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Determining a sustainable logistics management system constitutes an extensive decision-making 
process characterized by fundamental volatility. Interval-valued Fermatean picture fuzzy sets 
(IVFPFS) propose a more versatile and detailed structure to represent obscure and unreliable data, 
making them more suitable for such concerns. Each possibility in this structure is examined based on 
significant criteria, including infrastructure development, logistics, economic performance, operational 
management, and technological innovation. This study describes and analyses the properties 
of two proficient aggregation operators: the interval-valued Fermatean picture fuzzy Einstein 
weighted average (IVFPFEWA) and the interval-valued Fermatean picture fuzzy Einstein weighted 
geometric (IVFPFEWG) operators. A new multi-attribute decision-making (MADM) methodology is 
presented, implementing Einstein-based operators in an IVFPFS structure to boost decision-making 
procedures for sustainable logistics management. The comparative and sensitivity analyses confirm 
the consistency and potency of the presented strategy, indicating that it remains more realistic and 
functional than conventional strategies. The outcomes demonstrate that the laid out technique 
delivers a realistic decision to the obstacles of maintaining a resilient logistics system.

Keywords  Interval-valued Fermatean picture fuzzy set, Einstein aggregation operators, Logistic management 
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Recently, uncertainty has become more pronounced in numerous domains, including science, technology, and 
daily life. The growing amount of big data increases the complexity and diversity of uncertain information, 
rendering its management and interpretation more difficult. The increase in data and its associated uncertainty 
poses distinct issues in decision-making and problem-solving across various sectors. To tackle these issues, 
Zadeh1 presented the technique of fuzzy sets (FSs), which have demonstrated significant efficacy in managing 
uncertainty across several domains2,3. Bukhari et al.4 stated a unique Adaptive Fuzzy Particle Swarm 
Optimization strategy that promotes green logistical and supply chain management. Atanassov extended the 
concept by formulating intuitionistic fuzzy sets (IFSs)5, which improve the capacity to handle ambiguous and 
imprecise data. Yager6 suggested the Pythagorean fuzzy sets (PFS), which broadens the concept by generalizing 
the link between PM and NM degrees. In a PFS, the sum of squares of PM and NM is ≤ 1.

Compared to IFSs, PFSs offer more relaxed constraints, enhancing their capacity to manage uncertainty. 
Peng and Yang7 developed the idea of interval-valued PFS (IVPFSs), which enable interval-based PM and 
NM degrees. Senapati and Yager8 established Fermatean fuzzy sets (FFS), further relaxing the conditions to 
generalize PFS. Jeevaraj9 proposed the interval-valued FFSs (IVFFS), a generalization of both IVFS and FFS. 
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The IVFFS is especially useful for handling uncertainty because it allows PM and NM degrees to be represented 
as intervals. The important aspect of the IVFFS is that the total of the cubes of the upper boundaries of these 
intervals must be ≤ 1. Although earlier models improved our capacity to manage uncertainty, they continued 
to falter in decision-making situations, necessitating several answer alternatives, including “yes,” “refusal,” 
“no,” and “neutral.” Traditional fuzzy sets and intuitionistic FS are ineffective in adequately addressing these 
issues. Cuong10 presented Picture fuzzy sets (PFS) to address this difficulty. This advanced methodology 
enhances traditional fuzzy logic by integrating three distinct membership functions: positive membership 
ℏR (κ), neutral membership ηR (κ), and negative membership ϱR (κ) degrees while maintaining the 
condition 0 ≤ ℏR (κ) + ηR (κ) + ϱR (κ) ≤ 1.

Kutlu and Kahraman11 presented spherical fuzzy sets (SFSs), which reduce the usual PFS requirement 
0 ≤ ℏ2

R (κ) + η2
R (κ) + ϱ2

R (κ) ≤ 1, allowing for a greater range of membership values. This advancement 
enables greater adaptability in managing intricate, ambiguous information, particularly in decision-making 
scenarios involving multiple forms of uncertainty. There has been a significant rise in practical applications 
and research projects involving advanced fuzzy systems12,13. Riaz et al.14 developed the aggregation operators 
for q-rung orthopair fuzzy soft sets and established a multi-attribute decision-making methodology to resolve 
uncertain problems in sustainable logistics. These methods have been extensively utilized in many disciplines, 
i.e., energy management, reliability assessment, and IoT implementation15,16, demonstrating their adaptability 
and increasing influence. Alrasheedi et al.17 stated the FF-SPC-RS-MARCOS structure that utilizes the MARCOS 
method using Sugeno–Weber weighted averaging operators and Fermatean fuzzy sets to analyze reliable vendors 
in the pharmaceutical supply chain.

The study of aggregation operators (AOs) has been a major focus of MADM research, particularly in fuzzy 
contexts. Researchers have become more interested in fuzzy AOs due to their potential for building more robust 
decision-making algorithms. Ma et al.18 proposed an ordered weighted interactive AOs combined with an entropy 
weighting method based on IVPFSs. Yazar Okur et al.19 explored and determined particular industry sustainable 
development metrics for logistical services, emphasizing the economic, ecological, and interpersonal aspects 
using the implementation of Fermatean fuzzy entropy and the WASPAS strategy. Akram et al.20 established a 
triangular form of IVFFNs and investigated its arithmetic features. Senapati and Chen21 developed numerous 
novel IVPF aggregation operators based on Hamacher triangular norms, providing answers to MCDM 
problems. Kishorekumar et al.22 proposed the IVPF Bonferroni mean operator, demonstrating its practical use 
in real-world applications such as CTY. Li and Wang23 analyzed the universal interactions of an outbreak of HIV 
through logistical fission for infected cells and explicit between cells infection.

Rani et al.24 used Einstein AOs to solve MADM problems in an IVFPS framework. Several researchers have 
made additional advancements in aggregation and MCDM techniques, including Zhao et al.25, Khan et al.26, 
Liu et al.27, Abu-Lail et al.28, and Bihari et al.29, who have proposed diverse techniques for various application 
domains. Akhtar30 described a novel fuzzy methodology implementing IVFF with hybrid IVFF-PIPRECIAS and 
IVFF-WASPAS strategies to detect an effective, responsive, resilient, and ecologically conscious logistics company 
inside the manufacturing market. Baranidharan et al.31 stated a strategy for an optimal fuzzy fractional three-
stage transport network to eliminate transport expenses and exhausts, implementing generalized pentagonal 
fuzzy numbers. Hussain et al.32 constructed a multi-attribute group decision-making strategy using Frank 
aggregation operators within a complex picture  fuzzy environment to analyze and classify environmentally 
friendly power facilities.

Fan et al.33 established a novel MADM technique to look for logistical providers in an interval-valued picture 
fuzzy context. Ali and Rehman34 investigated the Schweizer–Sklar operational rules for IVPFS. They defined 
prioritized aggregation operators for MADM, with them in the context of virtual ecological innovation and 
managerial theory for Industry 5.0. Rehman et al.35 presented Einstein aggregation methodologies for interval-
valued intuitionistic fuzzy sets (IVPFS) and created a MAGDM approach to solve decision-making obstacles. 
Hernández-Torres et al.36 established a hybrid MCDM model for selecting power-generating techniques, 
showing gasification as the most suitable option for an abandoned economically independent operation. Shanthi 
et al.37 used the PFS to evaluate an efficient mobile network. This research investigates IVFPFNs and introduces 
a novel ordering principle designed to enhance the efficacy of MADM methods. This new framework offers 
improved decision-making instruments for tackling intricate real-world issues.

Research gap
In recent years, some fuzzy set models such as Fermatean FSs (FFS)8, interval-valued Fermatean FSs (IVFFS)9, 
picture FSs (PFS)10, and complex picture FSs (CPFS)32, have gained significant attention due to their ability to 
model uncertainty and hesitation in complex decision-making environments. In reviewing the current literature 
and based on the deep literature review, it is evident that while these methods are increasingly being applied, the 
integration of Einstein AOs with interval-valued Fermatean picture fuzzy sets (IVFPFS) remains an unexplored 
area. The identified gap creates an excellent basis for further study while serving as the fundamental driving force 
behind this research.

To fill these gaps, we suggest the following inquiries for research:

•	 What are the few important operations of Einstein AOs within the context of interval-valued Fermatean 
picture fuzzy sets (IVFPFS), and how do they improve the precision and integrity of the aggregation process?

•	 What is the significance of the newly introduced aggregation operators (IVFPFEWA and IVFPFEWG) within 
the IVFPFS framework? Which advantages do they have for advanced information aggregation?

•	 How practical is the proposed method when used in real-world scenarios, such as choosing the most suitable 
logistics company?
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Our research evaluates these questions, which fills an essential theoretical void while developing an effective 
decision-making instrument for complex, uncertain scenarios. Future investigations in fuzzy set applications 
should use the proposed IVFPFS Einstein operators as their new standard because of their advanced flexible 
aggregation method.

Motivation
The motivation behind researching IVFPFEWA and IVFPFEWG under interval-valued Fermatean picture fuzzy 
environments was to create effective decision systems for sustainable logistics management that resolve expert 
evaluation challenges involving uncertainty and ambiguity. Sustainable logistics must solve various competing 
factors, i.e., infrastructure development, economic performance in logistics, operational management, and smart 
technological innovation. Decision-makers must evaluate these criteria according to their opinions, which are 
frequently unclear or hesitant. The wide range of expert assessment variations combined with complex logistics 
scenarios requires a precise selection of optimal sustainable logistics strategies. IVFPFSs enhance MADM 
methods to deliver precise decision-maker preference modeling, particularly when working with imprecise or 
interval-based data. The IVFPF framework expands traditional fuzzy sets through its power to handle broader 
types of uncertainty and hesitation, which leads to better logistics and alternative evaluation capabilities.

These evaluation criteria need distinct consideration regarding their importance throughout different 
geographical areas and intervals or between stakeholder groups. Sustainability-related risk levels defined 
through linguistic inputs, such as low, moderate, and high, can find appropriate interpretations through the 
flexibility of IVFPFSs. According to existing literature, traditional decision-making models face difficulties 
because they encounter unreliable and inconsistent performance metrics. Advanced aggregation operators based 
on IVFPF need development because their comprehensive nature helps evaluate sustainable logistics strategies 
despite uncertain conditions. The implementation of IVFPFS in sustainable logistics management provides a 
strategic improvement to decision-making processes. The advanced tool provides organizations with precise 
sustainability-related decisions through accurate decision support that enables them to tackle uncertainty 
effectively, along with enhanced precision and sustained sustainability goals.

Main contributions of the study
Motivated by these research questions, this work seeks to achieve the following key goals and contributions:

•	 It presents the concept of interval-valued Fermatean picture fuzzy sets and investigates the vital operational 
rules that control this environment.

•	 The work indicates the significance of Einstein AOs in the interval-valued Fermatean picture fuzzy frame-
work, which helps to provide consistent approximation during the aggregation process. This study introduces 
novel AOs, such as IVFPF Einstein weighted aggregation (IVFPFEWA) and IVFPF Einstein weighted geomet-
ric (IVFPFEWG). It discusses their characteristics, applications, and contributions to aggregation techniques.

•	 A MADM algorithm is developed to deal with uncertainty and redundancy when evaluating logistics compa-
nies, and a case study is offered to illustrate its practical application.

•	 Lastly, the suggested technique is compared with the existing technique to emphasize its advantages and 
strengths, illustrating its capacity as a more effective decision-making instrument for practical applications.

The work is structured as follows: “Preliminary“ section outlines the key concepts required to understand 
the proposed approach. “Interval-valued Fermatean picture fuzzy set” section discusses the unique notion of 
IVFPFSs, including their characteristics, score, and accuracy. “Einstein operations of Interval-valued Fermatean 
picture fuzzy sets” section investigates the Einstein operational laws and aggregation operators for IVFPFSs such 
as IVFPFEWA and IVFPFEWG operators. “Proposed MADM model based on the developed Einstein AOs” 
section extends the MADM model based on our developed AOs and presents the case study to evaluate the 
logistics company. “Supremacy of the proposed technique” section describes a comparative study that highlights 
the suggested method's strengths. Lastly,  “Conclusion” section provides recommendations for future research 
and conclusions.

Preliminary
This section presents fundamental concepts necessary for understanding this work's innovative nature.

Definition 2.1  10 Let χ be the undefined set; then, a picture fuzzy sets R on χ is described in the following:

	 R = {κ, ℏR (κ) , ηR (κ) , ϱR (κ) |κ ∈ χ} ,

where ηR (κ) , ℏR (κ) , ϱR (κ) represent the membership degrees (MDs) of neutral, positive, and negative 
 respectively; (ℏR (κ) , ηR (κ) , ϱR (κ)) ∈ [0,1] , and 0 ≤ ℏR (κ) + ηR (κ) + ϱR (κ) ≤ 1. The refusal 

membership function πR (κ) is described as: πR (κ) = 1 − (ℏR (κ) + ηR (κ) + ϱR (κ)) .

Definition 2.2  33 Let χ be the undefined set, and an interval-valued picture fuzzy sets R on χ is described in 
the following:

	 R =
{
κ,

[
ℏL

R (κ) , ℏU
R (κ)

]
,
[
ηL

R (κ) , ηU
R (κ)

]
,
[
ϱL

R (κ) , ϱU
R (κ)

]
|κ ∈ χ

}
,
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where 0 ≤ ℏL
R (κ) ≤ ℏU

R (κ) ≤ 1, 0 ≤ ηL
R (κ) ≤ ηU

R (κ) ≤ 1 0 ≤ ϱL
R (κ) ≤ ϱU

R (κ) ≤ 1, and 
0 ≤ ℏU

R (κ) + ηU
R (κ) + ϱU

R (κ) ≤ 1. Here ℏR (κ) =
[
ℏL

R (κ) , ℏU
R (κ)

]
, ηR (κ) =

[
ηL

R (κ) , ηU
R (κ)

]
, and 

ϱR (κ) =
[
ϱL

R (κ) , ϱU
R (κ)

]
 described the positive, neutral, and negative MDs of κ ∈ χ, respectively.

Definition 2.3  8 Let χ be the undefined set. A Fermatean fuzzy set R on χ is identified as:

	 R = {κ, ℏR (κ) , ϱR (κ) |κ ∈ χ} ,

where ℏR (κ) , ϱR (κ) represent positive and negative MDs of κ ∈ χ respectively, fulfill the requirements as 
follows: ℏR (κ) , ϱR (κ) ∈ [0,1] , and 0 ≤ ℏ3

R (κ) + ϱ3
R (κ) ≤ 1. The hesitancy degree of the value κ ∈ χ, 

denoted by πR (κ) , is described as: πR (κ) = 3
√

1 − (ℏ3
R (κ) + ϱ3

R (κ)).

Definition 2.4  20 Let χ be the undefined set. An interval-valued Fermatean fuzzy set R on χ has been defined 
as follows:

	 R =
{
κ,

[
ℏL

R (κ) , ℏU
R (κ)

]
,
[
ϱL

R (κ) , ϱU
R (κ)

]
|κ ∈ χ

}
,

where 0 ≤ ℏL
R (κ) ≤ ℏU

R (κ) ≤ 1, 0 ≤ ϱL
R (κ) ≤ ϱU

R (κ) ≤ 1, and 0 ≤
(
ℏU

R (κ)
)3 +

(
ϱU

R (κ)
)3 ≤ 1. Here 

ℏR (κ) =
[
ℏL

R (κ) , ℏU
R (κ)

]
 and ϱR (κ) =

[
ϱL

R (κ) , ϱU
R (κ)

]
 represent the positive and negative MDs 

of κ ∈ χ, respectively. The function πR (κ) =
[
πL

R (κ) , πU
R (κ)

]
 represent the indeterminacy degree of 

κ ∈ χ, where πL
R (κ) = 3

√
1 −

(
(ℏL

R (κ))3 + (ϱL
R (κ))3)

 and πU
R (κ) = 3

√
1 −

(
(ℏU

R (κ))3 + (ϱU
R (κ))3)

. 

To keep it simple, we describe interval-valued Fermatean fuzzy numbers (IVFFNs),  
Ri =

([
ℏL

Ri
(κ) , ℏU

R (κ)
]

,
[
ϱL

Ri
(κ) , ϱU

Ri
(κ)

])
, where i is a positive integer.

Definition 2.5  20 Let R =
{[

ℏL
R, ℏU

R
]

,
[
ϱL

R, ϱU
R

]}
 be a IVFFN. The score S  and accuracy Å functions for 

IVFFN are expressed as follows:

	(1)	 S (R) = 1
2

((
ℏL

R
)3 +

(
ℏU

R
)3 −

(
ϱL

R
)3 −

(
ϱU

R
)3

)
∈ [−1, 1] ,

	(2)	 Å (R) = 1
2

((
ℏL

R
)3 +

(
ℏU

R
)3 +

(
ϱL

R
)3 +

(
ϱU

R
)3

)
∈ [0, 1] .

Interval-valued Fermatean picture fuzzy set
This section presents the concept of interval-valued Fermatean picture fuzzy sets and some of their fundamental 
properties.

Definition 3.1  37 Let χ be the undefined set and an interval-valued Fermatean picture fuzzy sets (IVFPFS) R 
on χ. It is described as

	 R =
{
κ,

[
ℏL

R (κ) , ℏU
R (κ)

]
,
[
ηL

R (κ) , ηU
R (κ)

]
,
[
ϱL

R (κ) , ϱU
R (κ)

]
|κ ∈ χ

}
,

where 0 ≤ ℏL
R (κ) ≤ ℏU

R (κ) ≤ 1, 0 ≤ ηL
R (κ) ≤ ηU

R (κ) ≤ 1 0 ≤ ϱL
R (κ) ≤ ϱU

R (κ) ≤ 1, 
and 0 ≤

(
ℏU

R (κ)
)3 +

(
ηU

R (κ)
)3 +

(
ϱU

R (κ)
)3 ≤ 1. Here ℏR (κ) =

[
ℏL

R (κ) , ℏU
R (κ)

]
,  

ηR (κ) =
[
ηL

R (κ) , ηU
R (κ)

]
, and ϱR (κ) =

[
ϱL

R (κ) , ϱU
R (κ)

]
  represent the positive, neutral, 

and negative MDs of κ ∈ χ, respectively. The function πR (κ) =
[
πL

R (κ) , πU
R (κ)

]
 represent the 

indeterminacy degree of κ ∈ χ, where πL
R (κ) = 3

√
1 −

(
(ℏL

R (κ))3 + (ηL
R (κ))3 + (ϱL

R (κ))3)
 

and πU
R (κ) = 3

√
1 −

(
(ℏU

R (κ))3 + (ηU
R (κ))3 + (ϱU

R (κ))3)
. To keep it simple, 

we represent interval-valued Fermatean picture fuzzy numbers (IVFPFNs) as  
Ri =

([
ℏL

Ri
(κ) , ℏU

Ri
(κ)

]
,
[
ηL

Ri
(κ) , ηU

Ri
(κ)

]
,
[
ϱL

Ri
(κ) , ϱU

Ri
(κ)

])
, where i is a positive integer.

Definition 3.2  Let R1 =
{[

ℏL
R1 , ℏU

R1

]
,
[
ηL

R1 , ηU
R1

]
,
[
ϱL

R1 , ϱU
R1

]}
, and 

R2 =
{[

ℏL
R2 , ℏU

R2

]
,
[
ηL

R2 , ηU
R2

]
,
[
ϱL

R2 , ϱU
R2

]}
, be the IVFPFNs and δ > 0. Subsequently, the ensuing prop-

erties were fulfilled by probable fundamental operations.

	 1.
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R1 ⊕ R2 =
([

3
√(

ℏL
R1

)3 +
(
ℏL

R2

)3 −
(
ℏL

R1

)3(
ℏL

R2

)3
,

3
√(

ℏU
R1

)3 +
(
ℏU

R2

)3 −
(
ℏU

R1

)3(
ℏU

R2

)3
]

,
[
ηL

R1 ηL
R2 , ηU

R2 ηU
R1

]
,
[
ϱL

R1 ϱL
R2 , ϱU

R2 ϱU
R1

])

	 2.

R1 ⊗ R2 =




[
ℏL

R1ℏ
L
R2 , ℏU

R1ℏ
U
R2

]
,

[
3
√(

ηL
R1

)3 +
(
ηL

R2

)3 −
(
ηL

R1

)3(
ηL

R2

)3
, 3
√(

ηU
R1

)3 +
(
ηU

R2

)3 −
(
ηU

R1

)3(
ηU

R2

)3
]

,
[

3
√(

ϱL
R1

)3 +
(
ϱL

R2

)3 −
(
ϱL

R1

)3(
ϱL

R2

)3
, 3
√(

ϱU
R1

)3 +
(
ϱU

R2

)3 −
(
ϱU

R1

)3(
ϱU

R2

)3
]




	 3.

δR1 =

([
3

√(
1 −

(
1 −

(
ℏL

R1

)3
)δ

)
, 3

√(
1 −

(
1 −

(
ℏU

R1

)3
)δ

)]
,
[(

ηL
R1

)δ
,
(
ηU

R1

)δ
]

,
[(

ϱL
R1

)δ
,
(
ϱU

R1

)δ
])

	 4.

Rδ
1 =

([(
ℏL

R1

)δ
,
(
ℏU

R1

)δ
]

,

[
3

√(
1 −

(
1 −

(
ηL

R1

)3
)δ

)
, 3

√(
1 −

(
1 −

(
ηU

R1

)3
)δ

)]
,

[
3

√(
1 −

(
1 −

(
ϱL

R1

)3
)δ

)
, 3

√(
1 −

(
1 −

(
ϱU

R1

)3
)δ

)])
.

We present the score and accuracy numbers as tools for testing two IVFPFNs. Using these data, we create 
comparable rules for IVFPFNs, as discussed below.

Definition 3.3  Let R =
{[

ℏL
R, ℏU

R
]

,
[
ηL

R, ηU
R

]
,
[
ϱL

R, ϱU
R

]}
 be an IVFPFN, then score S  and accuracy Å val-

ues of IVFPFNs is expressed as shown.

	 (1)		
S (R) = 1

2

((
ℏL

R
)3 +

(
ℏU

R
)3 −

(
ηL

R
)3 −

(
ηU

R
)3 −

(
ϱL

R
)3 −

(
ϱU

R
)3

)
∈ [−1, 1] ,

	 (2)		
Å (R) = 1

2

((
ℏL

R
)3 +

(
ℏU

R
)3 +

(
ηL

R
)3 +

(
ηU

R
)3 +

(
ϱL

R
)3 +

(
ϱU

R
)3

)
∈ [0, 1] .

Definition 3.4  Let R1 =
{[

ℏL
R1 , ℏU

R1

]
,
[
ηL

R1 , ηU
R1

]
,
[
ϱL

R1 , ϱU
R1

]}
, and 

R2 =
{[

ℏL
R2 , ℏU

R2

]
,
[
ηL

R2 , ηU
R2

]
,
[
ϱL

R2 , ϱU
R2

]}
, are the IVFPFNs, the comparison among R1 and R2 is 

shown as.

	 I.	 If S (R1) < S (R2) , then R1 < R2.

	 II.	 If S (R1) > S (R2) , then R1 > R2.

	III.	 If S (R1) = S (R2) , then

	 1.	 if Å (R1) < Å (R2) , then R1 < R2.

	 2.	 if Å (R1) > Å (R2) , then R1 > R2.

	 3.	 if Å (R1) = Å (R2) , then R1 = R2.

Proposition 3.5  Let R, R1, R2 are the three IVFPFNs and δ, δ1, δ2, then we have

	1.	 R1 ⊕ R2 = R2 ⊕ R1
	2.	 R1 ⊗ R2 = R2 ⊗ R1

	3.	 δ (R1 ⊕ R2) = δR1 ⊕ δR2

	4.	 δ1R ⊕ δ2R = (δ1 ⊕ δ2) R
	5.	 Rδ1 ⊗ Rδ2 = R(δ1+δ2)

	6.	 Rδ
1 ⊗ Rδ

2 = (R1 ⊗ R2)δ

Proof  Straightforward.

Einstein operations of interval-valued Fermatean picture fuzzy sets
This section explores the key principles of Einstein's operational laws and the aggregation operators, such as 
IVFPFEWA and IVFPFEWG operators, and their properties.

Definition 4.1  Let R1 =
{[

ℏL
R1 , ℏU

R1

]
,
[
ηL

R1 , ηU
R1

]
,
[
ϱL

R1 , ϱU
R1

]}
, and 

R2 =
{[

ℏL
R2 , ℏU

R2

]
,
[
ηL

R2 , ηU
R2

]
,
[
ϱL

R2 , ϱU
R2

]}
, be the IVFPFNs, and δ > 0 be the real number; according to 

def. 3.2, the following results hold.
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, are the IVFPFNs and δ > 0 be a real number, so

	1.	 R1⊕eR2 = R2⊕eR1

	2.	 δ (R1⊕eR2) = δR1⊕eδR2
	3.	 R1 ⊗ R2 = R2⊗eR1

	4.	 δ1R1⊕eδ2R1 = (δ1⊕eδ2) R1

	5.	 R1
δ1 ⊗eR1
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(δ1+δ2)

	6.	 Rδ
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Proof  See Appendix I (cc supplementary material).
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,  (i = {1,2, . . . , p}) be the IVFPFNs with 

an associated weight vector (WV) ζ = {ζ1, ζ2, . . . , ζp} , satisfying ζi ∈ [0,1] and 
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i=1 ζi = 1. The IVFPFE-
WA operator denoted as F P F EW A : Rp → R is described as follows:
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then the IVFPFEWA operator determines the aggregated value that follows:
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� (1)

Proof  To illustrate the IVFPFEWA operator, we will employ mathematical induction.

Step (1). If ζ = 2, so

	 IV F P F EW A (R1, R2) = ζ1R1⊕eζ2R2.
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Using Definition 4.1, we have
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Consequently, the results are applicable for p = 2.
Step (2). Assuming that the outcome is results for p = k∗, then
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.

Step (3). We demonstrate that the result is valid to p = k∗ + 1.
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in which the result for p = k∗ + 1 is demonstrated. Hence, the result is valid ∀p.
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,  (i = {1,2, . . . , p}) be the IVFPFNs with an 

associated weight vector (WV) ζ = {ζ1, ζ2, . . . , ζp} , satisfying ζi ∈ [0,1] and 
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operator has the following characteristics
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, i = {1,2, 3, . . . , p} , then
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Proof  We know that
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Ri

)3
)ζi

+
∏p

i=1

(
1−

(
ℏL

Ri

)3
)ζi

, 3

√√√√√
∏p

i=1

(
1+

(
ℏU

Ri

)3
)ζi

−
∏p

i=1

(
1−

(
ℏU

Ri

)3
)ζi

∏p

i=1

(
1+

(
ℏU

Ri

)3
)ζi

+
∏p

i=1

(
1−

(
ℏU

Ri

)3
)ζi


 ,




3√2
∏p

i=1

(
ηL

Ri

)ζi

3

√∏p

i=1

(
2−

(
ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi

,
3√2

∏p

i=1

(
ηU

Ri

)ζi

3

√∏p

i=1

(
2−

(
ηU

Ri

)3
)ζi

+
∏p

i=1

((
ηU

Ri

)3
)ζi


 ,




3√2
∏p

i=1

(
ϱL

Ri

)ζi

3

√∏p

i=1

(
2−

(
ϱL

Ri

)3
)ζi

+
∏p

i=1

((
ϱL

Ri

)3
)ζi

,
3√2

∏p

i=1

(
ϱU

Ri

)ζi

3

√∏p

i=1

(
2−

(
ϱU

Ri

)3
)ζi

+
∏p

i=1

((
ϱU

Ri

)3
)ζi






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IV F P F EW A (R0, R0, . . . , R0) =





 3

√√√√√
(

1+
(
ℏL

R0

)3
)

−
(

1−
(
ℏL

R0

)3
)

(
1+

(
ℏL

R0

)3
)

+
(

1−
(
ℏL

R0

)3
) , 3

√√√√√
(

1+
(
ℏU

R0

)3
)

−
(

1−
(
ℏU

R0

)3
)

(
1+

(
ℏU

R0

)3
)

+
(

1−
(
ℏU

R0

)3
)


 ,




3√2ηL
R0

3

√(
2−

(
ηL

R0

)3
)

+
(

ηL
R0

)3
,

3√2ηU
R0

3

√(
2−

(
ηU

R0

)3
)

+
(

ηU
R0

)3


 ,




3√2ϱL
R0

3

√(
2−

(
ϱL

R0

)3
)

+
(

ϱL
R0

)3
,

3√2ϱU
R0

3

√(
2−

(
ϱU

R0

)3
)

+
(

ϱU
R0

)3







	 IV F P F EW A (R0, R0, . . . , R0) =
([
ℏL

R0 , ℏU
R0

]
,
[
ηL

R0 , ηU
R0

]
,
[
ϱL

R0 , ϱU
R0

])
= R0

Boundedness: if R− =
{[

minℏL
Ri

, minℏU
Ri

]
,
[
maxηL

Ri
, maxηU

Ri

]
,
[
maxϱL

Ri
, maxϱU

Ri

]}
 and 

R+ =
{[

maxℏL
Ri

, maxℏU
Ri

]
,
[
minηL

Ri
, minηU

Ri

]
,
[
minϱL

Ri
, minϱU

Ri

]}
, then

	 R− ≤ IV F P F EW A (R1, R2, . . . , Rp) = R+

Proof  Let us consider a function f (t) = 1−t
1+t

,  t ∈ [0,1] . Then f (t) is a dec-function if f ′ (t) < 0. If take that 

min
(
ℏL

Ri

)3 ≤
(
ℏL

Ri

)3 ≤ max
(
ℏL

Ri

)3
, ∀i = 1,2, 3, . . . , n. Then,

	
f

(
max

(
ℏL

Ri

)3
)

≤ f
((

ℏL
Ri

)3
)

f
(

min
(
ℏL

Ri

)3
)

, ∀i

	
⇒

(
1 − max

(
ℏL

Ri

)3

1 + max
(
ℏL

Ri

)3

)
≤

(
1 −

(
ℏL

Ri

)3

1 +
(
ℏL

Ri

)3

)
≤

(
1 − min

(
ℏL

Ri

)3

1 + min
(
ℏL

Ri

)3

)

For WV ζi ∈ [0,1] and 
∑p

i=1 ζi = 1, Then,

	
⇒

(
1 − max

(
ℏL

Ri

)3

1 + max
(
ℏL

Ri

)3

)ζi

≤

(
1 −

(
ℏL

Ri

)3

1 +
(
ℏL

Ri

)3

)ζi

≤

(
1 − min

(
ℏL

Ri

)3

1 + min
(
ℏL

Ri

)3

)ζi

	
⇒

p∏
i=1

(
1 − max

(
ℏL

Ri

)3

1 + max
(
ℏL

Ri

)3

)ζi

≤
p∏

i=1

(
1 −

(
ℏL

Ri

)3

1 +
(
ℏL

Ri

)3

)ζi

≤
p∏

i=1

(
1 − min

(
ℏL

Ri

)3

1 + min
(
ℏL

Ri

)3

)ζi

	
⇒

(
1 − max

(
ℏL

Ri

)3

1 + max
(
ℏL

Ri

)3

)∑p

i=1
ζi

≤
p∏

i=1

(
1 −

(
ℏL

Ri

)3

1 +
(
ℏL

Ri

)3

)ζi

≤

(
1 − min

(
ℏL

Ri

)3

1 + min
(
ℏL

Ri

)3

)∑p

i=1
ζi

	
⇒

(
1 − max

(
ℏL

Ri

)3

1 + max
(
ℏL

Ri

)3

)
≤

p∏
i=1

(
1 −

(
ℏL

Ri

)3

1 +
(
ℏL

Ri

)3

)ζi

≤

(
1 − min

(
ℏL

Ri

)3

1 + min
(
ℏL

Ri

)3

)

	
⇒

(
2

1 + max
(
ℏL

Ri

)3

)
≤ 1 +

p∏
i=1

(
1 −

(
ℏL

Ri

)3

1 +
(
ℏL

Ri

)3

)ζi

≤

(
2

1 + min
(
ℏL

Ri

)3

)

	

⇒

(
1 + min

(
ℏL

Ri

)3

2

)
≤ 1

1 +
∏p

i=1

(
1−

(
ℏL

Ri

)3

1+
(
ℏL

Ri

)3

)ζi
≤

(
1 + max

(
ℏL

Ri

)3

2

)

	

⇒
(

min
(
ℏL

Ri

)3
)

≤ −1 + 2

1 +
∏p

i=1

(
1−

(
ℏL

Ri

)3

1+
(
ℏL

Ri

)3

)ζi
≤

(
max

(
ℏL

Ri

)3
)
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⇒ min
(
ℏL

Ri

)3 ≤

∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

≤ max
(
ℏL

Ri

)3

	

⇒ minℏL
Ri

≤ 3

√√√√√√
∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

≤ maxℏL
Ri

� (2)

Similarly,

	

⇔ minℏU
Ri

≤ 3

√√√√√√
∏p

i=1

(
1 +

(
ℏU

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏU

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏU

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏU

Ri

)3
)ζi

≤ maxℏU
Ri

� (3)

Let us now consider a function g (t) = 2−t
t

, t ∈ [0,1] . Then g (t) is a dec-function if g′ (x) < 0. If we suppose 

that min
(
ηL

Ri

)3 ≤
(
ηL

Ri

)3 ≤ max
(
ηL

Ri

)3
,  ∀i = {1,2, 3, . . . , p}. Then,

	
g

(
max

(
ηL

Ri

)3
)

≤ g
((

ηL
Ri

)3
)

≤ g
(

min
(
ηL

Ri

)3
)

, ∀i

	
⇒

(
2 − max

(
ηL

Ri

)3

max
(
ηL

Ri

)3

)
≤

(
2 −

(
ηL

Ri

)3

(
ηL

Ri

)3

)
≤

(
2 − min

(
ηL

Ri

)3

min
(
ηL

Ri

)3

)

For WV ζi ∈ [0,1] and 
∑n

i=1 ζi = 1, then the above inequality can be written as follows:

	
⇒

(
2 − max

(
ηL

Ri

)3

max
(
ηL

Ri

)3

)ζi

≤

(
2 −

(
ηL

Ri

)3

(
ηL

Ri

)3

)ζi

≤

(
2 − min

(
ηL

Ri

)3

min
(
ηL

Ri

)3

)ζi

	
⇒

p∏
i=1

(
2 − max

(
ηL

Ri

)3

max
(
ηL

Ri

)3

)ζi

≤
p∏

i=1

(
2 −

(
ηL

Ri

)3

(
ηL

Ri

)3

)ζi

≤
n∏

i=1

(
2 − min

(
ηL

Ri

)3

min
(
ηL

Ri

)3

)ζi

	
⇒

(
2 − max

(
ηL

Ri

)3

max
(
ηL

Ri

)3

)∑p

i=1
ζi

≤
p∏

i=1

(
2 −

(
ηL

Ri

)3

(
ηL

Ri

)3

)ζi

≤

(
2 − min

(
ηL

Ri

)3

min
(
ηL

Ri

)3

)∑p

i=1
ζi

	
⇒

(
2 − max

(
ηL

Ri

)3

max
(
ηL

Ri

)3

)
≤

p∏
i=1

(
2 −

(
ηL

Ri

)3

(
ηL

Ri

)3

)ζi

≤

(
2 − min

(
ηL

Ri

)3

minηL
Ri

3

)

	
⇒

(
2

max
(
ηL

Ri

)3

)
≤ 1 +

p∏
i=1

(
2 −

(
ηL

Ri

)3

(
ηL

Ri

)3

)ζi

≤

(
2

min
(
ηL

Ri

)3

)

	

⇒

(
min

(
ηL

Ri

)3

2

)
≤ 1

1 +
∏p

i=1

(
2−

(
ηL

Ri

)3

(
ηL

Ri

)3

)ζi
≤

(
max

(
ηL

Ri

)3

2

)

	

⇒ min
(
ηL

Ri

)3 ≤
2

∏p

i=1

((
ηL

Ri

)3
)ζi

∏p

i=1

(
2 −

(
ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi

≤ max
(
ηL

Ri

)3

	

⇒ minηL
Ri

≤ 3

√√√√√√
2

∏p

i=1

((
ηL

Ri

)3
)ζi

∏p

i=1

(
2 −

(
ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi

≤ maxηL
Ri

� (4)

Similarly,
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⇒ minηU
Ri

≤ 3

√√√√√√
2

∏p

i=1

((
ηU

Ri

)3
)ζi

∏p

i=1

(
2 −

(
ηU

Ri

)3
)ζi

+
∏p

i=1

((
ηU

Ri

)3
)ζi

≤ maxηU
Ri

� (5)

One may similarly prove the non-membership by applying the same logic described for the neutral membership. 
That is,

	
⇒

[
minϱL

Ri
, minϱU

Ri

]
≤


 3

√√√√√√
2

∏p

i=1

((
ϱL

Ri

)3
)ζi

∏p

i=1

(
2 −

(
ϱL

Ri

)3
)ζi

+
∏p

i=1

((
ϱL

Ri

)3
)ζi

, 3

√√√√√√
2

∏p

i=1

((
ϱL

Ri

)3
)ζi

∏p

i=1

(
2 −

(
ϱL

Ri

)3
)ζi

+
∏p

i=1

((
ϱL

Ri

)3
)ζi


 ≤

[
maxϱL

Ri
, maxϱU

Ri

]� (6)

Based on inequalities (2–6), it is evident that if 
IV F P F EW A (R1, R2, . . . , Rp) =

([
ℏL

Ri
, ℏU

Ri

]
,
[
ηL

Ri
, ηU

Ri

]
,
[
ϱL

Ri
, ϱU

Ri

])
, 

then 
[
minℏL

Ri
, minℏU

Ri

]
≤

[
ℏL

Ri
, ℏU

Ri

]
≤

[
maxℏL

Ri
, maxℏU

Ri

]
,  [

minηL
Ri

, minηU
Ri

]
≤

[
ηL

Ri
, ηU

Ri

]
≤

[
maxηL

Ri
, maxηU

Ri

] [
minϱL

Ri
, minϱU

Ri

]
≤

[
ϱL

Ri
, ϱU

Ri

]
≤

[
maxϱL

Ri
, maxϱU

Ri

]
, 

which can be described in terms of score value, such that S
(
R−)

< S (R) and S (R) < S
(
R+)

. So,

	 R− ≤ IV F P F EW A (R1, R2, . . . , Rp) ≤ R+.

Monotonicity: If  Ri ≤ Ri
′, for i = {1,2, 3, . . . , p} , so

	 IV F P F EW A (R1, R2, . . . , Rp) ≤ IV F P F EW A (R1′, R2′, . . . , Rp′)

Proof  Let us consider a function f (t) = 3
√

1−t
1+t

, t ∈ [0,1] . Then f (t) is a dec-function on [0,1] . if Rp < Rp′, 
then f (Rp) < f (Rp′) ∀p.

	 1 − ℏL
Ri

≥ 1 − ℏ′LRi
⇒ 1 −

(
ℏL

Ri

)3 ≥ 1 −
(
ℏ′LRi

)3

	
⇒

(
1 +

(
ℏL

Ri

)3
)

−
(

1 −
(
ℏL

Ri

)3
)

≤
(

1 +
(
ℏ′LRi

)3
)

−
(

1 −
(
ℏ′LRi

)3
)

	

⇒

(
1 +

(
ℏL

Ri

)3
)

−
(

1 −
(
ℏL

Ri

)3
)

(
1 +

(
ℏL

Ri

)3
)

+
(

1 −
(
ℏL

Ri

)3
) ≤

(
1 +

(
ℏ′LRi

)3
)

−
(

1 −
(
ℏ′LRi

)3
)

(
1 +

(
ℏ′LRi

)3
)

+
(

1 −
(
ℏ′LRi

)3
)

For WV ζi ∈ [0,1] and 
∑p

i=1 ζi = 1, above inequality is represented as follows:

	

⇒

∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

≤

∏p

i=1

(
1 +

(
ℏ′LRi

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏ′LRi

)3
)ζi

∏p

i=1

(
1 +

(
ℏ′LRi

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏ′LRi

)3
)ζi

	

⇒ 3

√√√√√√
∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

≤ 3

√√√√√√
∏p

i=1

(
1 +

(
ℏ′LRi

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏ′LRi

)3
)ζi

∏p

i=1

(
1 +

(
ℏ′LRi

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏ′LRi

)3
)ζi

Similarly, 

	

⇒ 3

√√√√√√
∏p

i=1

(
1 +

(
ℏU

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏU

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏU

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏU

Ri

)3
)ζi

≤ 3

√√√√√√
∏p

i=1

(
1 +

(
ℏ′URi

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏ′URi

)3
)ζi

∏p

i=1

(
1 +

(
ℏ′URi

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏ′URi

)3
)ζi
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
 3

√√√√√√
∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏL

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏL

Ri

)3
)ζi

, 3

√√√√√√
∏p

i=1

(
1 +

(
ℏU

Ri

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏU

Ri

)3
)ζi

∏p

i=1

(
1 +

(
ℏU

Ri

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏU

Ri

)3
)ζi




≤


 3

√√√√√√
∏p

i=1

(
1 +

(
ℏ′LRi

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏ′LRi

)3
)ζi

∏p

i=1

(
1 +

(
ℏ′LRi

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏ′LRi

)3
)ζi

, 3

√√√√√√
∏p

i=1

(
1 +

(
ℏ′URi

)3
)ζi

−
∏p

i=1

(
1 −

(
ℏ′URi

)3
)ζi

∏p

i=1

(
1 +

(
ℏ′URi

)3
)ζi

+
∏p

i=1

(
1 −

(
ℏ′URi

)3
)ζi




Let us now consider a function g (t) = 3
√

2−t
t

, t ∈ [0,1] . Then g (t) is a dec-function if g′ (x) on [0,1] . 

if Rp < Rp′, then f (Rp) < f (Rp′) ∀p. If we suppose that min
(
ηL

Ri

)3 ≤
(
ηL

Ri

)3 ≤ max
(
ηL

Ri

)3
, 

∀i = {1,2, 3, . . . , p}
Now ηL

Ri
≤ η′LRi

⇒
(
ηL

Ri

)3 ≤
(
η′LRi

)3
. For WV ζi ∈ [0,1] and 

∑n
i=1 ζi = 1, so

	

((
ηL

Ri

)3
)∑n

i=1
ζi

≤
((

η′LRi

)3
)∑n

i=1
ζi

⇒ 2
((

ηL
Ri

)3
)∑n

i=1
ζi

≤ 2
((

η′LRi

)3
)∑n

i=1
ζi

As 2 − ηL
Ri

≤ 2 − η′LRi
⇒

(
2 − ηL

Ri

)3 ≤
(
2 − η′LRi

)3

	 ⇒
(
2 − ηL

Ri

)3 +
(
ηL

Ri

)3 ≤
(
2 − η′LRi

)3 +
(
η′LRi

)3

	
⇒

((
2 − ηL

Ri

)3
)∑n

i=1
ζi

+
((

ηL
Ri

)3
)∑n

i=1
ζi

≤
((

2 − η′LRi

)3
)∑n

i=1
ζi

+
((

η′LRi

)3
)∑n

i=1
ζi

	

⇒
2
((

ηL
Ri

)3
)∑n

i=1
ζi

((
2 − ηL

Ri

)3
)∑n

i=1
ζi

+
((

ηL
Ri

)3
)∑n

i=1
ζi

≤
2
((

η′LRi

)3
)∑n

i=1
ζi

((
2 − η′LRi

)3
)∑n

i=1
ζi

+
((

η′LRi

)3
)∑n

i=1
ζi

	

⇒
2

∏p

i=1

((
ηL

Ri

)3
)ζi

∏p

i=1

((
2 − ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi

≤
2

∏p

i=1

((
η′LRi

)3
)ζi

∏p

i=1

((
2 − η′LRi

)3
)ζi

+
∏p

i=1

((
η′LRi

)3
)ζi

	

⇒ 3

√√√√√√
2

∏p

i=1

((
ηL

Ri

)3
)ζi

∏p

i=1

((
2 − ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi

≤ 3

√√√√√√
2

∏p

i=1

((
η′LRi

)3
)ζi

∏p

i=1

((
2 − η′LRi

)3
)ζi

+
∏p

i=1

((
η′LRi

)3
)ζi

Similarly,

	

⇒ 3

√√√√√√
2

∏p

i=1

((
ηL

Ri

)3
)ζi

∏p

i=1

((
2 − ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi

≤ 3

√√√√√√
2

∏p

i=1

((
η′URi

)3
)ζi

∏p

i=1

((
2 − η′URi

)3
)ζi

+
∏p

i=1

((
η′URi

)3
)ζi

	


 3

√√√√√√
2

∏p

i=1

((
ηL

Ri

)3
)ζi

∏p

i=1

((
2 − ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi

, 3

√√√√√√
2

∏p

i=1

((
ηL

Ri

)3
)ζi

∏p

i=1

((
2 − ηL

Ri

)3
)ζi

+
∏p

i=1

((
ηL

Ri

)3
)ζi




≤


 3

√√√√√√
2

∏p

i=1

((
η′LRi

)3
)ζi

∏p

i=1

((
2 − η′LRi

)3
)ζi

+
∏p

i=1

((
η′LRi

)3
)ζi

, 3

√√√√√√
2

∏p

i=1

((
η′URi

)3
)ζi

∏p

i=1

((
2 − η′URi

)3
)ζi

+
∏p

i=1

((
η′URi

)3
)ζi




Hence, it proves the inequality.

Definition 4.6  Let Ri =
([
ℏL

Ri
, ℏU

Ri

]
,
[
ηL

Ri
, ηU

Ri

]
,
[
ϱL

Ri
, ϱU

Ri

])
, (i = {1,2, 3, . . . , p}) be the sets of IVF-

PFNs with connected WV κi = {κ1, κ2, . . . , κn} , satisfying κi ∈ [0,1] and 
∑p

i=1 κi = 1. The IVFPFEWG 
operator F P F EW G : Rp → R is illustrated as
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	 IV F P F EW G (R1, R2, . . . , Rp) = ⊗p
i=1(Ri)κi .

Theorem 4.7  Let Ri =
([
ℏL

Ri
, ℏU

Ri

]
,
[
ηL

Ri
, ηU

Ri

]
,
[
ϱL

Ri
, ϱU

Ri

])
, (i = {1,2, 3, . . . , p}) be the data of IVFP-

FNs. Afterward, the IVFPFEWG operator generates the aggregated value in the following format:

	

IV F P F EW G (R1, R2, . . . , Rp) =







3√2
∏p

i=1

(
ℏL

Ri

)κi

3

√∏p

i=1

(
2−

(
ℏL

Ri

)3
)κi

+
∏p

i=1

((
ℏL

Ri

)3
)κi

,
3√2

∏p

i=1

(
ℏU

Ri

)κi

3

√∏p

i=1

(
2−

(
ℏU

Ri

)3
)κi

+
∏p

i=1

((
ℏU

Ri

)3
)κi


 ,


 3

√√√√√
∏p

i=1

(
1+

(
ηL

Ri

)3
)κi

−
∏p

i=1

(
1−

(
ηL

Ri

)3
)κi

∏p

i=1

(
1+

(
ηL

Ri

)3
)κi

+
∏p

i=1

(
1−

(
ηL

Ri

)3
)κi , 3

√√√√√
∏p

i=1

(
1+

(
ηU

Ri

)3
)κi

−
∏p

i=1

(
1−

(
ηU

Ri

)3
)κi

∏p

i=1

(
1+

(
ηU

Ri

)3
)κi

+
∏p

i=1

(
1−

(
ηU

Ri

)3
)κi


 ,


 3

√√√√√
∏p

i=1

(
1+

(
ϱL

Ri

)3
)κi

−
∏p

i=1

(
1−

(
ϱL

Ri

)3
)κi

∏p

i=1

(
1+

(
ϱL

Ri

)3
)κi

+
∏p

i=1

(
1−

(
ϱL

Ri

)3
)κi , 3

√√√√√
∏p

i=1

(
1+

(
ϱU

Ri

)3
)κi

−
∏p

i=1

(
1−

(
ϱU

Ri

)3
)κi

∏p

i=1

(
1+

(
ϱU

Ri

)3
)κi

+
∏p

i=1

(
1−

(
ϱU

Ri

)3
)κi







� (7)

Proof  To demonstrate the IVFPFEWG operator, we employ mathematical induction.

Step (1). If κ = 2, so

	 IV F P F EW G (R1, R2) = Rκ1
1 ⊗eRκ2

2 .

	

Rκ1
1 =







3√2
(
ℏL

R1

)κ1

3

√(
2−

(
ℏL

R1

)3
)κ1

+
((

ℏL
R1

)3
)κ1

,
3√2

(
ℏU

R1

)κ1

3

√(
2−

(
ℏU

R1

)3
)κ1

+
((

ℏU
R1

)3
)κ1


 ,


 3

√√√√√
(

1+
(

ηL
R1

)3
)κ1

−
(

1−
(

ηL
R1

)3
)κ1

(
1+

(
ηL

R1

)3
)κ1

+
(

1−
(

ηL
R1

)3
)κ1 , 3

√√√√√
(

1+
(

ηU
R1

)3
)κ1

−
(

1−
(

ηU
R1

)3
)κ1

(
1+

(
ηU

R1

)3
)κ1

+
(

1−
(

ηU
R1

)3
)κ1


 ,


 3

√√√√√
(

1+
(

ϱL
R1

)3
)κ1

−
(

1−
(

ϱL
R1

)3
)κ1

(
1+

(
ϱL

R1

)3
)κ1

+
(

1−
(

ϱL
R1

)3
)κ1 , 3

√√√√√
(

1+
(

ϱL
R1

)3
)κ1

−
(

1−
(

ϱL
R1

)3
)κ1

(
1+

(
ϱL

R1

)3
)κ1

+
(

1−
(

ϱL
R1

)3
)κ1







	

Rκ2
2 =







3√2
(
ℏL

R2

)κ2

3

√(
2−

(
ℏL

R2

)3
)κ2

+
((

ℏL
R2

)3
)κ2

,
3√2

(
ℏU

R2

)κ2

3

√(
2−

(
ℏU

R2

)3
)κ2

+
((

ℏU
R2

)3
)κ2


 ,


 3

√√√√√
(

1+
(

ηL
R2

)3
)κ2

−
(

1−
(

ηL
R2

)3
)κ2

(
1+

(
ηL

R2

)3
)κ2

+
(

1−
(

ηL
R2

)3
)κ2 , 3

√√√√√
(

1+
(

ηU
R2

)3
)κ2

−
(

1−
(

ηU
R2

)3
)κ2

(
1+

(
ηU

R2

)3
)κ2

+
(

1−
(

ηU
R2

)3
)κ2


 ,


 3

√√√√√
(

1+
(

ϱL
R2

)3
)κ2

−
(

1−
(

ϱL
R2

)3
)κ2

(
1+

(
ϱL

R2

)3
)κ2

+
(

1−
(

ϱL
R2

)3
)κ2 , 3

√√√√√
(

1+
(

ϱL
R2

)3
)κ2

−
(

1−
(

ϱL
R2

)3
)κ2

(
1+

(
ϱL

R2

)3
)κ2

+
(

1−
(

ϱL
R2

)3
)κ2






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IV F P F EW G (R1, R2) = Rκ1
1 ⊗eRκ2

2 =










3√2
(
ℏL

R1

)κ1

3

√(
2−

(
ℏL

R1

)3
)κ1

+

((
ℏL

R1

)3
)κ1







3√2
(
ℏL

R2

)κ2

3

√(
2−

(
ℏL

R2

)3
)κ2

+

((
ℏL

R2

)3
)κ2




3

√√√√√√√1+


1−

3√2
(
ℏL

R1

)κ1

3

√(
2−

(
ℏL

R1

)3
)κ1

+

((
ℏL

R1

)3
)κ1





1−

3√2
(
ℏL

R2

)κ2

3

√(
2−

(
ℏL

R2

)3
)κ2

+

((
ℏL

R2

)3
)κ2




,




3√2
(
ℏU

R1

)κ1

3

√(
2−

(
ℏU

R1

)3
)κ1

+

((
ℏU

R1

)3
)κ1







3√2
(
ℏU

R2

)κ2

3

√(
2−

(
ℏU

R2

)3
)κ2

+

((
ℏU

R2

)3
)κ2




3

√√√√√√√1+


1−

3√2
(
ℏU

R1

)κ1

3

√(
2−

(
ℏU

R1

)3
)κ1

+

((
ℏU

R1

)3
)κ1





1−

3√2
(
ℏU

R2

)κ2

3

√(
2−

(
ℏU

R2

)3
)κ2

+

((
ℏU

R2

)3
)κ2







,







(
1+

(
ηL

R1

)3
)κ1

−

(
1−

(
ηL

R1

)3
)κ1

(
1+

(
ηL

R1

)3
)κ1

+

(
1−

(
ηL

R1

)3
)κ1 +

(
1+

(
ηL

R2

)3
)κ2

−

(
1−

(
ηL

R2

)3
)κ2

(
1+

(
ηL

R2

)3
)κ2

+

(
1−

(
ηL

R2

)3
)κ2

1+




(
1+

(
ηL

R1

)3
)κ1

−

(
1−

(
ηL

R1

)3
)κ1

(
1+

(
ηL

R1

)3
)κ1

+

(
1−

(
ηL

R1

)3
)κ1







(
1+

(
ηL

R2

)3
)κ2

−

(
1−

(
ηL

R2

)3
)κ2

(
1+

(
ηL

R2

)3
)κ2

+

(
1−

(
ηL

R2

)3
)κ2







1
3

,




(
1+

(
ηU

R1

)3
)κ1

−

(
1−

(
ηU

R1

)3
)κ1

(
1+

(
ηU

R1

)3
)κ1

+

(
1−

(
ηU

R1

)3
)κ1 +

(
1+

(
ηU

R2

)3
)κ2

−

(
1−

(
ηU

R2

)3
)κ2

(
1+

(
ηU

R2

)3
)κ2

+

(
1−

(
ηU

R2

)3
)κ2

1+




(
1+

(
ηU

R1

)3
)κ1

−

(
1−

(
ηU

R1

)3
)κ1

(
1+

(
ηU

R1

)3
)κ1

+

(
1−

(
ηU

R1

)3
)κ1







(
1+

(
ηU

R2

)3
)κ2

−

(
1−

(
ηU

R2

)3
)κ2

(
1+

(
ηU

R2

)3
)κ2

+

(
1−

(
ηU

R2

)3
)κ2







1
3



,







(
1+

(
ϱL

R1

)3
)κ1

−

(
1−

(
ϱL

R1

)3
)κ1

(
1+

(
ϱL

R1

)3
)κ1

+

(
1−

(
ϱL

R1

)3
)κ1 +

(
1+

(
ϱL

R2

)3
)κ2

−

(
1−

(
ϱL

R2
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Hence, the results are true to p = 2.
Step (2). Assuming that the results are true to p = k∗, then
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.

Step (3). We demonstrate that the result is valid to p = k∗ + 1.
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in which the result for p = k∗ + 1 is demonstrated. Hence, the result is valid ∀p.
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, (i = {1,2, . . . , p}) be the IVFPFNs with an 

associated WV κi = {κ1, κ2, . . . , κn} , satisfying κi ∈ [0,1] and 
∑p

i=1 κi = 1. The IVFPFEWG operator has 
the following characteristics.

Idempotency: if Ri = R0 =
([
ℏL

R0 , ℏU
R0

]
,
[
ηL

R0 , ηU
R0

]
,
[
ϱL

R0 , ϱU
R0

])
, i = {1,2, 3, . . . , p} , then

	 IV F P F EW G (R1, R2, . . . , Rp) = R0

Boundedness: if R− =
{[

minℏL
Ri

, minℏU
Ri

]
,
[
maxηL

Ri
, maxηU

Ri

]
,
[
maxϱL

Ri
, maxϱU

Ri

]}
, 

R+ =
{[

maxℏL
Ri

, maxℏU
Ri

]
,
[
minηL

Ri
, minηU

Ri

]
,
[
minϱL

Ri
, minϱU

Ri

]}
, then

	 R− ≤ IV F P F EW G (R1, R2, . . . , Rp) = R+

Monotonicity: If  Ri ≤ Ri
′, for i = {1,2, 3, . . . , p} , so

	 IV F P F EW G (R1, R2, . . . , Rp) ≤ IV F P F EW G (R1′, R2′, . . . , Rp′)

Proof  The proof is identical to that of Theorem 4.5.

Proposed MADM model based on the developed Einstein AOs
In this section, we design an algorithm to illustrate the efficacy of the proposed approach in evaluating MADM 
problems. We also explore its application in advancing a sustainable logistics management system.

Let  Ý =
{

Ý1, Ý2, . . . , Ýn
}

 represent a set of n-alternatives and C = {C1, C2, . . . , Cm} represent the 
collection of m-attributes. Let w = {w1,w2, . . . ,wn} describe the set of WVs associated with the attributes 
where wj ∈ [0,1] and  

∑n

j=1 wj = 1.  Let ϵ = {ϵ1, ϵ2, . . . , ϵt} represent the data of decision-makers, each 
of which has associated weights, where ϖ = {ϖ1, ϖ2, . . . , ϖt} , where ϖk ∈ [0,1] and 

∑t

k=1 ϖk = 1. We 
present the next algorithm for addressing the MADM problem and determining the definitive ranking of the 
alternatives.

Algorithm
We created an algorithm for the MADM technique to process the intricate information that was obtained 
from our approach. The following stages of this method, which are also illustrated in Fig. 1, are outlined below, 
providing a clear and intuitive guide for both experts and readers.

Based on suggested AOs, a multi-attribute group decision-making method.
Input: DMs evaluation information Dk =

(
ℵk

ij

)
n×m

 for each expert k

1: Obtain the assessment information from DMs.
2: Normalize the DM:

•	 For benefit-type criteria, apply: 
([
ℏL

Rjk
, ℏU

Rjk

]
,
[
ηL

Rjk
, ηU

Rjk

]
,
[
ϱL

Rjk
, ϱU

Rjk

])
•	 For non-benefit-type criteria, apply the complement of the above.

	
ℵn =

{ ([
ℏL

Rjk
, ℏU

Rjk

]
,
[
ηL

Rjk
, ηU

Rjk

]
,
[
ϱL

Rjk
, ϱU

Rjk

])
forbenefittype([

ℏL
Rjk

, ℏU
Rjk

]
,
[
ηL

Rjk
, ηU

Rjk

]
,
[
ϱL

Rjk
, ϱU

Rjk

])c
fornon − benefittype

� (8)

3: Calculate and Aggregate the IVFPF information using the following:

•	 ℵjk = IV F P F EW A (R1, R2, . . . , Rp),
•	 ℵjk = IV F P F EW G (R1, R2, . . . , Rp)

4: Compute the score value of each alternative using
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S (R) = 1

2

((
ℏL

R
)3 +

(
ℏU

R
)3 −

(
ηL

R
)3 −

(
ηU

R
)3 −

(
ϱL

R
)3 −

(
ϱU

R
)3

)

5: Compare all score values and select the alternative with the highest score as the best option.
Output: Optimal alternative.

Application
A company seeks to enhance material delivery and logistics operations by combining intelligent technologies 
into its existing framework. The company requires external logistics service partnerships to achieve automation 
since their operations need increased efficiency and reduced expenses. The company must choose an 
appropriate logistics partner from several qualified service providers, making the decision process vital for 
connecting its strategic objectives with actual results. This necessitates the assessment of many logistics firms 
based on conventional and novel performance indicators. The modern logistics environment presents growing 
complexities that require real-time tracking features alongside predictive analytics and automated systems. 
To select the best logistics provider, organizations must evaluate infrastructure capability alongside financial 
stability and operational competence together with apparent technological innovation capacity.

The decision criteria were meticulously selected after conducting a thorough examination of pertinent 
literature and industry practices in intelligent logistics:

•	 Infrastructure Development (C1): The organization conducts an assessment of physical assets alongside tech-
nological infrastructure that contains warehouses alongside transport systems and IT infrastructure since 
these elements determine operational flexibility and scalability potential.

•	 Economic Performance in Logistics (C2): A sustainable partnership depends on three key factors: cost effi-
ciency, profit margins, and financial stability measurements.

•	 Operational Management (C3): Assesses the logistics provider’s ability to handle daily logistics operations, 
including routing, scheduling, and managing disruptions effectively.

•	 Smart Innovation Technological (C4): Reflects the provider’s adoption of smart technologies like IoT, big data, 
and automation, which are key for optimizing logistics processes in the long term.

Fig. 1.  Flowhat of proposed MADM approach.
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These criteria were weighted based on expert input, ensuring a balanced representation of operational and 
strategic factors relevant to modern logistics management. Figure 2 provides a full explanation of each factor.

The results of the evaluation, derived from the IVFPF-based MADM method, offer a structured and 
transparent process for selecting the most suiF logistics partner. In real-world decision-making, this model 
helps. Experts evaluate criteria with interval-valued fuzzy numbers to enhance both evaluation accuracy and 
reliability. By implementing fuzzy logic, the assessment method better understands the irregularities in expert 
evaluations while understanding provider abilities more precisely. This ranking serves decision-makers to prove 
their selection choices by demonstrating they follow factual evidence instead of subjective opinions and missing 
information. Once the choice of logistics provider is made, the company can achieve operational excellence, 
technological advancement, and long-term profitability. By implementing this approach, the company selects 
a partner who satisfies both current operational requirements and develops capabilities to overcome future 
technological and market-related challenges. This methodology allows for a more nuanced understanding 
of each candidate's strengths and shortcomings, facilitating informed decision-making for selecting the best 
logistics supplier.

Numerical example
This experimental case study in logistics management assesses four logistics service providers to identify the 
most effective option based on critical performance metrics. The companies Ý1, Ý2, Ý3, and Ý4 have been chosen 
for further evaluation because they are considered to have the most potential. Three specialists were invited to 
evaluate these companies, allocating weights to critical variables according to their knowledge. The assessment 
criteria comprise infrastructure development (C1), economic performance in logistics (C2), operational 
management (C3), and smart technological innovation (C4), with respective weightings of 0.58, 0.15, 0.20, 0.07. 
Utilizing the MADM method algorithm within the IVFPF framework to identify the ideal alternative.

Step 1 The decision-makers' structured knowledge from diverse emergency management sources in the form 
of IVFPFNs is given in Table 1.

Step 2 The standard decision matrices do not require conversion to normalized matrices, as the experimental 
case study only entails a single type of criterion.

Step 3 We employ the proposed IVFPFEWA and IVFPFEWG operators, as described in Eqs.  (1) and (7), 
respectively. Table 2 displays the results derived from the IVPFFWA and IVPFFWG operators.

Step 4 Definition 3.3 is used for determining the score value S , which is shown in Table 3.
Step 5 Rearrange the computed score values to identify the best alternative by ranking them in order and 

described in Fig. 3. The results acquired with the IVFPFEWA and IVFPFEWG operators are listed below: 

	 Ý4 > Ý2 > Ý3 > Ý1andÝ4 > Ý2 > Ý3 > Ý1.

Supremacy of the proposed technique
A highly practical and efficient method for managing MADM problems operates inside the IVFPFS environment. 
The methodology introduces MADM model innovation through IVFPFEWA and IVFPFEWG operators to 
achieve superior results than classic approaches. The model provides adaptable features that enable effective 
performance to deliver needed decision results under changing situations. The main difficulty with MADM 
models appears through the variations that occur when different models provide their assessment rankings. 
According to our research, standalone conventional approaches produce dissimilar results when researchers 
analyze them compared to hybrid analysis structures. Hybrid approaches consisting of IVIFS, IVPFS, and IVFFS 
have become popular because they effectively handle ambiguity and uncertain information during decision-

Fig. 2.  Explanation of factors and alternatives.
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making. Our proposed approach excels above all existing mixed fuzzy set frameworks since it offers better 
efficiency and effectiveness in managing uncertain and imprecise data.

The paper examines the strengths of our method and how it compares to established aggregation operators 
through Table 4. The creation of this approach emerged due to a requirement for customized solutions that 
would suit complex business applications. Our method stands out from existing hybrid models because it unifies 
an extensive range of fuzzy set types, including FS, IFS, IVIFS, PFS, IVPFS, FFS, and IVFFS, to provide an 
improved decision-making solution. The current hybrid structures show inadequacy in completely replicating 
complex decision contexts. We develop a new MADM operational framework based on interaction aggregation 
operators within IVFPFS to improve decision-making capabilities. The model features parameters that accept 
decision-making elements assessed through membership degrees, non-membership degrees, and neutrality 
degrees that maintain values between 0 and 1. The system delivers a sophisticated way of representing uncertain 
information with greater depth of understanding. The hybrid framework delivers substantially superior 
performance compared to traditional MADM approaches, according to Table 4 data.

Operator Ý1 Ý2 Ý3 Ý4

IVFPFEWA operator S (R1) = −0.0283 S (R2) = 0.00488 S (R3) = 0.00185 S (R4) = 0.0215

IVFPFEWG operator S (R1) = −0.0633 S (R2) = −0.0163 S (R3) = −0.0312 S (R4) = −0.0084

Table 3.  Score values of IVFPFEWA and IVFPFEWG.

 

IVFPFEWA IVFPFEWG

Ý1
(

[0.1832,0.3149] , [0.2363,0.3955] ,
[0.1123,0.2600]

) (
[0.1465,0.2686] , [0.3033,0.4518] ,

[0.1295,0.2995]

)

Ý2
(

[0.2550,0.3845] , [0.1889,0.3462] ,
[0.1403,0.2331]

) (
[0.1971,0.3703] , [0.2406,0.3799] ,

[0.1641,0.2617]

)

Ý3
(

[0.1886,0.3529] , [0.1308,0.2266] ,
[0.1712,0.3039]

) (
[0.1590,0.3245] , [0.1902,0.3394] ,

[0.2206,0.3524]

)

Ý4
(

[0.2368,0.4259] , [0.1971,0.3186] ,
[0.1072,0.1845]

) (
[0.1972,0.4125] , [0.2875,0.3836] ,

[0.1194,0.2336]

)

Table 2.  Resulting aggregation values of IVFPFEWA and IVFPFEWG.

 

C1 C2 C3 C4

ϵ1

 Ý1 ([0.2,0.3] , [0.1,0.2] , [0.2,0.4]) ([0.3,0.4] , [0.2,0.3] , [0.1,0.2]) ([0.1,0.2] , [0.1,0.3] , [0.2,0.5]) ([0.3,0.4] , [0.2,0.3] , [0.2,0.3])

 Ý2 ([0.3,0.4] , [0.2,0.3] , [0.2,0.3]) ([0.1,0.2] , [0.3,0.5] , [0.1,0.3]) ([0.3,0.4] , [0.1,0.3] , [0.2,0.3]) ([0.2,0.5] , [0.1,0.2] , [0.1,0.2])

 Ý3 ([0.1,0.3] , [0.2,0.5] , [0.1,0.2]) ([0.1,0.2] , [0.3,0.5] , [0.1,0.3]) ([0.3,0.4] , [0.4,0.5] , [0.0,0.1]) ([0.2,0.3] , [0.2,0.3] , [0.1,0.3])

 Ý4 ([0.2,0.4] , [0.4,0.5] , [0.0,0.1]) ([0.2,0.3] , [0.1,0.2] , [0.2,0.4]) ([0.1,0.4] , [0.0,0.3] , [0.1,0.2]) ([0.2,0.3] , [0.4,0.5] , [0.1,0.2])

ϵ2

 Ý1 ([0.2,0.3] , [0.4,0.5] , [0.1,0.2]) ([0.3,0.4] , [0.4,0.5] , [0.0,0.1]) ([0.1,0.2] , [0.3,0.5] , [0.1,0.3]) ([0.2,0.3] , [0.1,0.2] , [0.2,0.4])

 Ý2 ([0.1,0.4] , [0.0,0.3] , [0.1,0.2]) ([0.1,0.2] , [0.3,0.5] , [0.1,0.3]) ([0.3,0.4] , [0.2,0.3] , [0.2,0.3]) ([0.3,0.4] , [0.2,0.3] , [0.1,0.2])

 Ý3 ([0.2,0.3] , [0.1,0.2] , [0.2,0.4]) ([0.1,0.3] , [0.2,0.5] , [0.1,0.2]) ([0.2,0.5] , [0.1,0.2] , [0.1,0.2]) ([0.1,0.2] , [0.1,0.3] , [0.2,0.5])

 Ý4 ([0.2,0.4] , [0.4,0.5] , [0.0,0.1]) ([0.2,0.3] , [0.2,0.3] , [0.1,0.3]) ([0.1,0.4] , [0.2,0.3] , [0.0,0.3]) ([0.2,0.4] , [0.4,0.5] , [0.0,0.1])

ϵ3

 Ý1 ([0.1,0.2] , [0.3,0.5] , [0.1,0.3]) ([0.1,0.2] , [0.3,0.5] , [0.1,0.3]) ([0.2,0.5] , [0.1,0.2] , [0.1,0.2]) ([0.1,0.3] , [0.2,0.5] , [0.1,0.2])

 Ý2 ([0.3,0.4] , [0.2,0.3] , [0.2,0.3]) ([0.3,0.4] , [0.4,0.5] , [0.0,0.1]) ([0.1,0.3] , [0.2,0.5] , [0.1,0.2]) ([0.2,0.4] , [0.4,0.5] , [0.0,0.1])

 Ý3 ([0.2,0.4] , [0.0,0.1] , [0.3,0.4]) ([0.1,0.3] , [0.3,0.4] , [0.1,0.2]) ([0.1,0.2] , [0.1,0.3] , [0.2,0.4]) ([0.3,0.4] , [0.1,0.4] , [0.0,0.2])

 Ý4 ([0.3,0.5] , [0.0,0.2] , [0.1,0.2]) ([0.3,0.4] , [0.2,0.3] , [0.2,0.3]) ([0.1,0.4] , [0.2,0.3] , [0.1,0.3]) ([0.1,0.3] , [0.2,0.5] , [0.1,0.2])

Table 1.  Decision-matrix of IVFPFN.
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Comparative analysis
The proposed technique shows major differences with current methods by providing better uncertain data 
processing capabilities according to the comparison results. The ability of this process decreases information 
loss risks that arise from assigning fixed scores to parameters without factoring in their influence on other 
variables. The recommended MADM method effectively measures alternative similarity and interpretability 
while excluding unreliable data, which results in outcomes that are superior to those of conventional methods. 
According to our study, various current decision-making procedures by Cuong10 encounter limitations 
when addressing scenarios involving MD, NeD, and NMD. These methods are grounded in frameworks 
like Picture FSs and Pythagorean Picture FSs. Consequently, they struggle to effectively handle cases where 
MD + NeD + NMD > 1 or (MD)2 + (NeD)2 + (NMD)2 > 1, limiting their applicability in more 
intricate decision-making environments. These methods demonstrate restricted capabilities when employed to 
interval value decisions that require high power assessment of MD, neuD, and NMD.

To highlight the effectiveness of our proposed strategy, a comparative analysis was conducted using 
several existing methods, including the IVPFWA33, IVPFWG33, IVPFSSPOA34, IVPFSSPOG34, IVPPFWA35, 
and IVPPFWG35 operators, as illustrated in Table 5. We strictly adhered to their original parameter settings, 
mathematical formulations, and procedural steps without introducing any modifications or adjustments. This 
approach allowed us to evaluate each method in its intended form and ensured that any performance differences 
observed were not due to experimental bias or tuning. This analysis offers significant insights into the efficacy 
of the proposed approach. As illustrated in Table 5, all techniques consistently rank as the greatest option and 
Ý1 as the worst.

The proposed method displays superior consistency in how scores are distributed, and alternatives are ranked 
according to Table 5, and a graphical representation of the obtained results is presented in Fig. 4.

Different tests reveal that the proposed method consistently assigns the top ranking to Ý4 and the lowest 
position to Ý1 through scores that exhibit minimal variation. Our method generates score evaluations (Score 
4 = 0.0215 and − 0.0084), which demonstrate more stability in comparison to Rehman et al.35, where the scores 

Set type

Aggregated 
information in 
interval form

Neutral 
membership Advantages Limitations

Zadeh1 FS × × Deals uncertainty using MD Unable to handle NMD

Atanassov5 IFS × × Deals uncertainty using MD and NMD Unable to handle MD + NMD > 1

Yager6 PFS × × Deals uncertainty using MD and NMD Unable to handle (MD)2 + (NMD)2 > 1

Peng & Yang7 IVPFS ✓ × Deals uncertainty using MD and NMD intervals Unable to handle (MD)2 + (NMD)2 > 1

Cuong10 PFS × ✓ Deals uncertainty using MD, Neutral, and NMD
Unable to handle 
MD + NeuD + NMD > 1

Senapati and Yager8 FFS × × Deals uncertainty using MD and NMD Unable to handle (MD)3 + (NMD)3 > 1

Jeevaraj9 IVFFS ✓ × Deals uncertainty using MD and NMD intervals Unable to handle (MD)3 + (NMD)3 > 1

Shanthi37 IVFP ✓ ✓ Deals uncertainty using MD, Neutral, and NMD 
intervals

Unable to handle 
(MD)3 + (NeuD)3 + (NMD)3 > 1

Proposed IVFPFS ✓ ✓ Deals uncertainty using MD, Neutral, and NMD 
intervals

Unable to handle 
(MD)3 + (NeuD)3 + (NMD)3 > 1

Table 4.  Feature analysis of different models with a proposed model.

 

Fig. 3.  Resulting of the proposed methods.
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fluctuate to (Score 4 = 0.0245 and − 0.0344). Stability analysis and reduced sensitivity to minor input variations 
emerge from the experimental outcomes.

The proposed method improves interpretability by maintaining accuracy in decision-maker preferences 
and variable interrelations. The proposed method maintains reliable results when used as an aggregation 
operator for IVFPFEWA and IVFPFEWG, demonstrating its adaptable functionality in various decision-
making environments. Both numerical outcomes and conceptual reasoning show that the proposed method 
demonstrates practical effectiveness with superior performance due to its newfound value.

Advantages and limitations of the proposed method
The following comparative evaluation will emphasize the proposed model's strengths and limitations.

•	 IVFPFSs improve the ability to manage two-dimensional information, providing a more detailed and in-
sightful knowledge of objects in the context of decision-making. A more complex and complete strategy than 
earlier techniques is achieved by aggregating IVFPF data.

•	 The suggested evaluation model integrates both angular and distance variables, providing a comprehen-
sive and nuanced perspective on the proximity of decision objects. This method facilitates a comprehensive 
knowledge of their relationships.

•	 The aggregation approach facilitates experts' decision-making process by providing a variety of data process-
ing methods.

It is essential to recognize several limitations related to the presented research:

•	 While the suggested IVFPFN algorithms are distinct, they have weaknesses and might benefit from further 
modification to improve their accuracy, computing efficiency, and robustness in large-scale datasets.

•	 Although the MADM technique offers a thorough assessment of our strategies, the method's results are sig-
nificantly influenced by the selection of criteria and the assignment of weights. Variations in these aspects 
may influence the total efficacy of the decision-making process.

Fig. 4.  Comparison with the existing methods.

 

Operator Score values Ranking

IVPFWA33 0.0151 0.0872 0.02350 0.1794 Ý4 > Ý2 > Ý3 > Ý1

IVPFWG33 0.0074 0.0715 0.0132 0.1006 Ý4 > Ý2 > Ý3 > Ý1

IVPFSSPOA34 −0.3517 −0.2064 −0.2622 −0.1678 Ý4 > Ý2 > Ý3 > Ý1

IVPFSSPOA34 −0.2891 −0.1588 −0.1866 −0.1044 Ý4 > Ý2 > Ý3 > Ý1

IVPPFWA35 −0.0811 −0.0078 −0.0108 0.02452 Ý4 > Ý2 > Ý3 > Ý1

IVPPFWG35 −0.1481 −0.0583 −0.0873 −0.0344 Ý4 > Ý2 > Ý3 > Ý1

Proposed IVFPFEWA −0.0283 0.0049 0.00190 0.0215 Ý4 > Ý2 > Ý3 > Ý1

Proposed IVFPFEWG −0.0634 −0.0163 −0.0312 −0.0084 Ý4 > Ý2 > Ý3 > Ý1

Table 5.  Comparison analysis with different existing techniques.
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•	 The system has not been applied to large-scale logistics networks in practice. Problems related to heavy com-
puting, the mix of different data, and fluctuating environmental aspects make it difficult to scale distributed 
supply chain systems effectively.

•	 While our model successfully addresses several layers of complexity, it is important to recognize that the com-
prehensive nature of decision-making in sustainable logistics management cannot be fully captured within 
the scope of a single study or methodological approach.

•	 The framework was created for use in sustainable logistics, but we still need to examine if it could be applied 
to different areas such as healthcare, finance, or urban planning. It may be necessary to modify the system to 
fit different limitations and stakeholder expectations.

•	 The model does well at identifying complex steps, yet it cannot perfectly demonstrate the interactive process-
es that occur in real-world sustainable logistics. Future work needs to investigate ways to use both machine 
learning and simulation as part of validation processes.

Conclusions
In this work, we presented interval-valued Fermatean picture fuzzy sets (IVFPFSs). We investigated their key 
features and the essential functional laws that lay the basis for understanding them. We thoroughly investigated 
and evaluated IVFPFS features using Einstein methodologies. We also presented several aggregation methods 
integrating Einstein operations with averaging and geometric approaches, including the IVFPF Einstein 
weighted-averaging and weighted-geometric techniques. To illustrate the practical applications of these 
techniques, we created a MADM model for data gathering and processing. A numerical illustration of logistics 
management decision-making demonstrated The method's utility. Ultimately, we examined our suggested model 
against existing ones to determine its efficacy. The findings demonstrate that our approach improves flexibility 
and adaptation, allowing decision-makers to select the optimal alternative across diverse contexts.

Future research can investigate a variety of options by expanding upon this investigation. The operation-
related and rules principles of IVFPFNs could be developed in fundamental theory. Future research can integrate 
dynamic systems evaluation strategies38–43, which include the stability and higher-order evaluation drawn from 
differential equations, into the IVFPFS structure to boost the agility, security, and real-time management of 
sustainable logistical administration approaches.

Data availability
All the data used and analyzed is available in the manuscript.
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