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Detecting heavy trucks from
mobile phone trajectories

using image-based behavioral
representations and deep learning
models

Franco Basso?"?, Félix des Rotours?, Tomas Maldonado*, RaUl Pezoa* & Mauricio Varas®

This paper proposes an innovative methodology for detecting heavy trucks utilizing mobile phone
data, addressing significant limitations inherent in traditional tracking methods, often characterized
by high costs, intrusiveness, and incomplete data capture. By employing Call Detail Records (CDR)
and introducing an image-inspired architecture, the study uses Convolutional Neural Networks (CNN)
to model the microscopic behavioral patterns of mobile devices. Our numerical results show that our
proposed approach outperforms more classical machine learning methods that rely only on aggregated
features. This novel approach offers a scalable and cost-effective alternative to conventional methods,
representing a pioneering application of image-based analytical techniques to mobile phone data
within freight transport research. This work provides a robust tool for analyzing freight transport
patterns, thereby supporting the development of strategies to mitigate the negative externalities of
freight transportation while preserving its economic benefits.
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The improvements in transportation infrastructure and connectivity in the last decades have led to a rapid
growth in intercity freight flow worldwide". While essential to the functioning of cities by producing high
economic benefits%, freight transport has its share of negative externalities. For example, freight transportation
is one of the main drivers of the increasing energy consumption in the transportation sector®, accounting for
about 45% of total transport energy consumption. Consequently, the literature has recognized the importance of
understanding goods movement patterns as a basis for developing strategies that mitigate these adverse impacts
while preserving economic advantages™’.

Despite its importance, existing methods for tracking heavy trucks often involve high costs and intrusive
technologies, making their widespread application challenging. Indeed, most prior work in this field has
primarily focused on traditional tracking methods such as GPS-based systems. While these methods are
effective and precise, they suffer from biases and incompleteness, especially in a highly fragmented industry such
as freight transport. Recent contributions have explored several data sources for vehicle detection, including
satellite imagery and toll data. However, these approaches face cost, scalability, and data precision limitations.

This paper presents a novel methodology for detecting heavy trucks using mobile phone trajectories derived
from Call Detail Records (CDR). CDR data is continuously generated through user interactions with mobile
devices, capturing the user’s approximate location and the corresponding timestamp each time the network is
accessed. To the best of our knowledge, the only prior work that has used CDR data to study freight transport
is®, which focused on identifying last-mile delivery vehicles through classical machine learning techniques and
standard freight variables. In contrast, the present study addresses the detection of heavy freight vehicles with a
new methodological framework. Specifically, we use CDR data and feature engineering to construct an image-
inspired architecture that captures the microscopic behavioral patterns of individual devices. This design enables
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the application of image processing techniques, such as Convolutional Neural Networks (CNNs), to identify
devices associated with heavy truck drivers.

This paper’s contribution is twofold. First, we propose a novel methodology that models mobile phone
trajectory data as spatial heatmaps, transforming mobility behaviors into a visual format. Second, we evaluate
whether incorporating these heatmap representations improves the detection of heavy trucks compared to using
only numerical aggregated features. To this end, we adopt a standard CNN architecture widely recognized for
its effectiveness in image-processing tasks. Importantly, our objective is not to benchmark various deep learning
models but rather to assess the marginal predictive improvement provided by heatmap-based representations.
To our knowledge, this is the first effort in the freight transport literature to introduce an image-based deep
learning framework over mobile phone data, demonstrating significant gains in detection accuracy.

The rest of the article is structured as follows: In Section 2, we review the literature related to the use of CDR
data to study the mobility of people and goods. In Section 3, we describe the data, whereas in Section 4, we
present the proposed methodology comprehensively. In Section 5, we apply all the presented methods. Finally,
in Section 6, we present some concluding remarks and provide some avenues for future research.

Literature review

Deep learning and image-based models in transportation research

The application of deep learning in transportation research has grown rapidly, offering new tools to model the
complex, nonlinear dynamics of mobility systems*!°. Traditional statistical approaches like linear regressions
or decision trees often fall short when dealing with the intricate spatiotemporal patterns of traffic flows'!,
demand surges'?, and crash risks!®. Deep architectures, particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) have demonstrated superior predictive power by taking advantage of
rich transportation datasets, including automatic vehicle identification'*, mobile phone traces!'®, and connected
vehicle data'®.

A particularly promising innovation has been the use of image-based encodings to represent transportation
datal”. By transforming traffic states, spatial flows, or historical sequences into grid-based images, researchers
enable CNNs-originally designed for visual tasks-to learn complex mobility patterns more effectively. This
approach captures spatial correlations and temporal dynamics simultaneously, and has been applied successfully
in traffic data imputation'®, traffic speed prediction!?, crash risk assessment?’, and truck activity identification?'.
Moreover, image-based representations facilitate the integration of heterogeneous sources??, such as weather
maps?, road layouts?, and vehicle density heatmaps?, into a unified predictive framework.

While deep models automatically learn from raw data, careful feature engineering remains crucial to fully
use image-based inputs and other structured information?. Preprocessing steps such as spatial aggregation, lag
feature construction, and contextual variable encoding (e.g., weather conditions, holidays) significantly enhance
model performance?. In fact, the process of structuring transportation data into image-like grids itself acts
as a form of spatial feature engineering, organizing raw inputs to maximize the learning capabilities of CNNs
and related architectures®®. Such strategies help address common transportation data challenges, including
sparsity?’, noise*’, and missing information?®, improving the robustness and reliability of predictive models
across different contexts.

The use of CDR in transportation and mobility

In recent years, CDR has become a critical data source in transportation research?!. Particularly, CDR allows the
exploration of mobility patterns using data generated from widespread mobile phone use, including details on
location, time, and duration of calls®2. The adoption of CDR offers a cost-effective alternative to traditional data-
gathering techniques, supporting the analysis of large-scale population movements* and urban dense areas
identification®®, while also facilitating improvements in transportation network modeling™.

The use of CDR poses challenges in accuracy compared to GPS or other tracking methods due to its spatial
granularity and uncertainties since it was initially intended for billing and network management®, not for
tracking vehicular movements with high precision®®. Indeed, previous literature emphasizes the importance of
correctly interpreting the data to avoid misplacement of devices within coverage areas*. Consequently, using
CDR data requires careful interpretation.

A well-established research line has focused on using CDR data to compute origin-destination (OD)
matrices.*!, for example, develops a methodology that combines mobile phone CDR and limited traffic counts
from some locations in Dhaka, Bangladesh, to generate and scale OD patterns over different periods. Similarly,*?
outlines a procedure to extract average daily origin-destination trips by purpose and time of day and apply
this to CDRs gathered from Boston, USA. In South America,? proposes an algorithm combining CDR and
sociodemographic information to estimate OD matrices in Rio de Janeiro, Brazil. All these works support the
idea that CDR is a robust and cost-effective urban planning and monitoring tool.

In another research stream, mobile phone data was also used to determine travel modes. We refer the reader
to*® for a comprehensive review. The first efforts in this venue used Global System for Mobile Communications
(GSM) technologies*’. These contributions focused on identifying three main situations for individuals:
stationary, walking, or driving, although, for the driving category, it was not possible to differentiate between
private and public motorized vehicles. This issue has been tackled in more recent efforts.*>, for example, estimates
the number of people that use public transport daily, which is particularly relevant for cities that do not count
with an automatic fare collection system. On the other hand,*® proposes a new methodology that, building on
powerful machine learning models, allows for differentiating more transport modes, including tram, train, and
bike. As*” points out, this could help obtain periodic travel mode partition without needing costly and time-
consuming surveys.
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Variable Description

IMSI Anonymized identifier of the device issuing the connection request

Timestamp | Full date and time of the network interaction

Coordinates | Triangulated location of the device as latitude and longitude

Table 1. Structure of the CDR dataset.

Hashed IMSI Timestamp Coordinates

a3f9c2e4b8d6492a | 2021-08-02 16:58:23 E?(I)§0T7923 -33.444934)
e41b7aS1dcafafdd | 2021-08-02 1425:14 | (D800
f5a8dcfOe2db4ce4 | 2021-08-02 18:30:44 E?é§§3916 -33.391698)
d02b9eaeb2flc6d2 | 2021-08-02 17:58:33 E?é§§3739 -33.435391)
c4b57a63d1e945¢e7 | 2021-08-02 13:09:58 F—?(?\;gOSZS -33.420019)

Table 2. Sample of cleaned CDR data used in the analysis.

Finally, another research venue involves using CDR data to characterize tourism mobility. In this regard,*®
describes a framework that identifies tourists among the total population by analyzing CDR data and using
several predefined rules.* proposes a methodological framework for generating national tourism statistics using
mobile positioning data. The authors use data from Estonia’s two largest mobile phone operators, finding strong
correlations with Estonian inbound statistics on accommodation.®® combines CDR and Twitter data to predict
tourism flows using graph neural networks in Spain.

The research gap

Although CDR data has been widely used to study human mobility, its application to freight transportation
remains limited. To date,? is the only study using CDR to identify freight vehicles, focusing on last-mile deliveries
with traditional machine learning models. Moreover, image-based frameworks in the freight transportation
literature are almost absent. This paper addresses these gaps by introducing a deep learning methodology
that combines spatial heatmaps and aggregated features to detect heavy trucks, offering a scalable and robust
alternative for freight transport analysis.

Data processing

In this paper, we deploy deep learning tools over cell phone data to detect heavy freight vehicles. Our research
hypothesis is that the behavior of freight trucks can be synthesized from the connection data of an onboard device
such as a cell phone. Since deep learning algorithms require a substantial volume of data to train effectively, a
large amount of connection data is required. In what follows, we describe the data gathered from a mobile phone
company we worked with, detailing the data cleaning process to mitigate problems related to CDR data, such as
the ping-pong effect.

Raw data

We use data gathered from Empresa Nacional de Telecomunicaciones (Entel), one of the largest mobile operators
in Chile. Entel offers several other services in addition to mobile telephony, including fixed telephony, Internet,
and television. By 2021, the company had about a third of the wireless subscribers in Chile. While providing
Internet access to its subscribers, Entel collects data for each connection named CDR.

The International Telecommunication Union (ITU), a UN agency founded in 1865, facilitates global
communication by allocating radio frequencies, setting technical standards, and improving access to ICTs for
underserved communities. ITU recommendations, like E.212, which defines the 15-character International
Mobile Subscriber Identity (IMSI), are widely respected. Following E.212, CDR data is anonymized, with
IMSI representing each user. For each network connection, the device from which the request originates
simultaneously calls several antennas - a base antenna supported by two or three support antennas, depending
on the quality of coverage. During this process, the network antennas identify the IMSI, triangulate its position,
and record the connection time. Table 1 describes the structure of the CDR dataset. Table 2 presents a sample
of the cleaned CDR data used in the study, showing anonymized IMSI identifiers, timestamps, and triangulated
location coordinates.

CDRs are automatically collected by mobile operators to bill for connections. This collection mode is more
economical and more accessible to repeat than mobility surveys carried out by statistical institutes or public
players. Furthermore, the granularity of CDR data gives tracking a far greater spatial precision and temporal
spread than surveys, which trace household movements over an arbitrary day. They are also immune to moral
hazard, whereas the validity of surveys relies on the word of individuals who may lie or omit elements. Despite

Scientific Reports |

(2025) 15:22150

| https://doi.org/10.1038/s41598-025-06711-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

these advantages, cell phone data lacks the information generally available in travel surveys concerning a
respondent (e.g., age or income) or the conditions of his or her trip (e.g., purpose or mode). In the case of the
CDRs we had available for this study, only daily data were available from 7 am to midnight. This limitation implies
gaps in the trajectories, especially as much truck traffic occurs at night. What’s more, the spatial triangulation
performed by the antennas provides less spatial precision than the GPS method and sometimes even erroneous
information.

Data cleaning
Preprocessing is necessary to clean the raw mobile phone data and reduce noise in the recorded trajectories. This
section outlines the main steps we followed to prepare the dataset.

Correction of antenna-related location noise. Mobile operators often redistribute connections across nearby
antennas to manage network load. This can result in sudden location changes, even when the user remains still,
a phenomenon known as the load-sharing effect. Another issue is the ping-pong effect, where a device near the
boundary between two antennas is alternately assigned to each one, producing artificial movement between two
nearby points. To address this, we remove intermediate points when the angle formed between three consecutive
positions falls within [—5°, 5°] and the speed between them exceeds 120 km/h. Figures 1a and 1b show how this
filtering works in practice.

Removal of machine-generated IMSIs. Some IMSIs in the dataset come from machines rather than people,
such as payment terminals or surveillance systems. These machine-to-machine (M2M) devices can be identified
using a registry provided by Entel, which includes 470,619 known M2M IMSIs in Chile. We exclude these from
the analysis.

Filtering of high-frequency anomalies. Certain IMSIs generate over 10,000 records per day, which is far
beyond normal usage patterns. These are treated as anomalies and removed from the dataset.

Averaging coordinates over time. To reduce noise and smooth the trajectories, we average the coordinates
of each IMSI per minute. This helps remove erratic short-term variations without losing relevant movement
patterns.

Methodology

Stays and trips

Since the seminal contribution of°!, the concepts of stays, destinations, and trips have become well-known for
understanding the location history of tracking devices.

In our context, a stay is defined as a single instance of a device spending some time in one place. A stay is
detected when successive location points of a device remain within a radius of D meters for more than a duration
of T seconds. The stay is then characterized by the medoid of its points. A trip is simply defined as the segment
between two stays of the same device. Figure 2a shows three different stays and two trips, with the red dots
representing the medoids of the respective stays.

In contrast, a destination is defined as any place where one or more devices have experienced a stay. In other
words, a destination can be thought of as a timeless counterpart of stays. Note, however, that two close stays
can refer to the same destination (for example, a logistic facility). Thus, a clustering algorithm is necessary to
group close stays into a single destination. In this paper, we use the DBSCAN algorithm®? for this purpose, as it
allows us to specify the radius R of the clusters rather than the number of clusters, which in our context leads to
easier interpretation. We then refine the definition of trips and define a long trip as a trip occurring between two
different destinations. Figure 2b shows two different destinations and one long trip between them.

Classification method
Our classification method utilizes two primary input data sources. The first is based on images and corresponds
to a heatmap of the IMSI's interactions. The second consists of aggregated features. Figure 3 presents a general
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Fig. 1. Eliminating the ping pong effect.
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Fig. 2. Illustration of stays, trips, destinations and long trips.
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Fig. 3. Schematic diagram of the pipeline processing the data to feed the classifier.

framework of the proposed method, illustrating how the raw data is processed through parallel pipelines to feed
a neural network.

On the right-hand side, interactions are labeled as either destinations or long trips using DBSCAN clustering,
which allows for the computation of relevant aggregated features. These features are then concatenated with the
heatmap of interactions from the left-hand pipeline. The resulting tensor is subsequently fed into the classifier.
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Fig. 4. Transformation of a raw interactions into a spatial heatmap.

Features Feature importance
Destination number per day 0.155
Mean speed within long trips 0.129
Number of interactions within long trips per day 0.126
Mean duration within a destination 0.103
H3 number per day 0.100
Mean speed within destinations 0.083
Total interactions per day 0.080
Average cumulative duration of long trips per day 0.079
Average cumulative duration of destinations per day 0.073
Average number of interactions within destination per day | 0.072

Table 3. Variable importance according to mean decrease Gini.

The following subsections look at data processing in each pipeline in more detail.

Heatmap of interactions

One of the main contributions of this research is the design of a new data architecture for the spatial
representation of IMSI-related CDRs. Given a time interval—5 days in the case of the study—the interactions
in a predetermined area of interest are grouped together in a heat map. This reduces the size of the data set fed
into the neural network and improves the permanence zones of an IMSI. This approach is inspired on?® accident
prediction which proposes a bar code image-based data arquitecture for predicting crashes in a highway. Figure
4 illustrates the transformation of raw data into a heat map.

We define the spatial unit of the heatmap as the length of the side of each square cell. The resolution must
be fine enough to capture meaningful variations in device density while avoiding excessive sparsity that could
hinder model learning. After preliminary testing, the spatial resolution was set at 600 meters by 600 meters,
balancing spatial detail and data density. Finer resolutions (e.g., 100 meters) resulted in highly sparse heatmaps,
impairing the CNN’s ability to learn coherent spatial patterns. Conversely, coarser resolutions (e.g., 1 kilometer)
smoothed out critical behavioral differences and diluted the distinctive spatial signatures of freight-related
locations, such as ports and customs checkpoints. Thus, a 600-meter resolution was selected to ensure sufficient
granularity to represent key freight activity patterns while maintaining computational efficiency and minimizing
the risk of overfitting.

Aggregated features

Using a geospatial heatmap as input to the classifier is one of the main innovations in this study. However, while
this input effectively captures spatial patterns, which is crucial for determining whether an IMSI is frequenting
locations typical of a specific type of vehicle, it does not address the temporal dimension of movements. For
instance, the trained algorithm may recognize a high-load truck passing through freight ports, road customs,
or large warehouses. However, this criterion alone does not differentiate high-tonnage trucks from last-mile
delivery trucks or even employees whose workplaces are at these locations. Therefore, it is necessary to introduce
additional inputs that reflect the time dimension of journeys.

To address this, we adopt a similar approach to®, who used aggregated data to characterize IMSI behaviors
and trained several classical classifiers. We consider several variables (see Table 3), such as the number of stays
or destinations per day. To select the most relevant variables, we calibrate a random forest model and compute
the Gini index, which helps determine the importance of each feature.

Convolutional neural network (CNN)

We use deep learning algorithms based on convolutional neural networks (CNNs) to generate predictions for
each IMSI class. Introduced by>?, CNNs are designed for image recognition tasks, initially classifying handwritten
digits to recognize visual patterns from pixel data. Unlike traditional neural networks, CNNs employ convolution
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operations in at least one layer instead of general matrix products, reducing the number of fitted parameters™.
Typically, in CNNs, convolution is applied to an input image I using a two-dimensional kernel K, as shown in
Eq. (1).

ri—lcp—1

SG,j) = I+ K)(i,5) =Y > I(m,n)K(i—m,j—n) (1)

m=0 n=0

where S(i, j) represents the element of the output matrix at row i and column j, I is the input matrix, K is the
kernel or filter, while r; and ¢ denote the number of rows and columns in the input matrix I and kernel K
respectively.

A filter is then applied to the convolution output. This step reduces the dimension, for example, by calculating
the local average of pixels (mean pooling) or the local maximum (max pooling) while highlighting certain image
features. Several kernels can be applied in parallel to select distinct features. The error rate between predicted and
true classes is calculated during each iteration to adjust the model parameters.

In order to take advantage from both heatmaps and aggregated features, we design a two-fold neural network:

o First features are extracted from the heatmap using a set of Convolutional and Max Pooling layer.
« Then a classifier labels the vector resulting from the concatenation of the extracted features and the aggregated
features as a high load truck (1) or not (0)

Figure 5 illustrates this process. The red arrows represent the feedback loop, i.e. how the parameters of the
different layers are adjusted according to the classification error at each epoch.

Figure 6 shows more precisely the different steps of data processing throughout the layers of the neural
network.

It is important to point out that our objective is not to benchmark or exhaustively compare the performance
of various deep learning architectures. Instead, we specifically aim to assess whether representing device
behaviors as spatial heatmaps enhances the predictive accuracy of heavy truck detection compared to using only
numerical aggregated features. We deliberately adopt a standard CNN architecture to isolate and clearly attribute
any observed improvements to the heatmap representation itself. CNNs are widely recognized as the benchmark
approach for processing image-based data, offering strong generalization capabilities with comparatively low
model complexity. Given the structured nature of the heatmaps we generate-where spatial patterns are key to
classification-using a classical CNN is sufficient to capture the relevant spatial dependencies without the added
complexity of more advanced architectures. This modeling choice ensures that any performance improvement
can be attributed to the informational richness of the heatmap representation rather than to incremental gains
from using increasingly sophisticated deep learning models.

Training set

Our methodology aims to train a supervised machine learning model capable of determining whether an IMSI
belongs to a heavy truck driver. To do so, however, we require a training dataset, with some IMSIs labeled as truck
drivers, and others IMSIs labeled as non-truck drivers. However, note that our data is unlabeled. Consequently,
we devise a procedure to build a training dataset.

Heatmap data

N
Feature extraction

Precomputed
aggregated features

Fig. 5. Schematic diagram of the CNN.
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Fig. 7. Left: IMSI likely associated with a truck driver. Right: IMSI likely not associated with a truck driver.

Our approach begins by dividing the study area into grid cells and counting the number of interactions
recorded in each square. The interaction counts are then visualized using a color scale proportional to the
number of interactions per cell. Based on this representation, we manually identify a small subset of IMSIs that
likely correspond to heavy truck drivers or non-truck users. Figure 7 provides an example of this process: the
IMSI on the left shows interaction concentrations at key freight-related locations, such as Valparaiso’s port and
the customs facility near Argentina, while the IMSI on the right shows localized activity within smaller villages,
which is unlikely to correspond to truck behavior.

We follow this manual procedure until we have selected n IMSIs similar to the first example and label them
as heavy trucks (set Ag). Then, we select k - n random IMSIs from the rest and label them as non-trucks (set
By). This approach is based on the assumption that random IMSIs are highly likely not to be linked to truck
drivers. Subsequently, we calibrate a logistic regression over the set of IMSIs Co = Ao U By and apply it to the
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remaining IMSIs to find candidates likely to be heavy trucks. These candidates are then visually inspected to
decide whether they likely belong to heavy truck drivers. The intuition behind this procedure is that we cannot
visually check every IMSI, so we use logistic regression to reduce the search space. We then complement this
dataset with a random set of IMSIs (labeling them as non-trucks) to maintain the ratio 1 : k between trucks and
non-trucks. We repeat this procedure until we have m IMSIs labeled as trucks.

Input: Set of IMSIs I. Integers n, m, k

1: =0

2: Ip=1

3: Manually identify a subset Ay C Iy of n IMSIs likely belonging to heavy truck drivers.

4: Select a random subset By C Ip\Ag of k - n IMSIs.

5: while | Ui_y A;] <m do

6: Build a calibration set C; = Ué:o (A; U Bj), with a set of aggregated independent variables X,

and dependent variable Y; = ]lu’,':o Ay

7 Build a test set T; = I\C}, with a set of aggregated independent variables Z;.

8: Calibrate a logistic regression L; over {X;,Y;}.

9: Apply the logistic regression L; over Z;, identifying a set of heavy truck drivers candidates ;4.
10: Manually identify the subset A;+1 C I;4+1 that likely belong to heavy truck drivers.
11: Select a random subset Bty C T;\Ii+1 of k - |A;11| IMSIs.
12: i=1+1
13: end while

Algorithm 1. Pseudocode for training dataset building.

Finally, the same visual representation shown in Fig. 7 serves as the basis for constructing the input fed to
the CNN model. As shown in Fig. 8, the same spatial aggregation of interactions is retained, but the underlying
basemap is removed and the interaction counts are normalized into a grayscale scale. These standardized
heatmaps are then used as inputs to the CNN, allowing the model to learn spatial behavioral patterns.

Experimental results
The experimental design of this study follows an ablation framework aimed at isolating the individual
contributions of different input representations to heavy truck detection. A similar experimental design has
been carried out in°>%, and*’. We define three experimental configurations: (i) classical machine learning
models trained solely on aggregated numerical features derived from mobile phone trajectories, (ii) a CNN
trained exclusively on spatial heatmaps capturing the behavioral patterns of devices, and (iii) a CNN trained on
the fusion of heatmaps and aggregated features. This setup allows us to independently evaluate the predictive
power of spatial information and traditional aggregated indicators, as well as their potential complementarity.
By maintaining model complexity constant within each input type (e.g., using a standard CNN for image-based
inputs), we ensure that any observed performance differences can be explicitly attributed to the nature of the
data representation rather than to differences in modeling sophistication. This ablation framework thus enables
a systematic and transparent assessment of the marginal value introduced by incorporating heatmap-based
representations into freight vehicle detection models.

To implement the proposed methodologies, we apply the described procedures to a dataset of 17,000 IMSIs
provided by Entel. These IMSIs were randomly selected under two conditions: each had at least one recorded

Intensity
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Fig. 8. Inputs to CNN model. Left: IMSI likely associated with a truck driver. Right: IMSI likely not associated
with a truck driver.
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interaction during the week of August 2nd to August 6th, 2021, and each was located within one of three key
logistic regions in Chile-Metropolitan, Valparaiso, and O'Higgins. For this sample, we apply the data cleaning
procedures detailed in Section 3.2, followed by the computation of stays, trips, long trips, and destinations
as defined in Subsection 4.1. For the DBSCAN clustering algorithm used to identify destinations, we set the
maximum distance between a point and its nearest neighbor to € = 2700 meters and the minimum number of
points required to form a cluster to v = 4.

Interactions are grouped into rectangles measuring 600 meters by 600 meters. Each rectangle corresponds to
one pixel in the heatmap, with intensity based on the number of interactions (as previously depicted in Figure 4).
These dimensions strike a balance between reducing data size and maintaining spatial precision, making high-
concentration zones more apparent. Ultimately, a 3D tensor of size [260, 277, 1] is generated for each IMSI. The
first dimension corresponds to the x-axis of the heatmap, the second to the y-axis, and the third to the number
of interactions in each spatial unit.

We consider ten aggregated features to cope with other non-spatial variables. Using a random forest, we
compute the feature importance for these ten variables according to the mean decrease of the Gini’s impurity
(Table 3). These computations require labeled data, for which we use the proposed method explained in
Subsection 4.3, taking n = 30 for the IMSIs inspected manually, m = 150 for the IMSIs belonging to truck
drivers, and a ratio value of £ = 2, which leads to 300 non-truck IMSIs. Overall, our labeled dataset has 450
observations.

From Table 3, it follows that three most important features to detect truck are (i) number of destinations, (ii)
mean speed, (iii) number of interactions. One hypothesis that explain the relevance of the number of destinations
per day is the typical behavior of heavy trucks, which often make multiple stops at freight-related locations, such
as warehouses, distribution centers, or ports. This pattern is less common for non-freight vehicles, making it a
strong indicator of truck activity. Similarly, the mean speed is also a good indicator of truck activity: heavy trucks
typically have different speed patterns compared to passenger vehicles due to their size, load, and the nature of
their routes, often involving highways or industrial zones. Lower average speeds could indicate frequent stops or
slower travel speeds, typical of trucks navigating urban areas or approaching loading/unloading sites. Finally, the
number of interactions likely captures the intensity and frequency of stops, reflecting the operational patterns of
trucks as they make deliveries or pickups.

We now compare the performance of the proposed approach with standard machine learning classification
methodologies calibrated using only the aggregated feature dataset: logistic regression, SVM, and Random
Forest. For this, we randomly select 75% of the labeled dataset for calibration and use the rest for validation. For
the case of the CNN, we conducted a grid search procedure to tune the hyperparameters.

The final model was trained for 80 epochs using a learning rate of 0.001, the Adam optimizer, a hyperbolic
tangent activation function, and cross-entropy loss. Table 4 summarizes the evaluation metrics, and Fig. 9
shows the ROC curves for the different models. Each ROC curve shows the trade-off between the true positive
rate (recall) and the false positive rate for different classification thresholds. The Area Under the Curve (AUC)
measures overall model performance, where a higher AUC means better discrimination between heavy truck
and non-truck IMSIs.

As shown in Fig. 9, the CNN model that uses spatial trajectories achieves better performance than the
classical machine learning models based on aggregated features. The concatenated CNN model, which combines
both heatmaps and aggregated features, reaches the highest AUC. It also obtains better precision, accuracy,
recall, and F1 score, showing that combining both sources of information improves truck detection. In addition,
Fig. 9 shows that the concatenated CNN model maintains very high sensitivity even at very low false positive
rates. This behavior is important in practical applications where the goal is to detect heavy trucks reliably while
minimizing false positives, such as in freight monitoring or logistic management systems.

Concluding remarks
The efficient monitoring of freight transportation is crucial for urban logistics and economic activities, especially
in rapidly growing urban areas®. This is particularly true for intercity freight transport, which has broader urban
implications as it contributes to regional integration by redistributing economic activities®. Traditional methods
of tracking heavy trucks are often costly and lack scalability, limiting the decision-making support they provide.
This study uses mobile phone CDR data within a novel deep learning framework to identify devices belonging
to heavy truck drivers. Given the granularity and cost-effectiveness of CDR data, we believe our approach offers
a high-potential solution for characterizing and studying freight systems.

Our proposed approach offers two main advantages. First, the graphical representation of devices’ behaviors
captures disaggregated information that is lost when using simple aggregated values. Second, this graphical
representation makes it natural to use state-of-the-art deep learning techniques designed for image processing.

Model Dataset Accuracy | Precision | Recall | F1 score | AUC ROC
Logistic regression Aggregated 0.837 0.818 0.711 | 0.761 0.895
Random forest Aggregated 0.827 0.833 0.658 | 0.735 0.854
SVM (kernel rbf) Aggregated 0.817 0.732 0.789 | 0.759 0.853
CNN Heatmap 0.897 0.877 0.833 | 0.856 0.9294
CNN (concatenated) | Aggregated/Heatmap | 0.948 0.939 0.921 |0.929 0.989

Table 4. Comparison of performance indicators for different models.
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Fig. 9. ROC curves for the different models.

The main takeaway of this work is that our proposed architecture significantly outperforms traditional
approaches based only on aggregated features. However, the best results are achieved when combining both type
of features: image-based and aggregated data. Indeed, using only images reduces classifier performance because,
while route images provide additional information, they lack the ability to represent key time-based attributes
such as stay duration or mean speeds.

From this work, it follows that using deep learning algorithms for CDR data is promising for identifying and
characterizing freight transportation, providing a robust support for decision-making. We believe the practical
utility of our approach is clear: the combination of our adaptable methodology with a scalable technology such
as CDR makes it suitable for large-scale logistics applications across various contexts and data volumes. Also, a
byproduct of our approach is the graphical representation of the behavior of devices belonging to freight drivers.
This output could help decision-makers to quickly identify, for example, congested zones, reacting consequently.

While CDR-based methods offer a scalable and cost-effective alternative for freight transport analysis, their
value must be considered in light of the limitations associated with GPS-based approaches. In Chile, GPS usage
is more common among large logistics firms but significantly lower among small and medium-sized carriers.
This is especially critical given that the Chilean freight sector is highly fragmented, with many small operators.
As a result, it is practically impossible to obtain comprehensive GPS data that represents the full spectrum
of freight activity. Moreover, even when GPS systems are in place, access to this data is often restricted due
to privacy concerns, proprietary ownership, and inconsistent spatial coverage. In contrast, CDR data enables
observation at a much broader scale, allowing for estimating freight movement patterns across entire cities or
even nationwide. This capability is particularly valuable for capturing behaviors in less digitized sector segments
that would otherwise remain invisible to traditional monitoring systems.

Despite the promising results of our approach, several limitations must be acknowledged. First, our labeling
strategy, based on manual inspection of IMSI trajectories and semi-automatic expansion using logistic regression,
may introduce human biases. It could favor devices exhibiting typical heavy truck behaviors, such as regular
visits to ports or logistics hubs, while underrepresenting atypical patterns like irregular or ad-hoc deliveries.
Moreover, the labeled dataset (150 trucks versus 300 non-trucks) covers only a small portion of the 17,000 IMSIs
analyzed, and the lack of exhaustive manual inspection raises the risk of false negatives, where truck drivers
may have remained unlabeled. The absence of ground-truth validation, such as GPS-confirmed identifiers, also
limits the assessment of labeling accuracy. Although multiple iterations of manual refinement were performed
to diversify the training set, some residual biases may persist, particularly in classifying borderline mobility
behaviors. Another limitation is that CDR data captures driver-owned mobile phones rather than telematics
devices, causing personal and professional movements to overlap. Although we focused on daytime hours and
incorporated features sensitive to freight patterns, full separation between personal and professional trips cannot
be guaranteed.

Future research could address the limitations of this study by integrating external data sources, such as
GPS records or fleet registries, to enhance label validation and coverage. Adopting semi-supervised or weakly
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supervised learning frameworks could also offer more robust classification strategies under limited labeling
conditions. Incorporating more refined temporal and spatial filters, as well as using information on freight-
related locations, may further improve the separation between personal and freight mobility patterns, enhancing
the reliability and applicability of CDR-based freight transport analysis. Beyond the scope of truck detection,
future research could focus on expanding the applications of CDR data to other logistics topics, such as
optimizing delivery routes, predicting traffic congestion, or improving fleet management. Investigating advanced
machine learning models and integrating complementary data sources, including GPS and IoT sensors, could
improve the accuracy and robustness of predictions. In addition, exploring real-time data processing techniques
could enable dynamic decision-making, allowing rapid responses to changing traffic and demand conditions.
Finally, future work could examine the impact of these advancements on cost savings, operational efficiency,
and environmental sustainability, while collaboration with industry partners would facilitate the practical
implementation of these methodologies to address real-world logistics challenges effectively. These directions
would not only strengthen the methodological foundations of CDR-based freight analysis but also broaden its
practical relevance for supporting data-driven decision-making in transportation logistics.

Data availability

The data that support the findings of this study are available from ENTEL but restrictions apply to the availability
of these data, which were used under license for the current study, and so are not publicly available. Data are
however available from the authors through the corresponding author, Franco Basso, upon reasonable request
and with permission of ENTEL.
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