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Perceived stress is prevalent in industrial societies, negatively impacting mental health. Smartphone-
based stress management interventions provide accessible alternatives to traditional methods, 
but their efficacy remains modest, potentially due to limited integration of smartphone sensor 
technology. The primary aim of this study was to evaluate the efficacy of an 18-day smartphone-based 
stress management intervention, MT-StressLess with integrated heart rate (HR)-based biofeedback 
using built-in accelerometer sensors, compared to a waitlist control (WLC) condition. Secondary 
outcomes included emotion regulation skills, depressive symptoms, overall well-being, usbiality and 
usage data. As exploratory aims, we investigated whether the MT-StressLess version without HR-
based biofeedback was also superior to the WLC condition, and whether the version with HR-based 
biofeedback provided additional benefits compared to the version without. In a three-arm randomized 
controlled trial, 166 participants were assigned to MT-StressLess with HR-based biofeedback, MT-
StressLess, or the WLC condition. Linear mixed-effects models were used to analyze intervention 
effects over time (baseline, postintervention, and 1-month follow-up). At postintervention, 
MT-StressLess with HR-based biofeedback showed significantly greater reductions in perceived 
stress compared to the WLC condition (d = 0.41, 95% CI [0.03, 0.79]), whereas the version without 
biofeedback did not differ significantly (d = 0.14, 95% CI [−0.24, 0.51]). No significant differences were 
observed between the two active conditions (d = 0.29, 95% CI [−0.08, 0.66]). Both active conditions, 
however, led to significant improvements in the secondary outcomes of emotion regulation skills and 
well-being compared to the WLC (all ds = −0.58 to −0.27). These patterns persisted at the 1-month 
follow-up. Usability ratings were high, but overall adherence was moderate. The findings in the main 
comparison may reflect increased interoceptive awareness and self-regulation. Yet, the limited effects 
of the core intervention and the biofeedback component also suggest the influence of non-specific 
factors, such as placebo effects, outcome expectancy and user engagement, which highlights the 
need to better understand optimal intervention duration, motivation, reinforcement, and more 
individualized approaches to stress reactivity. Overall, the findings provide preliminary support for the 
potential of a smartphone-based intervention that includes HR-based biofeedback to reduce perceived 
stress compared to no intervention. As these interventions are still in their early stages, future research 
should explore how personalization driven by artificial intelligence and real-time physiological tracking 
can enhance engagement and efficacy.
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The number of individuals affected by stress and stress-related problems continues to increase in industrialized 
societies, which are characterized by high demands at work and in daily life1–3. Research indicates that stress 
is associated with the development and maintenance of psychological disorders such as depression, anxiety, 
substance use, and sleep disorders, as well as physical health problems, such as cardiovascular diseases and 
obesity4,5. In addition to the individual burden, stress-related health problems cause high direct and indirect 
societal costs due to greater incidence of employee sick leave, staff turnover, reduced productivity, and increased 
health care costs6,7. Given the widespread impact of stress, there is an urgent need for effective, scalable, and 
accessible interventions to facilitate successful stress management.

Numerous models have been developed to examine the multifaceted nature of stress. The Transactional 
Model of Stress and Coping by Lazarus and Folkman (1984)8 conceptualizes stress as a dynamic interaction 
between an individual and their environment, highlighting the central role of cognitive appraisals in evaluating 
the significance of events and the resources available for coping. Based on this framework, stress management 
interventions typically aim either to modify individuals’ appraisals, for example, through cognitive reappraisal9, 
or to enhance their perceived ability to cope, using techniques such as muscle relaxation10, breathing exercises11, 
and interoceptive awareness, defined as the perception and interpretation of internal bodily signals12,13. 
Interoceptive awareness, in particular, plays a crucial role in enabling individuals to recognize physiological 
stress cues early and respond with effective coping strategies14,15. Through the adoption of such techniques, 
individuals may improve their emotion regulation capacities, thereby supporting long-term psychological well-
being16.

With regard to existing treatments, several meta-analyses have demonstrated the efficacy of face-to-face 
psychological stress management interventions. For instance, such interventions have shown moderate-to-large 
effect sizes in reducing stress among employees (g = 0.25–0.77)17 and for college students (g = 0.58, 95% CI [0.44, 
0.73])18. These interventions typically include structured programs aimed at enhancing coping mechanisms and 
building resilience. For employees, face-to-face stress management interventions often consist of workshops, 
elements of cognitive-behavioral therapy (CBT), mindfulness programs, and peer support groups, frequently 
integrated into workplace wellness initiatives. Similarly, university counseling services provide psychoeducational 
programs, individual or group counseling, and tailored workshops that address personal, academic, or career-
related stressors17,18.

Despite the demonstrated efficacy of face-to-face stress management interventions, their widespread adoption 
is hindered by practical barriers, including restricted access to specialized care, fear of stigmatization, and 
difficulties in allocating sufficient time for participation19,20. Smartphone-based stress management interventions 
have emerged as promising alternatives that offer greater accessibility, anonymity, and convenience. These 
features help mitigate many of the challenges associated with traditional interventions, making smartphone-
based approaches particularly appealing. However, their overall efficacy remains modest. A recent meta-
analysis by Linardon and colleagues (2024) reported a small effect size (g = 0.29, 95% CI [0.16, 0.43]) across 33 
randomized controlled trials (RCTs) evaluating smartphone-based interventions targeting stress symptoms21.

Most existing app-based interventions primarily rely on automated psychoeducation, structured guidance 
through stress-management exercises, symptom monitoring, and remote support from E-coaches, who 
provide tailored feedback to enhance motivation and facilitate the application of learned strategies21,22. Factors 
such as low adherence rates, lack of engagement, and passive content delivery are likely to contribute to the 
modest efficacy of app-based stress management interventions. Another key limitation may be the insufficient 
integration of smartphone technology, particularly built-in sensing and machine-learning techniques, into 
existing intervention frameworks23. By incorporating mobile automated assessments of physiological indicators, 
such as pupil dilation24, blood volume changes25, or breathing patterns26, these interventions could provide 
more precise, real-time feedback on users’ stress levels. Among physiological stress markers, heart rate (HR) is 
particularly relevant for smartphone-based biofeedback applications27, because it (a) reliably reflects autonomic 
nervous system activity28, (b) has been effectively utilized in desktop-based biofeedback interventions29, (c) 
has been validated as a stress indicator in mobile applications30, and (d) provides users with tangible signals to 
recognize stress, increase interoceptive awareness, and practice relaxation techniques such as deep breathing 
or guided imagery15,29,31. By integrating physiological data with coping strategies, HR biofeedback may help 
translate stress awareness into adaptive behavioral responses, offering a feasible approach for stress management.

Encouraging findings from adjacent research areas suggests that app-based interventions incorporating 
biofeedback can be beneficial. For instance, studies have used external optical measurement methods such as 
photoplethysmography sensors attached to the participants’ earlobe32, fingertips32, or wrists33,34. In a quasi-
experimental study by Economides and colleagues32, the investigators demonstrated that a smartphone-based 
intervention combining daily HR variability (HRV) feedback with breathing exercises was more effective in 
reducing depressive symptoms than an active control condition in which participants were instructed to apply 
the same breathing techniques without receiving HRV feedback. In another (albeit uncontrolled) study, Latour 
and colleagues found a decrease in PTSD symptoms, depression, and alcohol use among military veterans who 
met the criteria for PTSD after participating in a smartphone-based intervention involving continuous HR 
feedback33. Finally, in an RCT, university students equipped with a wearable mobile biofeedback device that 
monitored their HR, sleep, and physical activity and presented these data to them via their smartphones reported 
a significantly greater reduction in anxiety and depression compared with students assigned to a waitlist control 
(WLC) condition34.
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Despite these promising findings, the integration of external monitoring devices presents several challenges, 
including technical complexity, reduced adherence due to cumbersome setups, and increased costs35. Previous 
research indicates that adherence rates to wearable-based biofeedback interventions decline due to discomfort, 
maintenance burden, and low usability36. A more user-friendly alternative is to leverage built-in smartphone 
sensors. This advancement eliminates the need for external devices such as wristbands, electrodes, or additional 
hardware, thereby reducing setup time, minimizing movement restrictions, and avoiding potential discomfort or 
adverse skin reactions associated with conventional sensors37,38. By integrating HR biofeedback into smartphone 
interventions, users can receive immediate personalized feedback on their stress levels and coping strategies. 
This approach has considerable potential for enhancing user engagement and improving the overall efficacy of 
app-based stress-management strategies.

However, there is a lack of studies evaluating the efficacy of therapeutic applications that utilize built-in 
smartphone for HR-based biofeedback in reducing stress. Among the 33 RCTs reviewed by Linardon and 
colleagues, only two interventions incorporated built-in sensory features into their stress-management 
interventions, and only one focused on HRV. Yoon and colleagues measured HRV via photoplethysmography 
using a mobile camera before delivering mindfulness content, but no significant differences were found between 
the intervention and WLC condtion39. However, this lack of effect may be attributable to the small sample size 
(n = 45), which resulted in insufficient statistical power to detect meaningful effects. Furthermore, limitations 
in measurement accuracy are possible because smartphone-based photoplethysmography can be influenced by 
factors such as ambient light40, skin tone41, and motion artifacts42. One promising approach to overcome this 
limitation is to utilize smartphone accelerometers to extract HR indicators. These sensors measure acceleration 
forces across three axes (x, y, and z) and are traditionally used for motion detection and screen orientation, 
but they can also provide insights into physiological data43. To the best of our knowledge, no study to date has 
employed accelerometers for HR biofeedback in the context of stress.

This trial aimed to evaluate the efficacy of an 18-day smartphone-based stress management intervention 
based on CBT combined with accelerometer-derived HR biofeedback. Following extensive feasibility testing 
and consideration of usability and adherence information, we compared a stress-management app intervention 
based on CBT with HR-based biofeedback to a WLC condition. Our primary hypothesis was that participants 
using the app-based intervention with HR-based biofeedback would experience greater reductions in perceived 
stress than those in the WLC condition over time. Furthermore, we expected greater improvements in secondary 
outcomes, including emotion regulation skills, depressive symptoms, and overall well-being. In addition, given 
the limited research on stress-focused app-based intervention studies that systematically evaluatedg specific 
intervention components, we included an otherwise identical app-based intervention without HR-based 
biofeedback as an exploratory condition. This allowed us to examine whether this version would also lead to 
greater stress reduction and improvements in secondary outcomes compared to the WLC condition and to 
explore whether adding HR-based biofeedback would provide additional benefits over the intervention without 
biofeedback.

Methods
Study design
This study is reported in compliance with the CONSORT-EHEALTH statement44. To test our hypotheses, 
participants were randomly allocated to one of three study conditions (Mentalis StressLess app (MT-Stressless) 
with HR-based biofeedback vs. MT-Stressless without HR-based biofeedback vs. WLC) between August and 
December 2017. Prior to the study, extensive feasibility testing was conducted with a total of n = 17 healthy 
individuals. As a first step, in an HR-focused pre-assessment (n = 9, M age = 28.5  years, SD = 12.3, gender: 
n = 4 females), we confirmed that the assessment of HR using the smartphone accelerometer was feasible and 
sufficiently accurate as compared to conventional electrocardiography (see Supplementary Material, Figure S1 
and Table S1) and determined adequate cutoff values for stress and relaxation phases in a relaxation exercise. As 
a second step, in an app-focused pre-assessment (n = 8, M age = 36.94 years, SD = 17.03, gender: n = 4 females), 
we evaluated software functionality properly and implemented targeted optimizations (see 2. Approach-
Avoidance Modification Training). The study was conducted in accordance with the Declaration of Helsinki 
and approved by the Ethics Committee of the German Psychological Society (registration number: DGPS; MB 
092017_amd_072016). The trial was retrospectively registered with the German Register for Clinical Trials 
under DRKS00013073 (registration date: 21/02/2018) shortly after data collection was completed and prior to 
the data analysis.

Sample size and power
According to our a priori power analysis conducted with G*Power 3.1.9.745 at least n = 53 participants per 
condition would be required to provide sufficient power to test a medium effect of d = 0.50 in an analysis of 
covariance (ANCOVA) for the primary outcome, with three conditions and one covariate at a significance level 
of 0.05 with a power of 0.80. Because there were no comparable studies with two active smartphone intervention 
conditions and a WLC condition, we assumed a medium effect size for the overall ANCOVA across all three 
conditions rather than focusing on the difference between the two active conditions. This assumption was based 
on effect sizes reported at the time the study was designed, as observed by Heber and colleagues46 (d = 0.43, 95% 
CI [0.31, 0.54])46 and Ly and colleagues (d = 0.50 (95%, CI [−1.29, 2.29])47.

To better match the data structure, final analyses were conducted using Linear Mixed Models (LMMs). 
Accordingly, we conducted a post hoc power analysis to determine the smallest effect size (f2) that could be 
detected with 80% power (1−β = 0.80) at α = 0.05 in our sample (N = 159). Given two fixed effects (Condition 
and Condition × Time), the degrees of freedom for the error variance were v = 156. The analysis revealed that the 
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study was adequately powered to detect an effect size of f2 = 0.062, corresponding to Cohen’s d of approximately 
0.21, and thus, a small effect.

Participants and procedures
We recruited participants from the general population via social media, flyers, and bulletin board advertisements. 
Recruitment was based on the premise that individuals willing to participate in a stress intervention study 
would experience a meaningfully increased level of perceived stress. As an additional incentive for participation, 
participants were offered the chance to win one of four 25 € online store vouchers. Alternatively, they could gain 
course credits if they were studying psychology at the university hosting the study. Interested individuals were 
provided with a link or QR code that directed them to a website containing general study information. After 
agreeing to the terms and conditions for participating in the screening, they completed questionnaires online 
(via LimeSurvey). In the screening, the following inclusion criteria were assessed: (a) minimum age of 18 years, 
(b) access to a smartphone using Android 4.4 or newer, and (c) sufficient German language skills. In addition, 
the current perceived stress level, sociodemographic variables (e.g., gender, age, education, employment), health-
related information (e.g., current psychotherapeutic or psychiatric treatment, current cardiac problems, average 
estimated weekly hours of physical activity), previous experience with relaxation procedures such as progressive 
muscle relaxation, autogenic training, yoga, meditation, as well as the daily estimated average amount of time 
dedicated to smartphone use were assessed. Eligible participants received detailed study information via email, 
along with a consent form to be signed and returned prior to participation. Written informed consent was 
obtained from all participants and/or their legal guardian(s).

As shown in Fig. 1, a total of 295 individuals completed the initial screening questionnaire. Of these, 125 
did not return the informed consent form, two explicitly refused to participate, one did not have a suitable 
smartphone, and one did not meet the minimum age threshold. Thus, a total 129 individuals were excluded from 
the study. The final sample of N = 166 participants was randomly allocated to one of the three study conditions 
via block randomization (block size of three, conducted by research staff not otherwise involved in the study via 
the methods outlined at https://randomizer.org/).

After randomization to the study conditions, participants were provided with a weblink to complete the 
baseline self-assessment (t0). Conducting the baseline assessment immediately after randomization ensured that 
the data accurately captured participants’ conditions immediately prior to the initiation of the intervention. 
Subsequently, participants in the two app-based intervention conditions received another weblink to download 
the MT-Stressless app, with instructions on how to install and use the app during the subsequent 18-day 
intervention period. Eighteen days later, at t1 all participants received another email containing a weblink 
to complete the assessment at postintervention (t0 + 18 days). After another four weeks at t2, all participants 
received a closing email requesting their online completion of the final follow-up assessment (t1 + one month). 
After the final follow-up assessment, participants in the WLC condition received access to the app without the 
HR-based biofeedback.

Study conditions
See Table 1.

MT-StressLess
MT-StressLess, developed specifically for this study, is a fully automated app-based intervention designed to 
enhance stress management skills and reduce perceived stress. Conceptualized by MB, an expert in digital 
health interventions, the program is grounded in Lazarus and Folkman’s transactional model of stress8 and its 
distinction between problem-focused and emotion-focused coping. Although the content of the intervention 
was tailored for this study, similar approaches utilizing desktop-based Internet interventions grounded in this 
theoretical framework have demonstrated efficacy, particularly through the integration of problem-solving 
methodologies and emotion regulation techniques55–57. Table 1 provides an overview of the content.

Psychoeducation
Each module started with a psychoeducational component explaining the relevance of the respective skill and 
outlining methods for acquiring and fortifying it. To maximize participants’ engagement, this information was 
presented in the context of a fictional online group chat between four imaginary users sharing stress management 
difficulties, plus an E-Coach, all conversing on the nature of stress and how people might cope with high stress 
levels. Following principles originating from Socratic dialogue58, fictional conversations typically started with 
questions that were subsequently discussed and answered by the chat members and E-coach, respectively. 
The psychoeducational introduction concluded with a short quiz to assess participants’ comprehension of the 
information and subsequent feedback on their individual quiz performance.

Approach-avoidance modification training
The second component used principles of AAMT59 to elaborate on the content of the respective module in a 
presumably engaging manner. After a brief tutorial, participants were invited to swipe adaptive self-statement 
stimuli (e.g., “I will give my best to master my current chores, but I will also make sure that I give myself 
sufficient time to recharge my batteries afterward.”) downward-towards themselves, creating a zoom-in effect 
that conveyed a sense of reduced spatial distance. Contrastingly, they had to swipe dysfunctional self-statement 
stimuli (e.g., “I always have to do everything perfectly.”) upward-away from themselves, creating a zoom-out 
effect that generates the impression of increased spatial distance.

To further reinforce the game-like features of the intervention, our research team designed five novel modes 
for moving the AAMT stimuli on the smartphone screen: draw, plus-minus, select, command, and emotion 
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Fig. 1.  Participant flow, randomization, and response throughout the trial. HR = heart rate; MT-
StressLess + biofeedback = Mentalis StressLess app-based intervention condition with heart rate-based 
biofeedback; MT-StressLess = Mentalis StressLess app-based intervention condition without heart rate-based 
biofeedback; WLC = waitlist control.
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recognition, in addition to the previously mentioned upward and downward swipe gestures (see Supplementary 
Materials, Table S2 for details). In the emotion recognition steering mode, the smartphone camera detected the 
user’s facial expressions. The sophisticated high-speed object recognition engine – SHORE© algorithm, a trained 
system utilizing annotated datasets of facial landmarks such as the eyes, nose, and mouth, analyzed these features 
to identify emotions60. This automated recognition of expressed emotions enabled dynamic interaction. For 
instance, positive emotions such as happiness (e.g., a smile) draw the stimulus closer to the user, with stronger 
expressions (e.g., a broad smile) resulting in faster movement. Conversely, negative emotions such as anger push 
the stimulus away, with the intensity of the emotion controlling movement speed. This interactive feedback loop 
allows users to adjust their facial expressions in real time based on stimulus movement, potentially increasing 
both user engagement and task accuracy. In addition, the calibration process ensures accurate emotion detection 
by accounting for individual baseline differences in neutral expressions.

The feasibility testing results on the software’s abitlity to recognize facial emotional expressions indicated that 
recognition could be impeded by interference from obscured faces or poor lighting conditions. Thus, as a backup 
option, participants were encouraged to use the draw or plus-minus modes. These modes, which involved either 
drawing directly on the screen or adjusting stimuli using plus and minus buttons, were unaffected by lighting 
conditions and provided a manual method for moving stimuli when algorithms failed to reliably recognize 
expressed emotions.

Skills practice in daily life
Each module’s third and final component required users to practice the respective skills by engaging in one or 
more tasks. The tasks involved completing skill-building exercises presented via text or audio files, recording 
answers to questions designed to prompt insight into effective stress coping, writing text messages to consolidate 
coping skills, creating lists of coping strategies, capturing photos of items relevant to stress coping, and carrying 
out coping-related actions (see Supplementary Materials, Table S3 for examples).

User flow in MT-StressLess
Participants were encouraged to complete one module per day in the numerical sequence described above. 
It was recommended that participants pause their use of the app on weekends. Pausing app use on weekends 
was intended to encourage participants to apply the techniques in everyday situations, thereby facilitating the 
transfer of skills to real-life contexts61. Thus, adherence to these instructions resulted in an intervention period 
of 18 days in total (i.e., 14 weekdays of active app use and two sets of weekend days with no or less app use). 
This brief intervention duration was selected based on evidence suggesting that brief focused interventions can 
yield significant reductions in perceived stress21. Additionally, shorter intervention durations are associated 
with higher completion rates, as longer interventions require greater commitment from participants, which 
often increases the likelihood of dropout in app-based interventions62. To ensure that participants followed the 
recommended sequence of modules, access to subsequent training modules was granted only after meeting 
the following criteria: (a) completion of the final quiz of the psychoeducation section of each previous module, 
(b) completion of at least one AAMT task of the previous module, and (c) completion of at least three skill 
practices in daily life tasks from the previous module. Participants could practice a novel module as often as 
desired when it was made available. To encourage high engagement with the app and promote intervention 
adherence, participants could tap buttons on their home screens to access general information on stress and 
coping strategies. This beneficial feature of providing participants with a personal dashboard to illustrate the 

Condition Components Details

MT-StressLess
14 stress management skills modules including:
 Psychoeducation
 Approach-Avoidance Modification Training 
 Daily life skills practice

14 skills training modules:
(1) progressive muscle relaxation (PMR)10

(2) cognitive restructuring of stress-enhancing thoughts9

(3) short version of PMR10

(4) time management48

(5) systematic explication and description of stress-inducing problems49

(6) goal setting49

(7) brainstorming methods49

(8) Identifying effective strategies, planning, and implementing them 49

(9) acceptance50

(10) ultra-short version of PMR10

(11) stress-reducing or compensating activities51

(12) mindfulness52

(13) sleep management53

(14) long-term prevention of stress54

MT-StressLess with heart rate (HR)-based 
biofeedback

All components of MT-StressLess and
 HR-based biofeedback component

HR-based biofeedback was implemented with the use of the 
smartphone’s built-in accelerometer. Participants practice stress 
induction and relaxation exercises, with real-time feedback on HR 
changes before AAMT tasks

WLC
 No intervention during the study period
 Access to MT-StressLess (without biofeedback) after 
follow-up

Participants in the WLC condition complete assessments without 
receiving an active intervention. After the follow-up period, they are 
given access to the MT-StressLess app

Table 1.  Overview of intervention content across conditions. MT-StressLess with HR-based biofeedback = 
Mentalis StressLess app-based intervention condition with heart rate-based biofeedback; MT-
StressLess = Mentalis StressLess app-based intervention condition without heart rate based biofeedback; 
WLC = waitlist control.
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immediate effects of utilizing the intervention was further optimized by providing motivational feedback aligned 
with the displayed effects.

MT-StressLess with HR-based Biofeedback
In the MT-StressLess with HR-based biofeedback condition, participants used an augmented version of the basic 
MT-StressLess intervention enhanced with an HR-based biofeedback component, but otherwise identical to the 
app without the biofeedback component. This component targeted the interaction between stress, indicated by 
an elevated HR induced through imagining a stressful scenario, and a subsequent relaxation exercise designed 
to reduce stress.

Anticipating a stressful event can activate the sympathetic nervous system, which leads to an increase in HR 
as part of the “fight or flight” response. This process triggers the release of stress hormones such as adrenaline, 
priming the body for immediate action. Notably, anticipating stress can elicit physiological responses similar to 
those experienced during actual stress, including elevated HR and blood pressure63. Once stress is identified, 
biofeedback applications can guide users through targeted relaxation techniques such as deep breathing or 
guided imagery to downregulate the physiological stress response. Over time, repeated practice helps users 
strengthen their interoception, the ability to recognize internal bodily sensations, and develop better stress-
coping skills29.

In the intervention MT-StressLess with HR-based Biofeedback, HR was measured via ballistocardiography64 
using the smartphone’s acceleration sensors to detect the physical movement generated by the heartbeat65. From 
these data, an HR indicator was extracted in near real time using an algorithm tailored specifically for this 
purpose by Global Vitals LLC. The accelerometer data were processed by applying a moving average filter to 
remove baseline drift, followed by standardization of the components for orientation consistency. A band-pass 
Butterworth filter was used to isolate the ballistocardiogram movements, and the final pulse waveform was 
refined using another filter. Fast Fourier Transform analysis was then used to identify the HR by locating the 
frequency peak between 0.66 and 2.5 Hz, corresponding to 45–150 beats per minute (bpm)66,67. Infeasibility 
analyses conducted prior to the start of the study, we determined that a decrease of 10 bpm provided the most 
accurate classification of the transition from stress to relaxation, thereby ensuring a robust distinction between 
the two states. Additionally, a secondary threshold, a 2 bpm reduction from baseline, was introduced to account 
for participants who did not exhibit a pronounced HR increase during the stress phase but still demonstrated a 
measurable decline during relaxation.

For the main trial, the HR-based biofeedback component was offered exclusively to participants in the HR-
based biofeedback condition prior to each AAMT task. Users could repeat the exercise (i.e., practice) as often 
as they wanted or skip it if they felt it was not an appropriate time or place to engage in it. At the beginning 
of each biofeedback exercise, users were instructed to adopt a sitting or lying position in a quiet place and 
to mentally identify a stressful situation of current significance. They were then asked to follow audio-based 
instructions guiding them to: (1) place the smartphone on the left side of their chest over their heart, (2) rest 
for 10 s (s) (baseline-HR assessment), (3) think of the previously identified stressful situation for 40 s (stress-
HR assessment), and (4) apply muscle and breathing relaxation in accordance with further instructions that 
were based on the user’s HR (HR assessment during relaxation). If HR was 10 bpm below the maximum value 
measured during the “stress phase” or 2  bpm less than the maximum value at baseline, a reinforcing audio 
feedback (“Very good!”) was played. If HR did not meet one of these criteria within the first 40 s of the exercise, 
audio instructions on muscle and breathing relaxation were continued for another 20 s. If neither the HR decrease 
criterion was attained during this 20 s period, the instructions were continued for a second time for another 20 s. 
As soon as one of the HR decrease criteria was reached or the third repetition of the audio instructions was 
completed, further audio instructions guided participants through a gradual disengagement from the relaxation 
exercise and a transition to the first AAMT task of the respective module. From this point onward, participants 
had access to feedback on the course of their HR during the exercise (with comments varying according to the 
individual course; see Fig. 2 for an example). Furthermore, in the MT-StressLess with HR-based biofeedback 
condition, participants were instructed to look at the graph representation of their HR during the biofeedback 
exercise and praise themselves for any success they achieved in decreasing their HR (or for their effort in trying) 
during the first task of the respective module.

Waitlist control condition
In the WLC condition, participants completed assessments only and were given access to the MT-StressLess 
intervention after follow-up.

Measures
Adherence and usability information
In both active conditions, app usage data were recorded automatically, including time spent in the app, number 
of usage days, completed modules, solved psychoeducation quizzes, solved AAMT tasks, solved skill-practice 
tasks in daily life, and engagement with the HR biofeedback exercise.

To assess usability feedback, participants in both active conditions completed the system usability scale 
(SUS; German version: Rummel, 201668) at postintervention. The usability score ranges from 0 to 100, with 
higher scores reflecting greater perceived usability. Furthermore, participants were asked to respond to three 
self-developed questions assessing comprehensibility (e.g., “The explanations in the chat format were easy to 
understand”), appeal (e.g., “The presentation in the chat format was appealing”), and goal achievement (e.g., 
“The explanations in the chat format were useful in achieving my goal (knowledge acquisition)”) in relation to 
the specific content of the intervention, which included psychoeducation, quizzes, AAMT tasks, daily life tasks, 
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and the HR biofeedback exercise. Responses were rated on a scale ranging from 1 (strongly disagree) to 5 (strongly 
agree).

Primary outcome
The primary outcome measure of this study was the Perceived Stress Scale-10 (PSS-10; German Version: Klein 
and colleagues, 201669). This self-report instrument assesses the degree of perceived stress using ten items (e.g., 
“In the last month, how often have you felt nervous and stressed?”) to be rated on a five-point Likert scale 
(ranging from 0 = never to 4 = very often).

Secondary outcomes
We used the Emotion Regulation Skills Questionnaire (ERSQ-27; German version: Berking & Znoj, 200870) to 
assess the successful application of adaptive emotion regulation skills (arguably, an important component of 
coping with stress). Higher average scores indicate greater use of adaptive emotion regulation skills. To assess the 
severity of depressive symptoms, we used the Patient Health Questionnaire (PHQ-9; German version: Martin 
and colleagues, 200671). Higher scores indicate more severe symptoms of depression. The WHO-5 Well-Being 
Index (WHO-5; German version: Brähler and colleagues, 200772) was used to assess subjective well-being. Lower 
values indicate poorer well-being. For a more detailed description of all measures, please see Supplemental 
Material.

Data analysis
To identify differences in demographic data and clinical characteristics between the study conditions, we used 
χ2 tests, analyses of variance (ANOVAs), and corresponding nonparametric tests. Adherence and usability data 
were reported descriptively and compared between groups using χ2 and Wilcoxon rank-sum tests (IBM SPSS 
26; IBM Corp, Armonk, NY, USA). All randomized participants with available baseline values were included in 
further analyses in accordance with the intention-to-treat (ITT) principle.

To examine changes in the primary (perceived stress) and secondary outcomes (emotion regulation skills, 
depressive symptoms, and overall well-being) over time across the three study conditions, Linear mixed-effects 
models (LMMs) were employed (lme4 package73 in R (version 4.4.2)). LMMs are particularly well-suited for the 
analysis of longitudinal data with repeated measures, as they appropriately account for the intrinsic dependencies 

Fig. 2.  Screenshots of the instruction and feedback of the relaxation exercise. MT-StressLess with HR-based 
biofeedback condition included a relaxation exercise. Participants were asked to identify a typical stress 
situation and to choose a body posture for the exercise (left). They were then asked to hold their smartphone 
near their heart during the audio instruction (middle). Participants were then shown their HR during 
the relaxation exercise and given motivational feedback, depending on how the HR decreased during the 
relaxation phase (right).
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within such data structures74. Moreover, LMMs yield robust and reliable estimates even in the presence of missing 
data by employing maximum likelihood estimation, which ensures the generation of unbiased results under the 
Missing at Random assumption75. The LMMs incorporated the following fixed effects: condition (MT-StressLess 
with HR-based biofeedback, MT-StressLess alone, and WLC, with the respective reference category depending 
on the respective model), time point (baseline, postintervention, and follow-up), and their interaction. Random 
intercepts for participants (id) were included to account for within-subject correlations across repeated 
measures. The models were fitted using restricted maximum likelihood, and Satterthwaite’s approximation was 
used to compute the degrees of freedom for significance testing. To assess the significance of fixed effects, we 
first conducted a Type-III ANOVA within the LMM framework76. The condition variable was coded as a factor, 
using the WLC condition as the reference category in the first step and the MT-StressLess alone condition in the 
second step. Similarly, time was coded as a factor with baseline set as the reference category. Between-condition 
effect sizes (Cohen’s d) were calculated by dividing the estimated mean difference at postintervention or follow-
up by the pooled standard deviations of the observed means at baseline77 and were interpreted as small (0.20), 
medium (0.50), and large (0.80).

Furthermore, to examine associations between app usage and postintervention outcomes, we first computed 
Spearman’s rank correlation coefficients to assess relationships between app usage metrics (i.e., minutes spent in 
the app, active usage days, solved AAMT tasks, and, in the MT-StressLess with HR-based biofeedback condition, 
HR biofeedback tasks successfully completed by achieving the predefined relaxation state) and postintervention 
PSS scores, residualized by baseline values. We chose this approach because LMMs lacked sufficient power for 
reliable estimates. Since correlation analyses only capture the strength and direction of associations without 
modeling predictive relationships, we conducted separate linear regression analyses within each intervention 
condition. These models allowed us to examine the extent to which app usage predicted baseline-adjusted 
postintervention PSS scores while accounting for potential confounding effects. To address potential inflation of 
Type I error due to multiple comparisons and conceptual overlap between predictors, we applied a Benjamini–
Hochberg correction78 to the correlation analyses and the p-values of individual predictors in the regression 
models. We set the critical significance level alpha to 0.05.

Results
Baseline demographics
Neither demographic variables nor the average perceived stress (PSS-10) sum scores differed across study 
conditions at the initial screening (all ps ≥ 0.097, see Table 2). Despite efforts to minimize study attrition (e.g., 
by means of up to three email reminders), 36 of the 166 participants (21.69%) were lost at postintervention 
assessment and 38 participants (22.89%) did not complete the follow-up assessment. On average, participants 
lost to postintervention were older (M age = 27.17, SD = 9.84) than those who remained at postintervention (M 
age = 23.3, SD = 7.20, t (45.89) = 2.2, p = 0.033) but did not differ with regard to any other variable included in 
Table 2 (all ps ≥ 0.220, for detailed statistics, see Supplemental Material, Table  S4, S5). Additional analyses showed 
no significant differences in drop-out rates between study conditions at postintervention (χ2 (2, N = 166) = 3.64, 
p = 0.162, V = 0.15) or at follow-up (χ2 (2, N = 166) = 2.12, p = 0.330, V = 0.12). Further analyses of the final sample 
indicated that the rate of missing data was below 25% and that missing data were completely at random, MCAR 
Test (χ2 = 34.53, df = 30, p = 0.260). Thus, the conditions for the use of LMMs75 were met.

Intervention adherence and usability
Regarding app usage, 11 participants (9.82%) did not download the app, and 5 (4.46%) did not engage with at 
least one competence. On average, participants completed M = 7.45 competencies (53.21%), with 25 participants 
(26.04%) completing all 14 competencies and 51 (53.12%) completing at least seven. Chi-square and Wilcoxon 
rank-sum tests showed no significant differences between conditions. Further analyses revealed no differences 
in (a) active usage days, (b) minutes spent in the app, (c) completed psychoeducation quizzes, (d) solved AAMT 
tasks, or (e) solved tasks (all ps > 0.085; see Supplemental Material, Table S6). In the MT-StressLess with HR-based 
biofeedback condition, 73% of the participants used the HR biofeedback exercise at least once. On average, these 
36 individuals started 8.78 relaxation exercises, resulting in 316 exercises, of which 87.66% were completed. Of 
the 277 exercises completed, 67.87% achieved the predefined relaxation state, while 32.13% did not.

Regarding usability, the overall SUS score was M = 83.51, SD = 11.95 out of 100, which is considered good-to-
excellent usability79. A Wilcoxon rank-sum test revealed a significant difference between conditions (W = 1246, 
p < 0.001), with MT-StressLess with HR-based biofeedback (M = 87.38, SD = 8.94) scoring higher than MT-
StressLess (M = 79.29, SD = 13.55). Participants rated the psychoeducation, quizzes, AAMT tasks, and daily-life 
tasks in terms of comprehensibility, appeal, and goal achievement. Comprehensibility was rated high across 
all components (M = 4.28–4.85, SD = 0.46–1.04). Appeal varied, with daily-life tasks receiving higher scores 
(M = 4.24, SD = 0.98) while quizzes (M = 3.21, SD = 1.24) and AAMT tasks (M = 2.73–3.11, SD = 1.03–1.45) were 
rated lower. Goal achievement ratings ranged from (M = 3.54–4.28, SD = 0.66–1.20) with AAMT tasks receiving 
the lowest scores. Participants’ perceptions of the biofeedback-based relaxation exercise were mixed. While the 
task was rated as highly comprehensible (M = 4.28, SD = 1.04) its appeal (M = 3.35, SD = 1.41) and perceived goal 
achievement (M = 2.85, SD = 1.19) were lower; see Supplemental Material, Tables S7–S9 for details.

Intervention effects on primary outcome
Figure 3 presents the observed means for the primary outcome, PSS, across the three conditions, MT-StressLess 
with HR-based biofeedback, MT-StressLess, and WLC, measured at baseline, postintervention, and at the 
4-week follow-up (see Supplemental Material, Table S10). Table 3 provides the estimated means and overall 
effects (Time × Condition interaction) for PSS across the three conditions and three assessment time points. 
Table 4 displays the condition comparisons and between-condition effect sizes. A linear mixed model revealed 
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a significant Time × Condition interaction for the primary outcome PSS (F(4, 255.43) = 3.25, p = 0.013) (see 
Supplemental Material, Tables S11, S12 for detailed results). To address the primary aim, pairwise comparisons 
within the LMM revealed that the MT-StressLess with HR-based biofeedback condition demonstrated a 
significantly greater reduction in PSS compared to the WLC condition, at postintervention (t(257.52) = -3.27, 
p = 0.001, d = 0.41, 95% CI [0.03, 0.79]) and at follow-up (t(258.13) = −2.77, p = 0.006, d = 0.55, 95% CI [0.17, 
0.93]). In further exploratory analyses, the MT-StressLess without HR-based biofeedback condition did not 
differ significantly from the WLC condition, at postintervention, (t(255.60) =  −1.41, p = 0.161, d = 0.14, 95% 
CI [-0.24, 0.51]) or at follow-up, (t(255.77) = −1.78, p = 0.076, d = 0.44, 95% CI [0.06, 0.82]). Similarly, when 
directly comparing the two active intervention conditions, no significant difference was observed either at 
postintervention (t(263.43) =  −1.84, p = 0.068, d = 0.29, 95% CI [−0.08, 0.66]) or at follow-up (t(263.45) = −1.00, 
p = 0.317, d = 0.15, 95% CI [−0.22, 0.52]).

Sensitivity analyses
To assess the robustness of the results for the primary outcome, we conducted sensitivity analyses using the 
per-protocol sample, including only participants who actively engaged with the intervention, and a model 
controlling for sex and age. The findings from both the per-protocol analysis and the model controlling for 
sex and age were consistent with those of the main analyses. Detailed results of these sensitivity analyses are 
provided in the Supplementary Materials, Tables S13–S16.

Intervention effects on secondary outcomes
Table 3 provides the estimated means and overall effects (Time × Condition interaction) for the secondary 
outcomes. Table 4 displays the condition comparisons and between-condition effect sizes. Significant 
Time × Condition interactions were found for emotion regulation skills (F(4, 259.96) = 4.95, p < 0.001) and 

Variable

MT-
StressLess + biofeedback
(n = 56)

MT-
StressLess
(n = 56) WLC (n = 54)

Statistics

df x2/F p R2/V

Gender 4 7.48 0.112 0.15

 Female (n, %) 38 67.86 49 87.5 42 77.77

 Male (n, %) 17 30.36 7 12.50 12 22.22

 Diverse (n, %) 1 1.79 0 0 0 0

Age (M, SD) 25.39 9.88 23.25 7.27 23.76 6.29 2; 163 1.10 0.335 0.001

Age (range) 18–60 18–59 18–60

Highest education degree 10 11.13 0.348 0.18

 None (n, %) 1 1.79 0 0 0 0

 Secondary General School (n, %) 1 1.79 1 1.79 0 0

  Intermediate Secondary School (n, %) 4 7.14 2 3.57 0 0

 Graduate (n, %) 38 67.86 40 71.43 33 61.11

 Bachelor or Master Degree (n, %) 11 19.64 12 21.42 20 37

 PhD (n, %) 1 1.79 1 1.79 1 1.85

Employement 6 5.54 0.477 0.13

 Employed (n, %) 4 7.14 7 12.50 2 3.70

 Unemployed (n, %) 2 3.57 0 0 2 3.70

 Student (n, %) 41 73.21 37 66.07 40 74.07

 Others (n, %) 9 16.07 12 21.42 10 18.52

Health-related variables

 Current psychological/psychiatric treatment (n, %) 4 7.14 5 8.93 4 7.41 Fisher’s exact 
test 0.859

 Current cardiovascular disease (n, %) 3 5.36 3 5.36 1 1.85 Fisher’s exact 
test 0.701

 Currently smoking cessation (n, %) 6 10.71 1 1.79 6 11.11 Fisher’s exact 
test 0.097

 Physical activity per week, in hours (M, SD) 3.90 3.02 3.63 3.72 3.31 3.69 2; 157 0.38 0.687 -0.008

 Experience in relaxation exercises (n, %) 35 62.50 37 66.07 29 53.70 2 1.86 0.394 0.11

Frequency of smartphone use in daily life (M, SD) 4.12 0.95 4.25 0.72 4.19 0.80 2; 163 0.22 0.729 -0.008

PSS-10 at screening (M, SD) 21.05 6.84 23.30 6.49 22.37 6.94 2; 163 1.57 0.212 0.007

Table 2.  Sociodemographic and Clinical Characteristics of Participants at Screening. MT-
StressLess + biofeedback = Mentalis StressLess app-based intervention condition with heart rate-based 
biofeedback; MT-StressLess = Mentalis StressLess app-based intervention condition without heart rate based 
biofeedback; WLC = waitlist control; Frequency of smartphone use was assed via the self-developed question 
“How often do you use your smartphone?”; item range: 1 (very rarely) – 5 (very often); PSS-10 = Perceived 
Stress Scale.
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well-being (F(4, 259.96) = 3.10, p = 0.016) but not for depressive symptoms (F(4, 257.96) = 1.56, p = 0.185) (see 
Supplemental Material, Tables S17–S20 for detailed results). Pairwise comparisons within the LMM showed that 
both active intervention conditions significantly improved emotion regulation skills at postintervention (MT-
StressLess with HR-based biofeedback: d = −0.58, p < 0.001; MT-StressLess: d = −0.59, p = 0.006) and at follow-
up (d = −0.47, p < 0.001; d = −0.46, p = 0.031), as well as well-being at postintervention (d = −0.25, p = 0.006; 
d = −0.27, p = 0.043) and follow-up (d = −0.26, p = 0.005; d = −0.37, p = 0.012), compared to the WLC condition. 
No significant differences were found between the two active conditions for either outcome (emotion regulation 
skills: p > 0.193; well-being: p > 0.430).

App usage effects
Spearman’s rank correlations revealed that higher app engagement was associated with lower postintervention 
perceived stress adjusted for baseline values. In the MT-StressLess condition, more minutes spent in the app 
(rs = −0.41, p = 0.025) and a greater number of completed AAMT tasks (rs = −0.36, p = 0.038) were significantly 
related to reduced stress levels. In the MT-StressLess with HR-based biofeedback condition, no statistically 
significant negative associations were found; however, similarly strong correlations emerged. Notably, there 
was a trend towards a negative association for successfully completed HR biofeedback tasks (rs = −0.35, 
p = 0.073). Further details are provided in Supplemental Material, Table S6. We conducted consecutive separate 
linear regression analyses to assess the predictive value of app usage on postintervention stress levels. In both 
conditions, minutes spent in the app were a significant predictor of postintervention PSS scores (MT-StressLess: 

Fig. 3.  Observed means of the Perceived Stress Scale (PSS-10) across time points (Baseline, Postintervention, 
and Follow-up) for each condition (MT-StressLess + biofeedback, MT-StressLess, and WLC). Error bars 
represent ± 1 standard error of the mean (SE).
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β = −0.01, p < 0.001, R2 = 14.97%; MT-StressLess with HR-based biofeedback: β = −0.02, p < 0.001, R2 = 9.92%). A 
similar pattern emerged for the number of solved AAMT tasks, which was also significantly associated with 
PSS scores (MT-StressLess: β = −0.24, p = 0.003, R2 = 8.42%; MT-StressLess with HR-based biofeedback: β = −0.25, 
p = 0.003, R2 = 7.15%). Successfully achieving the predefined relaxation state during HR biofeedback tasks was 
a significant predictor of postintervention PSS scores (β = −0.50, p < 0.001), explaining 15.95% of the variance.

Discussion
This study aimed to evaluate the efficacy of a brief and novel smartphone-based app for stress management that 
included an accelerometer-derived HR-based biofeedback component. To this end, we tested the hypothesis that 
the new intervention would be superior to a WLC condition in terms of perceived stress as well as in improving 
secondary outcomes, including emotion regulation skills, depressive symptoms, and well-being. In exploratory 
analyses, we examined whether a non-biofeedback version of the intervention was also superior to the WLC 
condition, and whether the intervention with HR-based biofeedback was more effective than the otherwise 
identical non-biofeedback version. Finally, we assessed usability feedback and explored the impact of app usage 
on the intervention outcomes.

Outcome and conditions

Post Follow-up

df t p d 95% CI df t p d 95% CI

PSS-10

 MT-StressLess + biofeedback vs WLC 257.52 −3.27 0.001 0.41 [0.03, 0.79] 258.13 −2.77 0.006 0.55 [0.17, 0.93]

 MT-StressLess vs WLC 255.60 −1.41 0.161 0.14 [−0.24, 0.51] 255.77 −1.78 0.076 0.44 [0.06, 0.82]

 MT-StressLess + biofeedback vs MT-StressLess 263.43 −1.84 0.068 0.29 [−0.08, 0.66] 263.45 −1 0.317 0.15 [−0.22, 0.52]

ERSQ-27

 MT-StressLess + biofeedback vs WLC 262.09 4.03  < 0.001 −0.58 [−0.96, −0.20] 262.76 3.37  < 0.001 −0.47 [−0.85, 0.09]

 MT-StressLess vs WLC 260.10 2.78 0.006 −0.59 [−0.97, −0.20] 260.29 2.08 0.031 −0.46 [−0.84, 0.08]

 MT-StressLess + biofeedback vs MT-StressLess 268.27 1.24 0.218 −0.02 [−0.39, 0.35] 268.29 1.31 0.193 −0.01 [−0.38, −0.36]

WHO-5

 MT-StressLess + biofeedback vs WLC 261.99 2.80 0.006 −0.25 [−0.62, 0.13] 262.57 2.84 0.005 −0.26 [−0.64, 0.11]

 MT-StressLess vs WLC 260.14 2.00 0.043 −0.27 [−0.65, 0.11] 260.30 2.51 0.012 −0.37 [−0.74, 0.01]

 MT-StressLess + biofeedback vs MT-StressLess 267.65 0.79 0.430 −0.01 [−0.38, 0.36] 267.65 0.37 0.713 −0.06 [−0.43, 0.31]

Table 4.  Pairwise Condition Comparisons and Effect Sizes.

 

Outcome

MT-
StressLess + biofeedback 
(n = 54)

MT-
StressLess 
(n = 53)

WLC 
(n = 48)

Overall effects 
(Time × Condition 
interaction)

M SE M SE M SE df F p

PSS-10 4, 255.43 3.25 0.011

 Baseline 21.26 0.87 21.15 0.88 20.23 0.92

 Post 17.44 0.94 19.38 0.94 19.99 0.93

 Follow-up 16.22 0.95 17.23 0.93 18.26 0.94

ERSQ-27 4, 259.96 4.95  < 0.001

 Baseline 59.80 2.18 63.74 2.20 62.33 2.31

 Post 72.30 2.37 72.66 2.36 63.41 2.32

 Follow-up 70.99 2.39 71.16 2.34 63.86 2.35

PHQ-9 4, 257.96 1.56 0.185

 Baseline 9.91 0.64 9.19 0.64 8.75 0.67

 Post 7.84 0.69 8.33 0.68 8.36 0.68

 Follow-up 7.83 0.69 7.07 0.68 7.64 0.68

WHO-5 4, 259.96 3.10 0.016

 Baseline 10.39 0.62 10.94 0.62 11.33 0.65

 Post 12.23 0.67 12.17 0.66 11.04 0.66

 Follow-up 12.69 0.67 12.96 0.66 11.43 0.66

Table 3.  Estimated Means for Primary and Secondary Outcome Measures and Overall Effects. MT-
StressLess + biofeedback = Mentalis StressLess app-based intervention condition with heart rate-based 
biofeedback; MT-StressLess = Mentalis StressLess app-based intervention condition without heart rate-based 
biofeedback; WLC = waitlist control; PSS-10 = Perceived Stress Scale; ERSQ-27 = Emotion Regulation Skills 
Questionnaire; PHQ-9 = Patient Health Questionnaire; WHO-5 = WHO-Five Well-Being Index.
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Results from our three-arm RCT (N = 166) indicated that participants receiving the MT-StressLess intervention 
with HR-based biofeedback reported significantly greater reductions in perceived stress than those in the WLC 
condition. These effects were maintained at the 1-month follow-up and remained consistent across multiple 
sensitivity analyses. In exploratory analyses, participants in the MT-StressLess condition without biofeedback 
showed small reductions in perceived stress that were not significantly different from those in either of the other 
conditions.

The between-condition effect size for the MT-StressLess with HR-based biofeedback intervention on perceived 
stress at postintervention was d = 0.41. To our knowledge, this is the first study to combine a smartphone-based 
stress management intervention with accelerometer-derived HR biofeedback, thus precluding comparisons with 
similar studies. However, the effect size found in this study exceeded the average effect size for stress reduction 
in smartphone-based interventions reported in a recent meta-analysis (g = 0.29)80 and yielded more favorable 
results than those reported in the study by Yoon and colleagues, which used using smartphone-camera-based 
photoplethysmography to measure HRV39. This finding, along with the favorable results for our secondary 
outcomes emotion regulation, and well-being (but not depressive symptom severity), underscores the potential 
of sensor-, and particularly accelerometer-based technologies for HR biofeedback in combination with a stress 
management intervention to improve stress.

With regard to the main finding, that MT-StressLess with HR-based biofeedback outperformed the WLC 
condition, one plausible mechanism is that the intervention with integrated HR-based biofeedback may have 
enhanced stress regulation by increasing interoceptive awareness and improving autonomic balance beyond 
the immediate effects. The literature shows that real-time HR biofeedback helps individuals better detect 
physiological stress signals (e.g., elevated HR) and apply relaxation techniques, such as slow-paced breathing, 
to activate the parasympathetic nervous system81. Furthermore, biofeedback may indirectly facilitate prefrontal 
cortex regulation of the amygdala, thereby reducing emotional reactivity and enhancing top-down stress 
control82. These mechanisms align with prior research showing that biofeedback enhances self-regulation, 
emotional awareness, and autonomic flexibility, contributing to sustained stress reduction34,83,84. In addition 
to HR as an instant feedback measure, HRV provides a more reliable indicator of long-term stress regulation 
capacity as it is associated with better emotion regulation, greater stress resilience, and reduced physiological 
arousal16,85. However, HRV requires longer measurement periods to ensure accuracy86 than what we could 
implemented here. Future studies should integrate continuous HRV measurements to better assess overall stress 
resilience and the lasting effects of biofeedback interventions.

While these mechanisms may partly explain the superiority of the biofeedback-enhanced intervention over 
the WLC condition, the exploratory finding that the core intervention neither significantly reduced perceived 
stress compared with the WLC condition nor differed significantly from the biofeedback-enhanced condition 
suggests that both the efficacy of the core intervention and the added benefit of the biofeedback component 
remain uncertain. This underscores the need for cautious interpretation and highlights the potential role of other 
specific and non-specific factors.

One possible factor is limited statistical power. Although it is possible that both the comparison between 
MT-StressLess alone and the WLC condition, as well as the comparison between the core and the biofeedback-
enhanced intervention, might have reached statistical significance with a larger sample size, it remains 
questionable whether such differences would also indicate clinically relevant change. To achieve such change, 
the core intervention may need to offer a longer duration or greater intensity, as the relatively brief format 
may not have provided sufficient time for participants to internalize and consistently apply the provided 
strategies. The limited evidence of an added benefit, may be related to how the biofeedback component was 
operationalized, particularly the use of static HR cutoffs derived from a small healthy sample to define stress-
to-relaxation transitions. Individual differences in baseline HR, cardiovascular fitness, and stress responsiveness 
may have limited the sensitivity of this approach. Future studies should consider adaptive or individualized 
thresholds to enhance accuracy and engagement. Furthermore, adherence and usability seemed to play a crucial 
role, as only 26.04% of participants completed all 14 competencies and 21.69% of participants dropped out at 
postintervention. While these figures are in line with previous smartphone-based interventions, they underscore 
the need for improved retention strategies87,88. Usability data suggest that the intervention was user-friendly and 
well-structured, with high comprehensibility. However, AAMT tasks, quizzes, and the biofeedback relaxation 
exercise had lower appeal and goal attainment ratings, indicating room for improvement. Additionally, app usage 
appeared to contribute to the intervention effects. In both active conditions, greater engagement was associated 
with lower perceived stress at postintervention. This pattern was particularly noticeable in the MT-StressLess 
with HR-based biofeedback condition, in which a higher number of completed biofeedback relaxation tasks 
tended to be associated with greater stress reduction. Digital interventions rely on self-guided engagement89, 
and without immediate reinforcement, some participants may have had difficulty maintaining motivation 
or consistently applying stress management techniques. However, because engagement metrics (e.g., time 
spent in the app and active usage days) did not differ significantly between conditions, biofeedback’s primary 
contribution may have been in enhancing perceived efficacy rather than overall usage levels. Another important 
factor to consider is the placebo or outcome expectancy effect. Participants in the MT-StressLess with HR-based 
biofeedback condition may have expected greater benefits due to the novelty and perceived sophistication of the 
biofeedback component. This expectation may have led to increased motivation, engagement, and subjective 
stress reduction. By contrast, participants in the MT-StressLess-only condition may not have had the same level 
of expectation, potentially influencing their perceived benefits. However, expectancy effects also contribute to 
the efficacy of face-to-face mental health interventions90, as widely acknowledged in common factor models 
of psychotherapy91, and have also been discussed as a potential mechanism of action in smartphone-based 
interventions92. Thus, expectancy is a legitimate, yet insufficiently understood factor that should be considered 
as part of an intervention and further explored as a potential therapeutic target. It is likely that, in our study, a 
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combination of specific intervention benefits and common factors, such as expectation effects, contributed to the 
greater perceived stress reduction observed in the MT-StressLess condition with HR-based biofeedback.

This study offers several strengths, particularly the innovative integration of smartphone-based HR 
biofeedback using built-in sensors, eliminating the need for external devices, and enhancing accessibility and 
scalability. The rigorous three-arm RCT design allowed an exploratory evaluation of the standalone intervention 
as well as the added benefit of biofeedback, while LMMs ensured robust statistical analysis. Despite its strengths, 
this study has several limitations. First, both the MT-StressLess core intervention and the biofeedback component 
were novel interventions. The absence of an established state-of-the-art active control group restricts direct 
comparisons with established stress management programs. This limits the ability to draw strong conclusions 
about the efficacy of the MT-StressLess with HR-based biofeedback intervention relative to existing digital or 
other (established) interventions. Additionally, because no condition specifically emphasized relaxation without 
HR-based biofeedback, it remains unclear whether the observed effects were due to the biofeedback itself or 
general relaxation techniques. Future research should compare HR-based biofeedback with other interventions 
and alternative relaxation methods, to isolate their unique contributions. Second, although the sample size was 
relatively large, it was still too small to detect more subtle intervention effects, allow for sophisticated moderation 
and mediation analyses, or enable a thorough investigation of usage patterns (e.g., time spent on individual 
modules and adherence to components) to better understand the relationship between app engagement and 
intervention efficacy. Moreover, the self-selected sample was skewed toward younger female Android users, 
limiting generalizability. Future studies should aim for larger, more diverse samples to improve external 
validity. Third, the exclusive reliance on self-reported data introduces potential placebo, expectancy, and social 
desirability effects, which may have influenced the results93. This is a common challenge in clinical research, 
where participants may feel inclined to provide responses that reflect positive change rather than fully objective 
assessments of their experiences93. Thus, future studies should complement self-reports with physiological and 
behavioral indicators of stress, such as longitudinal HRV measurements94. Finally, the one-month follow-up 
period in the present study was relatively brief compared to app-based targeting mental disorders95,96. However, 
when compared with analogous stress intervention studies, which often lack a follow-up assessment point22,97, 
it represents a methodological advancement. Nevertheless, the stability of initial effects over longer periods 
remains unknown and should be evaluated in future studies.

In conclusion, the findings point to the potential of combining smartphone-based interventions with HR-
based biofeedback to reduce perceived stress. However, non-specific factors such as placebo effects, outcome 
expectancy, and user engagement, as well as the limited efficacy of both the core intervention and the biofeedback 
component in their current form, may also have influenced the observed outcomes. These findings highlight the 
need to better understand optimal intervention duration, motivation, reinforcement, and more individualized 
approaches to stress reactivity. While the novel and practical HR-based biofeedback approach, the three-arm 
RCT design, the statistical modeling, and objective app usage tracking strengthened the study’s findings, certain 
limitations should be acknowledged, including the lack of a state-of-the-art active control condition and a 
standalone HR-based biofeedback condition, the sample size and characteristics restricting some insights into 
mechanisms of change, the reliance on self-reported data, the chosen static HR cutoffs, and a brief follow-up 
period of one month. Although data collection took place in 2017, sensor-based interventions remain in their 
early stages, and research in this field continues to advance. Cutting-edge technologies, such as machine learning 
and artificial intelligence (AI), have the potential to enhance personalization and real-time feedback23; yet the 
integration of smartphone-based physiological sensing remains an evolving area. This study provides a valuable 
foundation for future research exploring how advancements in machine learning, AI-driven personalization, 
and sensor technology can further optimize real-world applications while carefully considering ethical aspects 
as sensor-based interventions continue to evolve.
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