Table 7 Statistical analysis performance comparison with recent architectures.

From: Innovative deep learning classifiers for breast cancer detection through hybrid feature extraction techniques

Model

Accuracy (mean ± SD)

Sensitivity (mean ± SD)

Specificity (mean ± SD)

F1 score (mean ± SD)

Precision (mean ± SD)

Recall (sensitivity)

AUC-ROC (mean ± SD)

VGG 16

90.24 ± 1.10

87.36 ± 1.15

89.28 ± 1.10

85.71 ± 1.40

84.20 ± 1.25

87.36 ± 1.15

90.10 ± 1.12

VGG 19

91.20 ± 0.98

91.20 ± 1.08

88.32 ± 1.26

86.63 ± 1.15

84.92 ± 1.10

91.20 ± 1.08

91.30 ± 1.05

Google Net

91.20 ± 0.95

88.32 ± 1.10

89.28 ± 1.08

87.55 ± 1.20

86.85 ± 1.15

88.32 ± 1.10

90.85 ± 1.10

ResNet 50

90.24 ± 1.25

91.20 ± 0.92

89.28 ± 0.95

86.63 ± 1.00

83.75 ± 1.00

91.20 ± 0.92

91.00 ± 0.97

ResNet 18

89.28 ± 1.05

87.36 ± 1.14

90.24 ± 1.00

90.24 ± 0.95

89.50 ± 0.85

87.36 ± 1.14

90.50 ± 0.93

Inception V2

89.28 ± 1.20

91.20 ± 1.02

87.36 ± 1.18

91.20 ± 1.05

91.10 ± 0.92

91.20 ± 1.02

91.60 ± 0.95

BiLSTM-CNN

95.91 ± 0.67

96.82 ± 0.55

94.55 ± 0.72

93.34 ± 0.61

90.23 ± 0.58

96.82 ± 0.55

97.12 ± 0.45

DenseNet121

92.84 ± 0.88

93.22 ± 0.85

91.45 ± 0.92

91.34 ± 0.95

93.22 ± 0.85

92.27 ± 0.79

95.20 ± 0.61

EfficientNetB0

93.51 ± 0.81

94.10 ± 0.72

92.76 ± 0.88

92.83 ± 0.78

94.10 ± 0.72

93.45 ± 0.66

96.14 ± 0.54