recognize the most 
relevant features from input data. The DBN technique is employed for the attack classification process. Finally, the 
RPO model modifies the hyper-parameter values of the DBN model optimally, resulting in higher classification 
performance. A wide range of experiments with the MOBCF-ADDLM approach is performed under the BoT-
IoT Binary and Multiclass datasets. The performance validation of the MOBCF-ADDLM approach portrayed 
a superior accuracy value of 99.22% over existing models. The limitations of the MOBCF-ADDLM approach 
comprise its evaluation on a single dataset, which may not fully capture the diversity of real-world DDoS attack 
patterns across diverse SDN environments. The model’s performance may vary with growing attack strategies 
and unseen traffic behaviours. Furthermore, the study primarily concentrates on detection accuracy without 
extensively analyzing detection latency or scalability in large-scale deployments. Resource consumption 
during training and real-time inference also requires additional investigation. Future work may explore cross-
dataset validation, adaptive learning mechanisms, integration with real-time SDN controllers, and improving 
computational overhead while maintaining detection precision.

Fig. 13.  Accuy  curve of MOBCF-ADDLM model on BoT-IoT Multiclass dataset
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Technique Accuy P recn Recal F score

MOBCF-ADDLM 99.22 98.38 95.83 96.98

LR 98.72 96.67 93.98 95.71

XGBoost 97.87 94.96 92.90 95.83

HGBClassifier 97.76 95.66 94.36 95.34

H3SC-DLIDS 99.07 96.68 95.20 96.06

AE-MLP Method 98.21 95.93 93.34 95.15

XGBoost Method 97.12 94.31 92.15 95.08

RF 97.02 95.00 93.72 94.59

DT 95.24 92.46 92.54 93.29

Bi-LSTM 97.43 95.83 94.93 95.55

Hybrid IDS 96.92 94.80 90.26 92.89

Table 5.  Comparative outcomes of MOBCF-ADDLM technique with existing approaches19,36]– [37.

 

Fig. 14.  Loss graph of MOBCF-ADDLM model on BoT-IoT Multiclass dataset.
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Methods PT (sec)

MOBCF-ADDLM 9.31

LR 16.11

XGBoost 12.98

HGBClassifier 14.00

H3SC-DLIDS 14.68

AE-MLP Method 22.60

XGBoost Method 15.28

RF 12.32

DT 13.96

Bi-LSTM 22.59

Hybrid IDS 15.36

Table 6.  PT result of MOBCF-ADDLM methodology with existing models.

 

Fig. 15.  Comparative results of MOBCF-ADDLM technique with existing approaches.
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Data availability
The data that support the findings of this study are openly available at ​h​t​t​p​s​:​​/​/​r​e​s​e​​a​r​c​h​.​u​​n​s​w​.​e​​d​u​.​a​u​/​p​r​o​j​e​c​t​s​/​b​o​
t​-​i​o​t​-​d​a​t​a​s​e​t​, reference number [35].
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