Table 4 Proposed BiLSTM CNN network for classifying CC mammogram images.

From: Innovative deep learning classifiers for breast cancer detection through hybrid feature extraction techniques

Layers

Types

Input size

Output size

Kernel size

Stride

1

Conv2D 1

224*224*3

150*150*3

7*7*3

1*1

2

Conv2D 2

150*150*3

144*144*512

7*7*512

1*1

3

Max Pooling 1

144*144*512

71*71*512

4*4

2*2

4

Dropout 1

71*71*512

71*71*512

  

5

Conv2D 3

71*71*512

65*65*256

7*7*256

1*1

6

Max Pooling 2

65*65*256

31*31*256

4*4

2*2

7

Dropout 2

31*31*256

31*31*256

  

8

Conv2D 4

31*31*256

25*25*128

7*7*128

1*1

9

Max Pooling 3

25*25*128

11*11*128

4*4

2*2

10

Conv2D 5

11*11*128

7*7*64

5*5*64

1*1

11

Max Pooing 4

7*7*64

2*2*64

4*4

2*2

12

Reshape

2*2*64

256*1

  

13

BiLSTM

256*1

None,128

  

14

Dropout 3

128*1

128*1

  

15

Dense 1

128*1

128*1

  

16

Dense 2 with output layer

128*1

2*1

 Â