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Hematoporphyrin monomethyl ether-photodynamic therapy (HMME-PDT) is a safe and effective 
treatment for port-wine stain (PWS). Comprehensive methods for predicting HMME-PDT efficacy 
based on clinical factors are lacking. This study aims to develop and validate two machine learning 
models to predict the therapeutic effect of HMME-PDT for PWS. We conducted a retrospective study of 
131 facial PWS patients treated with single HMME-PDT at the Second Xiangya Hospital from May 2022 
to January 2025. The patients were divided into the training cohort and the validation cohort based on 
the order of their enrollment. Key clinical features were selected using recursive feature elimination 
(RFE). We developed and validated prediction models with Extreme Gradient Boosting (XGBoost) 
and Random Forest (RF) algorithms. Model performance was assessed using confusion matrix and 
evaluation metrics. RFE identified the top predictive factors: dermoscopy vascular pattern, immediate 
fluorescence intensity (IFI) after HMME-PDT, the facial port-wine stain area and severity index 
score, and age. In the training cohort, both models demonstrated strong predictive performance, 
with accuracies, F1 scores, and AUC values exceeding 0.8. The XGBoost model outperformed with 
an accuracy of 0.8750, F1 score of 0.8750, and AUC of 0.8636. In the validation cohort, XGBoost 
model achieved an accuracy and F1 score both greater than 0.73, with an AUC value of 0.7672. It 
had the better comprehensive performance. Our findings suggest these models are promising for 
predicting HMME-PDT efficacy in PWS. This is the first study to explore IFI after HMME-PDT in efficacy 
assessment.
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Port-wine stain (PWS), also known as nevus flammeus, is a benign congenital vascular malformation 
characterized by the dilation and malformation of superficial dermal capillaries and post-capillary venules. The 
incidence of PWS in newborns is approximately 0.3–0.5%1. Further, PWS frequently occurs in exposed areas, 
such as the face and neck, and generally does not regress spontaneously. If not treated promptly or appropriately, 
the lesions may enlarge, thicken, and darken as the patient ages, potentially leading to spontaneous bleeding2. 
PWS is a disfiguring condition that can lead to psychosocial issues and reduce the overall quality of life of 
patients. Furthermore, the pathogenesis of PWS remains unclear3making it difficult to prevent the condition at 
its root cause. Current research focuses primarily on optimizing treatment strategies.

In recent years, photodynamic therapy (PDT) has been rapidly developed and shown to be an effective 
treatment for PWS, which can induce photochemical reactions leading to cell death by apoptosis, autophagy, or 
necrosis4. Hematoporphyrin monomethyl ether (HMME), also called Hemoporfin, is a novel second-generation 
porphyrin photosensitizer. It offers advantages, such as safety, minimal side effects, non-invasiveness, and high 
selectivity for abnormal blood vessels. Hematoporphyrin monomethyl ether-PDT (HMME-PDT) has been 
approved for the treatment of PWS in China since 20175. The efficacy of HMME-PDT has been confirmed in 
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both children and adults by years of clinical observation6. It is worth noting that the application of HMME-
PDT is not limited to the treatment of PWS. Studies have shown that it also demonstrates significant efficacy 
in combating fungal infections and drug-resistant bacterial infections7,8. Due to the heterogeneity of vascular 
malformations and individual differences among patients, there are significant variations in the efficacy of 
HMME-PDT among different patients9.

Many non-invasive skin examination techniques are gradually being applied to predict, assesss and 
intraoperatively monitor treatment outcomes in PWS. These include approaches such as dermoscopy, reflectance 
confocal microscopy, and high-frequency ultrasound. Research has shown that different vascular patterns 
identified using dermatoscopy can predict the efficacy of HMME-PDT10. Real-time fluorescence spectroscopy 
can monitor the skin photosensitizer concentration during PDT for PWS and predict treatment responses11. 
However, there is still a lack of comprehensive methods to predict PDT efficacy based on various clinical factors 
in PWS patients, which is far from meeting clinical needs. Therefore, there is an urgent need for precise and 
comprehensive new methods to predict patient outcomes, which can assist clinicians in treatment decisions and 
achieve accurate and personalized therapy.

Machine learning has played a crucial role in medical research and clinical practice, given the advancement 
and development of big data technology. Machine learning techniques can autonomously learn the identification 
of hidden relationships in existing data and use this knowledge to predict outcomes for unknown data. Further, 
machine learning has garnered global attention due to its efficient data processing, deep analytical capabilities, 
and self-optimization attributes. Currently, machine learning has a unique value in several fields, such as basic 
medical research, clinical practice, and epidemiological studies12–14. For example, Mungeret al. used the random 
forest machine learning algorithm in an observational cohort study to identify the main predictors of non-
calcified coronary plaque burden in psoriasis patients15. In another report, Maintz et al. employed a machine 
learning-gradient boosting approach to analyze the factors associated with the severity of atopic dermatitis16. 
Zheng et al. were the first to construct risk prediction model for postherpetic itch using machine learning 
methods, including logistic regression, random forest, k-nearest neighbor, gradient boosting decision tree and 
neural network17. Furthermore, machine learning algorithms use non-parametric models that do not rely on 
assumptions about data distribution in contrast to traditional statistical methods. These algorithms can flexibly 
adapt to the nonlinearity and complexity of the data and automatically adjust without the need for human 
intervention. They can efficiently and objectively reveal the complex and hidden relationships between clinical 
characteristics and patient outcomes, as well as the relationships among various features18.

In summary, this study collected data on clinical characteristics of HMME-PDT of PWS patients, including 
the immediate fluorescence intensity (IFI) at the lesion site after HMME-PDT, dermoscopy vascular pattern, 
and the facial port-wine stain area and severity index (FSASI) score19. Feature selection was performed using the 
Recursive Feature Elimination (RFE) method, and efficacy prediction models for HMME-PDT were constructed 
by applying Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms. These models were 
comprehensively evaluated to determine the superior model. The relationships between various clinical features 
and the efficacy of HMME-PDT were explored by leveraging these models. The work aimed to establish a 
foundation for timely and accurate assessment and adjustment of HMME-PDT treatment plans.

Materials and methods
Research design and objectives
This study retrospectively analyzed clinically diagnosed facial PWS patients (n = 131) who received a single 
HMME-PDT session at the Second Xiangya Hospital of Central South University from May 2022 to January 
2025. Patients enrolled between May 2022 and April 2024 were assigned to the training cohort (n = 78), while 
patients enrolled between May 2024 and January 2025 were assigned to the validation cohort (n = 53). Exclusion 
criteria included: (1) presence of other vascular malformations; (2) without clear clinical images for efficacy 
evaluation. This study was approved by the clinical research ethics committee of Second Xiangya Hospital of 
Central South University (LYEC2024-K0152). The research was performed in accordance with the principles 
of the Declaration of Helsinki. Written informed consent was obtained from all patients before treatment. The 
patients mentioned in this manuscript have given written informed consent to the release of images that may 
lead to identification. Specially, minor patients was obtained consent from their parents and legal guardians.

Treatment protocol
Pre-treatment preparation
All patients completed blood count, liver and kidney function test, and ECG examination to evaluate treatment 
risks. An experienced operator captured lesion images using VISIA-CR™ system (Canfield Scientific, Inc., United 
States) under consistent angle and light intensity. Dermoscope images of lesion were detected by the hand-held 
dermoscope with 50X polarized light (Guangzhou Chuanghong Medical Technology Co. Ltd., China) in the 
same area. Each patient was assessed for the subtype of lesion and the FSASI score.

HMME-PDT treatment
Hemoporfin solution (Shanghai Fudan Zhangjiang Biopharmaceutical Co. Ltd., China) was prepared at a dosage 
of 5 mg/kg. The patient was made to lie down, the hair at the treatment site was shaved, and the lesions were 
fully exposed and cleaned. Normal skin within the irradiation area was covered with a light-blocking cloth 
while the operator wore protective goggles. The total administration time was 20 min for adults (speed of the 
infusion pump speed was 150 ml/h) and 5 min for children weighing ≤ 40 kg (speed of the infusion pump speed 
was 240 ml/h). Illumination was started at the 8th minute of drug infusion for adults and the 3rd minute for 
children. The lesion was irradiated using 532 nm LED green light (Wuhan YaGe Photoelectric Technology Co. 
Ltd., China) for 15–20 min for each spot. An auxiliary treatment head was used simultaneously for larger or 
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more dispersed lesions. After treatment, a routine cooling spray or cold compress was applied for 30 min, and 
patients were given postoperative care instructions.

Post-treatment and follow-up
Immediately after HMME-PDT, the lesion was irradiated to induce fluorescence response using UVA 
(385 ± 10 nm) as the excitation light source. Fluorescence images were recorded with an Apple iPhone XS mobile 
phone. After the single HMME-PDT, the patient underwent follow-up at the outpatient department. The same 
VISIA-CR™ system was utilized to capture lesion images under constant conditions.

Data collection
The clinical baseline data of each patient was collected, including age; gender; the subtype of the lesion; history 
of previous pulsed dye laser (PDL) treatment; pre-treatment FSASI19 score; dermatoscopic images before 
treatment; immediate fluorescence images after HMME-PDT; clinical images before and after HMME-PDT; 
and the interval between two treatment. The efficacy assessment followed the traditional classification method. 
Depending on the degree of regression in treated lesions, the clinical efficacy was categorized into two classes: 
effective groups (≥ 25% improvement) and ineffective groups (< 25% improvement). The post-PDT fluorescence 
was qualitatively classified into three levels. It was defined as weak when little fluorescence was observed, and 
intense when homogeneous, bright fluorescence was observed (Fig.  1). The intermediate fluorescence fell 
in between these two levels. We focused on three main dermoscopic patterns, as follows the superficial type 
included point globular and short clubbed blood vessels; the deep type included mainly reticular and linear 
blood vessels (Fig. 1). If the images included both these vascular patterns, it was defined as a mixed type. All 
these mentioned evaluation techniques were independently assessed and recorded by two dermatologists with 
extensive clinical experience.

Fig. 1.  Clinical pictures, dermoscopy and fluorescence imaging of port-wine stain (PWS)lesions before and 
after one session of hematoporphyrin monomethyl ether-photodynamic therapy (HMME-PDT). (a) A PWS 
patient that showed ≥ 25% improvement (effective). (a1) Before treatment and (a2) after HMME-PDT. (a3) 
Superficial type: dotted and globular, and short clubbed vessels were seen under dermoscopy before treatment. 
(a4) Immediate fluorescence intensity (IFI) at the lesion site after HMME-PDT where bright and homogeneous 
fluorescence was detected in the lesion. (b) A PWS patient that showed < 25% improvement (ineffective). (b1) 
Before treatment and (b2) after HMME-PDT. (b3) Deep type: reticular and linear vessels were seen under 
dermoscopy before treatment. (b4) Immediate fluorescence intensity at the lesion site after HMME-PDT where 
little fluorescence was detected in the lesion.
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Machine learning development process
Data preprocessing
This study enrolled a dataset of 78 patients with PWS, including 9 variables (6 categorical and 3 continuous). The 
categorical variables were gender, subtype of lesion, PDL treatment history, IFI after HMME-PDT, dermoscopy 
vascular pattern, and the therapeutic effect. The continuous variables were age (integer), the interval between two 
treatment sessions (integer), and the FSASI score (decimal number). Depending on the presence of sequential 
relationships and the number of categories, one-hot encoding was used for unordered categorical variables, 
while ordinal encoding was applied to ordered categorical variables. During the data processing phase, missing 
values are detrimental to the generalization of predictive models and can reduce their practical utility to some 
extent. Therefore, it is essential to conduct appropriate data cleaning to address this issue20,21. In this study, 
data cleaning was necessary due to a small number of missing values in the dermatoscopy data. The data were 
categorical variables with values missing completely at random. The primary method used for data cleaning was 
mode imputation.

Algorithm training and validation
After data preprocessing, we used RFE with an XGBoost model as the estimator to iteratively remove the least 
important features22identifying the most significant and clinically relevant predictive factors. Based on the RFE 
feature selection results, the dataset of 78 PWS patients was randomly divided into training and testing sets with 
an 8:2 ratio using a random seed. This study applied a Bayesian optimization algorithm to select the optimal 
hyperparameters. We utilized the Gaussian Process as the surrogate model and the Expected Improvement (EI) 
as the acquisition function, with negative accuracy as the objective function return value. The hyperparameter 
search space for the XGBoost and RF algorithms was defined separately (Table 3). The iteration count was set to 
100, and the termination criterion was reaching the maximum number of iterations (Supplementary Fig. 2–4). 
The synthetic minority over-sampling technique (SMOTE) method was employed (setting strategy = auto、k_
neighbors = 3) for oversampling to balance the sample size disparity between groups. The prediction models were 
developed using XGBoost and RF methods, respectively. We comprehensively evaluated model performance 
and selected the optimal model by plotting the confusion matrix, receiver operating characteristic curve (ROC), 
and evaluation measures, such as Accuracy, Precision, Recall, F1-Score, and the area under the curve (AUC). 
The validation cohort was employed to assess the performance of both models using the same ways. And 
we interpreted the impact of each feature in the model using the Feature Importance and SHapley Additive 
exPlanations (SHAP) method by applying Tree Explainer23.

Statistical analysis
The baseline characteristics of the patients were compared between the different groups (Table 1, Supplementary 
Table 1). Categorical data were compared using Pearson’s chi-square or likelihood ratio chi-square tests, with 
results presented as frequency and percentage. Continuous variables were compared using the Mann-Whitney 
U test, and the results were expressed as M (Q1, Q3). The data analysis was conducted using SPSS 26.0 software. 
Feature selection, model training, validation, evaluation, and interpretation analyses were performed using 
Python 3.9.13 software. The primary data analysis packages included xgboost 1.7.6, scikit-learn 1.1.3, and shap 
0.44.0. The model interpretation also utilized the built-in Feature Importance provided by XGBoost algorithms. 
A p-value<0.05 was deemed statistically significant.

Results
Patient characteristics
This study enrolled 131 facial PWS patients, with 78 assigned to the training cohort and 53 to the validation 
cohort. The baseline characteristics in the training cohort are presented in Table 1. There were 36 male and 42 
female patients, with the age ranging between 2 and 47 years. The treatment of training cohort was ineffective 

Classifier models Hyperparameters Optimal value Search space

Extreme gradient boosting

learning rate 0.351 0.01,0.5

n estimators 401 10,500

gamma 0.315 0.01,1

reg alpha 0.18 0.01,1

reg lambda 0.184 0.01,1

Random forest

n estimators 677 1, 1000

min samples split 2 2,10

min samples leaf 5 1,5

min weight fraction leaf 0.0511 0,0.5

min impurity decrease 0.1428 0,1

max samples 0.5451 0.1,1

max depth 97 1,100

Table 3.  Bayesian optimization search space and optimal values for hyperparameters in extreme gradient 
boosting (XGBoost) and random forest (RF) efficacy prediction models.
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in 21 patients and effective in 57 patients. There were no statistically significant differences between the two 
groups regarding gender, lesion subtype, PDL treatment history, age, and the interval between treatment sessions 
(p > 0.05). In contrast, significant differences were observed between the groups in terms of the dermoscopy 
vascular pattern, immediate fluorescence intensity following HMME-PDT, and the FSASI score (p < 0.05). This 
suggests that these factors may have an impact on the treatment efficacy.

Feature selection
We performed feature selection using XGBoost-RFE to obtain meaningful features. Further optimization of the 
feature combination was achieved using 3-fold cross-validation. The accuracy of the RFE model using XGBoost 
as the estimator peaked when retaining 4 or 5 features (Fig. 2, Table 2). Ultimately, the algorithm opted for a 
concise subset comprising 4 features. At this stage, the important features were dermoscopy vascular pattern, IFI 
after HMME-PDT, the FSASI score, and age.

Comparing machine learning performance
The Gaussian process was chosen as the surrogate model using the four important features previously selected. 
The acquisition function for Bayesian optimization within the search space described above was EI, and the 
optimal hyperparameter values were obtained (Table  3, Supplementary Fig.  2–4). The HMME-PDT efficacy 
prediction models were developed on the training set using XGBoost and RF algorithms under the optimal 
hyperparameter combination. After fitting the models on the test set, their performance was evaluated (Table 4). 
The overall accuracy of the XGBoost prediction model was 0.875. The weighted average precision, recall, and 
F1 score were more than 0.85, demonstrating its excellent fitting performance. The overall accuracy of the RF 
prediction model was 0.8125, with weighted average precision, recall, and the F1 score exceeding 0.80. These 
results were also considered excellent. We evaluated the accuracy of the prediction models for treatment efficacy 
using ROC curve analysis. The ROC curves of both models were significantly above the baseline of random 
classification, represented by the 45-degree diagonal line. The AUC values were 0.8638 for the XGBoost model 
and 0.8818 for the RF model (Fig. 3). In summary, both models exhibited an excellent predictive performance. 
However, the overall performance of the XGBoost model was better. Given its higher F1 score and accuracy, the 
XGBoost model had a better and more accurate performance predicting both effective and ineffective outcomes.

Explanatory analysis of the prediction model
For the global interpretation, the feature importance scores of each feature ranked from highest to lowest in 
the XGBoost model were as follows: IFI after HMME-PDT, dermoscopy vascular pattern, FSASI score, and 
age (Fig.  4). We used SHAP to quantify the contribution of each feature to the prediction results. Based on 
their SHAP absolute values, the features ranked in descending order include dermoscopy vascular pattern, IFI 
after HMME-PDT, FSASI score, and age (Figs. 5 and 6). Additionally, we utilized SHAP for local interpretation 
of the data. The SHAP distributions between groups exhibited significant imbalance for categorical variables. 
Superficial type under dermoscopy and intense fluorescence intensity both had SHAP values > 0, indicting 

Characteristics Total (n = 78) Ineffective (n = 21) Effective (n = 57) p value

Gender, n (%) 0.503

Male 36(46.154) 11(52.381) 25(43.860)

Female 42(53.846) 10(47.619) 32(56.140)

Age (years) 10(5, 21) 11(5.5, 19) 10(5, 21) 0.731

Interval (months) 4(3, 6) 5(3.5, 7) 4(3, 6) 0.13

Treatment history, n (%) 0.952

Yes 45(57.692) 12(57.143) 33(57.895)

No 33(42.308) 9(42.857) 24(42.105)

Subtype of lesion, n (%) 0.25

Pink 27(34.616) 9(42.857) 18(31.579)

Purple 45(57.692) 12(57.143) 33(57.895)

Thick 6(7.692) 0(0) 6(10.526)

Dermoscopy vascular pattern, n (%) <0.001

Superficial 47(60.257) 6(28.571) 41(71.930)

Mixed 6(7.692) 1(4.762) 5(8.772)

Deep 25(32.051) 14(66.667) 11(19.298)

Fluorescence intensity, n (%) 0.003

Weak 15(19.231) 9(42.857) 6(10.527)

Intermediate 26(33.333) 7(33.333) 19(33.333)

Intense 37(47.436) 5(23.810) 32(56.140)

FSASI (scores) 2.95(1.58, 5.85) 1.8(1.2, 2.95) 3.6(2.3, 7.2) 0.001

Table 1.  Patients’ baseline clinical characteristics analysis in the training cohort. P value < 0.05 indicates 
statistical significance.
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Models

Testing dataset

Predict ineffective Predict effective Accuracy Precision Recall F1-score AUC

Extreme Gradient Boosting (XGBoost)

ineffective 4 1
0.8750 0.8750 0.8750 0.8750 0.8636

effective 1 10

Random Forest (RF)

ineffective 4 1
0.8125 0.8271 0.8125 0.8166 0.8818

effective 2 9

Table 4.  Comparison of the performance of XGBoost and RF models by confusion matrix and evaluation 
measures. AUC the area under the curve.

 

Number of features Mean test score Std test score Split0 test score Split1 test score Split2 test score

1 0.692 0.063 0.769 0.615 0.692

2 0.667 0.018 0.654 0.654 0.692

3 0.731 0.054 0.769 0.654 0.769

4 0.756 0.018 0.769 0.769 0.731

5 0.756 0.036 0.808 0.731 0.731

6 0.731 0.000 0.731 0.731 0.731

7 0.731 0.031 0.769 0.692 0.731

8 0.744 0.048 0.808 0.692 0.731

Table 2.  Performance evaluation results of the XGBoost-RFE model with varying numbers of retained 
features.

 

Fig. 2.  Flowchart of the recursive feature elimination (RFE) with an Extreme Gradient Boosting (XGBoost) 
model as the estimator (XGBoost-RFE). The four curves in the figure represent the performance of the 
XGBoost-RFE model in 3-fold cross-validation and its mean performance. Based on the blue curve, the 
accuracy peaked when 4 or 5 features were retained.
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correlation with better efficacy  (Fig. 7a-b). There was a clear trend in the distribution of the FSASI score and age 
data points (Fig. 7c-d). The SHAP values for the FSASI score increased with feature statistics and reached a peak, 
demonstrating a positive correlation with efficacy. And age was negatively correlated with efficacy.

Model validation
A comparison of baseline characteristics between the training cohort (n = 78) and validation cohort (n = 53) 
is presented in Supplementary Table 1. No statistically significant differences were observed between the 
two groups in terms of gender, age, history treatment of PDL, lesion type, IFI, and FSASI scores (p > 0.05). 
In the validation cohort, the AUC values were 0.7672 for the XGBoost model and 0.7557 for the RF model 
(Supplementary Fig. 1). The results show the comparison of F1 score, accuracy, precision, and recall among the 
two models (Supplementary Table 2). The XGBoost model achieved values greater than 0.73 for all of the above 
metrics and it had the better comprehensive performance.

Discussion
PWS is a congenital disfiguring condition with an incidence rate of approximately 0.3–0.5%. Although PDL is 
the gold standard clinical treatment for PWS, only 10-20% of patients achieve near-complete lesion resolution 
after multiple treatments, with a high risk of recurrence24. Therefore, efficient treatment strategies are needed 
to reduce or eliminate skin lesions in PWS patients. HMME-PDT was introduced into clinical practice in 2017 
as a novel technology. Due to its superior efficacy and safety, HMME-PDT is increasingly used in the treatment 
of PWS in China. It is noteworthy that the efficacy of HMME-PDT is influenced by various factors, such as the 
type of PWS, dermoscopic pattern, lesion area, site and thickness, patient’s age at treatment, and previous history 
of PDL treatment. Numerous studies have evaluated and predicted the efficacy of HMME-PDT in treating 
PWS. However, a single, precise indicator for accurately predicting HMME-PDT efficacy in real-world settings 
still needs to be identified. This limitation makes it difficult for clinicians to achieve precise and personalized 
treatment based on patient characteristics.

Machine learning has demonstrated extensive potential applications in clinical research and medical practice 
by leveraging its advantages in accuracy, large-scale data processing, and self-learning optimization. It has 
improved diagnostic accuracy and extended the comprehensive management of complex diseases, meeting 
various medical needs. In this study, we developed machine learning-based prediction models for predicting 
the efficacy of HMME-PDT in PWS patients. This lays the foundation for developing an artificial intelligence 
system that can be widely applied in clinical practice, offering a new approach for early efficacy assessment and 
timely intervention.

XGBoost is an efficient supervised learning algorithm suitable for regression, classification, and ranking 
problems. It is based on the principle of Gradient Boosting Trees, continuously adding decision trees to correct 
prediction errors and approximate the true values. The algorithm uses parallel computing and optimization 
techniques to reduce training costs and automatically handle missing values, enhancing the model’s predictive 
capability25,26. The other algorithm RF is an ensemble learning method that constructs multiple decision trees 
and combines their prediction results to augment the model’s performance27,28. Although both XGBoost and RF 
are decision tree-based machine learning algorithms, they differ significantly in their computational processes. 
The RF algorithm uses the Bootstrap Aggregating method to perform random sampling and independently 
train decision trees in parallel. In contrast, XGBoost builds each decision tree based on the performance of 
the previous tree, creating a serial relationship between the trees. Furthermore, the XGBoost algorithm has 

Fig. 3.  Receiver operating characteristic (ROC) curve of (a) XGBoost and (b) Random Forest (RF) on the 
testing dataset.
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low training costs, and fast computation speed and also offers a rich set of hyperparameters for optimizing 
performance. Although RF is a powerful ensemble learning method, its performance can be affected by certain 
factors. If there are fewer samples of certain classes in the dataset, RF may have difficulty adequately learning 
the features of the few classes. XGBoost can better handle the sample imbalance problem by weighting the loss 
function. In addition, XGBoost is able to automatically capture the non-linear interactions between features, 
while RF is weaker in this aspect, which may lead to a decrease in prediction performance29,30. These were also 
demonstrated in the present study.

This study primarily involved data preprocessing, feature selection, algorithm training and testing, and 
performance evaluation steps. Further validation was conducted using patient data from different time periods. 
After data preprocessing, the XGBoost-RFE method identified the dermoscopy vascular pattern classification, 
IFI after HMME-PDT, FSASI score, and age as predictive factors for HMME-PDT treatment efficacy in PWS. 
Two prediction models for assessing PWS therapeutic effect were developed using XGBoost and RF machine 
learning methods. Model performance was compared, with the XGBoost model showing a slightly lower 
AUC value but higher accuracy and F1 score compared to the RF model. Additionally, the XGBoost model 
demonstrated a more balanced performance between effective and ineffective groups. In the validation cohort, 
the XGBoost model outperformed the RF model, achieving higher values for all of the above metrics.

Fig. 4.  Importance of each feature during the training process of the XGBoost model.
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Machine learning algorithms have significant advantages in analyzing complex datasets and fitting 
potential relationships between features. However, they also inevitably need help with the drawback of poor 
interpretability31. This study utilized feature importance analysis and SHAP to explain the decision-making 
process and outcomes of the model to understand the model32. We conducted global and local analyses to assess 
the impact and positive or negative correlations of each clinical feature on the prediction model. The feature 
importance analysis and SHAP results were inconsistent in this study. The rankings of dermoscopy vascular 
pattern and IFI after HMME-PDT varied, possibly due to differences in the theoretical foundations of both 
assessment methods employed. Feature importance analysis evaluates the importance of features during node 
splitting in the model. It is often computed from the gain from node splitting, which measures the improvement 
in model performance after splitting on a particular feature. This evaluation reflects the degree to which a 
feature influences model performance during the decision tree construction33. On the other hand, SHAP takes 
the interactions and nonlinear relationships between features into account. It calculates the weighted sum of 
contributions from each feature to the overall model based on their permutations and combinations. This 
approach emphasizes the importance of the impact of features on the actual predictive outcomes of the model, 

Fig. 6.  Overview of SHAP distribution for each feature in the XGBoost model for PWS. The x-axis represents 
the SHAP values attributed to each feature, and the y-axis lists the features in descending order of importance. 
Each point in the plot represents a patient, with the color indicating the feature value in the dataset: red 
denotes higher values, while blue represents lower values. Positive SHAP values suggest that the feature 
prompts the model to predict the therapy as effective, while negative SHAP values suggest the feature causes 
the model to predict the therapy as ineffective.

 

Fig. 5.  Ranking of the average absolute SHapley Additive exPlanations (SHAP) values for each feature. The 
x-axis represents the absolute value of the average SHAP values for each feature, indicating the degree of its 
influence on the prediction results. Higher SHAP values indicate a greater impact of the feature on predicting a 
specific outcome.
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making it more relevant to clinical research and practical applications. Given these advantages, our feature 
ranking was primarily based on SHAP.

In local interpretations based on SHAP, when superficial dermoscopic vascular patterns and strong fluorescence 
intensity both have SHAP values > 0, the treatment efficacy is generally higher. Previous studies have shown that 
superficial vascular patterns in PWS correlate with better treatment responses34,35. Furthermore, a prospective 
cohort study of 163 PWS patients found a significant correlation between PDT efficacy and dermoscopic vascular 
patterns. Dot-like and short rod-like vascular patterns were highly associated with beneficial outcomes and 
cures, assisting in predicting treatment efficacy10. Consistent with these reports, our study found that superficial 
patterns correspond to better treatment outcomes. Hence, the dermoscopic assessment of vascular features in 
PWS helps to predict the response to PDT and manage patient expectations.

Fluorescence intensity related to PDT has been previously proposed as an indicator for observing treatment 
response in clinical settings. For example, Wang et al. established a fluorescence method by measuring real-
time fluorescence spectra of the skin during PDT to determine the local concentration of the photosensitizer. A 
therapeutic effect correlation index (TECI) was proposed as the area under the photosensitizer concentration-
time curve during PDT. The correlation between TECI and PDT outcomes in 31 PWS patients revealedthat 
fluorescence spectroscopy can monitor the concentration of the photosensitizer in the skin during PDT and 
predict treatment response11. However, it has not yet been widely adopted in clinical practice due to the 
complexity of this technique. Therefore, to the best of our knowledge, our work is the first to propose IFI at the 
lesion site after HMME-PDT as a new indicator while evaluating its role in predicting therapeutic efficacy.

Our results also indicated that the IFI after HMME-PDT was the second most important factor for HMME-
PDT. When the fluorescence intensity was categorized as intermediate or intense, all the SHAP values were 
greater than 0, indicating a significant impact on model prediction and association with better therapeutic 

Fig. 7.  SHAP distribution of key clinical features in the XGBoost efficacy prediction model for PWS. (a) 
Dermoscopy vascular pattern; (b) IFI at the lesion site after HMME-PDT; (c) The facial port-wine stain area 
and severity index (FSASI) score; (d) Age. The x-axis represents the statistical values of each feature (with 
the x-axis in (a) and (b) showing the encoded values of the features), and the y-axis shows the SHAP values 
attributed to each feature. Each point on the plot indicates the marginal contribution of a sample to the model’s 
prediction. The color gradient, ranging from blue to red, illustrates the value of another feature that may 
interact with the primary feature displayed on the x-axis. The color scale is consistent across all subplots, with 
blue indicating lower values and red indicating higher values of the secondary feature.
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outcomes. To address the varying fluorescence patterns of skin lesions among different patients, we hypothesize 
the following possible mechanisms. There is variability in the accumulation of HMME due to factors such as 
heterogeneity in vascular abnormalities of the lesions and individual patient differences36. After PDT, HMME 
and its photobleaching products can absorb UVA energy and emit fluorescence. Hence, variations in HMME 
accumulation result in differences in fluorescence intensity. To summarize, our study indicates that higher IFI 
after HMME-PDT is associated with better therapeutic outcomes. However, the specific mechanisms underlying 
the fluorescence response and associated influencing factors require further investigation.

The FSASI score is an area and severity index scoring system for facial PWS that divides the face into four 
regions: forehead, right malar, left malar, and perioral. It provides a comprehensive assessment of PWS lesions 
based on the percentage of the area affected, lesion color, and thickness. The total scores range from 0 to 42, with 
higher scores indicating greater severity of the condition. As the facial PWS lesions are lightened, the FSASI 
scores gradually decrease19. SHAP analysis indicated that the FSASI score significantly impacts the PWS efficacy 
prediction model, and the SHAP values for individual samples show a positive correlation with the outcome for 
PWS. Previous studies have shown that larger areas and greater thickness of PWS lesions are related to poorer 
curative effects37,38. However, our results are contrary to these reports. This discrepancy might be attributed 
to smaller, lighter, and thinner lesions showing little changes in the FSASI scores after a single HMME-PDT 
session. The difference may also reflect a limitation of the FSASI scoring method. Future research should focus 
on developing more objective and practical efficacy assessment methods for clinical use.

The age of PWS patients undergoing PDT also influences the efficacy. Studies have shown that treatment 
outcomes for PWS are better in patients under the age of 1839. Our study also reveals that younger PWS 
patients may benefit more from HMME-PDT, which aligns with existing research. This result suggests that early 
interventions can improve treatment outcomes.

This study presents the IFI after HMME-PDT as a novel metric and applies it to predict the efficacy of 
HMME-PDT in PWS. As a direct indicator of the distribution and activation status of the photosensitizer in the 
lesion tissue, fluorescence intensity may be closely associated with treatment outcomes. Our study innovatively 
employs two machine learning algorithms to construct predictive models for the efficacy of HMME-PDT for 
PWS. The prediction models can help physicians to better predict patients’ response to treatment, thereby 
optimizing the treatment plan and improving treatment outcomes. In addition, our study provides new ideas for 
building predictive models for treating PWS, especially by applying machine learning algorithms.

Our study had some limitations. As a retrospective study, the potential biases in the data collection process 
may lead to a decrease in model stability and an increased risk of overfitting. Furthermore, this was the first study 
to explore the IFI after HMME-PDT to assess and predict the efficacy of PWS. Thus, our study was limited by 
a relatively small sample size and the lack of external validation data. This may limit the model’s ability to fully 
understand and learn from the data, leading to increased instability and a potential risk of overfitting. These 
limitations underscore the necessity for future research, particularly the conduct of large-scale, multi-center, 
prospective cohort studies, to further validate our findings and provide more robust and reliable evidence to 
support the treatment of PWS.

Conclusions
Our study utilized the XGBoost-RFE feature selection method to identify four key clinical features and built 
two predictive models for the therapeutic effect of HMME-PDT in PWS patients using two different machine 
learning algorithms. The XGBoost prediction model demonstrated better performance. Furthermore, for the 
first time, we proposed and explored the relationship between IFI at the lesion site after HMME-PDT and the 
treatment efficacy. Future studies could increase sample size and include multicenter data to validate model 
generalizability and robustness. This would allow physicians to quickly assess patients’ treatment responses in 
clinical practice.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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