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This paper proposes an innovative methodology for detecting heavy trucks utilizing mobile phone 
data, addressing significant limitations inherent in traditional tracking methods, often characterized 
by high costs, intrusiveness, and incomplete data capture. By employing Call Detail Records (CDR) 
and introducing an image-inspired architecture, the study uses Convolutional Neural Networks (CNN) 
to model the microscopic behavioral patterns of mobile devices. Our numerical results show that our 
proposed approach outperforms more classical machine learning methods that rely only on aggregated 
features. This novel approach offers a scalable and cost-effective alternative to conventional methods, 
representing a pioneering application of image-based analytical techniques to mobile phone data 
within freight transport research. This work provides a robust tool for analyzing freight transport 
patterns, thereby supporting the development of strategies to mitigate the negative externalities of 
freight transportation while preserving its economic benefits.
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The improvements in transportation infrastructure and connectivity in the last decades have led to a rapid 
growth in intercity freight flow worldwide1,2. While essential to the functioning of cities by producing high 
economic benefits3,4, freight transport has its share of negative externalities. For example, freight transportation 
is one of the main drivers of the increasing energy consumption in the transportation sector5,6, accounting for 
about 45% of total transport energy consumption. Consequently, the literature has recognized the importance of 
understanding goods movement patterns as a basis for developing strategies that mitigate these adverse impacts 
while preserving economic advantages3,7.

Despite its importance, existing methods for tracking heavy trucks often involve high costs and intrusive 
technologies, making their widespread application challenging. Indeed, most prior work in this field has 
primarily focused on traditional tracking methods such as GPS-based systems. While these methods are 
effective and precise, they suffer from biases and incompleteness, especially in a highly fragmented industry such 
as freight transport. Recent contributions have explored several data sources for vehicle detection, including 
satellite imagery and toll data. However, these approaches face cost, scalability, and data precision limitations.

This paper presents a novel methodology for detecting heavy trucks using mobile phone trajectories derived 
from Call Detail Records (CDR). CDR data is continuously generated through user interactions with mobile 
devices, capturing the user’s approximate location and the corresponding timestamp each time the network is 
accessed. To the best of our knowledge, the only prior work that has used CDR data to study freight transport 
is8, which focused on identifying last-mile delivery vehicles through classical machine learning techniques and 
standard freight variables. In contrast, the present study addresses the detection of heavy freight vehicles with a 
new methodological framework. Specifically, we use CDR data and feature engineering to construct an image-
inspired architecture that captures the microscopic behavioral patterns of individual devices. This design enables 
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the application of image processing techniques, such as Convolutional Neural Networks (CNNs), to identify 
devices associated with heavy truck drivers.

This paper’s contribution is twofold. First, we propose a novel methodology that models mobile phone 
trajectory data as spatial heatmaps, transforming mobility behaviors into a visual format. Second, we evaluate 
whether incorporating these heatmap representations improves the detection of heavy trucks compared to using 
only numerical aggregated features. To this end, we adopt a standard CNN architecture widely recognized for 
its effectiveness in image-processing tasks. Importantly, our objective is not to benchmark various deep learning 
models but rather to assess the marginal predictive improvement provided by heatmap-based representations. 
To our knowledge, this is the first effort in the freight transport literature to introduce an image-based deep 
learning framework over mobile phone data, demonstrating significant gains in detection accuracy.

The rest of the article is structured as follows: In Section 2, we review the literature related to the use of CDR 
data to study the mobility of people and goods. In Section 3, we describe the data, whereas in Section 4, we 
present the proposed methodology comprehensively. In Section 5, we apply all the presented methods. Finally, 
in Section 6, we present some concluding remarks and provide some avenues for future research.

Literature review
Deep learning and image-based models in transportation research
The application of deep learning in transportation research has grown rapidly, offering new tools to model the 
complex, nonlinear dynamics of mobility systems9,10. Traditional statistical approaches like linear regressions 
or decision trees often fall short when dealing with the intricate spatiotemporal patterns of traffic flows11, 
demand surges12, and crash risks13. Deep architectures, particularly convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) have demonstrated superior predictive power by taking advantage of 
rich transportation datasets, including automatic vehicle identification14, mobile phone traces15, and connected 
vehicle data16.

A particularly promising innovation has been the use of image-based encodings to represent transportation 
data17. By transforming traffic states, spatial flows, or historical sequences into grid-based images, researchers 
enable CNNs–originally designed for visual tasks–to learn complex mobility patterns more effectively. This 
approach captures spatial correlations and temporal dynamics simultaneously, and has been applied successfully 
in traffic data imputation18, traffic speed prediction19, crash risk assessment20, and truck activity identification21. 
Moreover, image-based representations facilitate the integration of heterogeneous sources22, such as weather 
maps23, road layouts24, and vehicle density heatmaps25, into a unified predictive framework.

While deep models automatically learn from raw data, careful feature engineering remains crucial to fully 
use image-based inputs and other structured information26. Preprocessing steps such as spatial aggregation, lag 
feature construction, and contextual variable encoding (e.g., weather conditions, holidays) significantly enhance 
model performance27. In fact, the process of structuring transportation data into image-like grids itself acts 
as a form of spatial feature engineering, organizing raw inputs to maximize the learning capabilities of CNNs 
and related architectures28. Such strategies help address common transportation data challenges, including 
sparsity29, noise30, and missing information26, improving the robustness and reliability of predictive models 
across different contexts.

The use of CDR in transportation and mobility
In recent years, CDR has become a critical data source in transportation research31. Particularly, CDR allows the 
exploration of mobility patterns using data generated from widespread mobile phone use, including details on 
location, time, and duration of calls32. The adoption of CDR offers a cost-effective alternative to traditional data-
gathering techniques33, supporting the analysis of large-scale population movements34 and urban dense areas 
identification35, while also facilitating improvements in transportation network modeling36.

The use of CDR poses challenges in accuracy compared to GPS or other tracking methods due to its spatial 
granularity and uncertainties since it was initially intended for billing and network management37, not for 
tracking vehicular movements with high precision38. Indeed, previous literature emphasizes the importance of 
correctly interpreting the data to avoid misplacement of devices within coverage areas39. Consequently, using 
CDR data requires careful interpretation40.

A well-established research line has focused on using CDR data to compute origin-destination (OD) 
matrices.41, for example, develops a methodology that combines mobile phone CDR and limited traffic counts 
from some locations in Dhaka, Bangladesh, to generate and scale OD patterns over different periods. Similarly,42 
outlines a procedure to extract average daily origin-destination trips by purpose and time of day and apply 
this to CDRs gathered from Boston, USA. In South America,32 proposes an algorithm combining CDR and 
sociodemographic information to estimate OD matrices in Rio de Janeiro, Brazil. All these works support the 
idea that CDR is a robust and cost-effective urban planning and monitoring tool.

In another research stream, mobile phone data was also used to determine travel modes. We refer the reader 
to43 for a comprehensive review. The first efforts in this venue used Global System for Mobile Communications 
(GSM) technologies44. These contributions focused on identifying three main situations for individuals: 
stationary, walking, or driving, although, for the driving category, it was not possible to differentiate between 
private and public motorized vehicles. This issue has been tackled in more recent efforts.45, for example, estimates 
the number of people that use public transport daily, which is particularly relevant for cities that do not count 
with an automatic fare collection system. On the other hand,46 proposes a new methodology that, building on 
powerful machine learning models, allows for differentiating more transport modes, including tram, train, and 
bike. As47 points out, this could help obtain periodic travel mode partition without needing costly and time-
consuming surveys.
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Finally, another research venue involves using CDR data to characterize tourism mobility. In this regard,48 
describes a framework that identifies tourists among the total population by analyzing CDR data and using 
several predefined rules.49 proposes a methodological framework for generating national tourism statistics using 
mobile positioning data. The authors use data from Estonia’s two largest mobile phone operators, finding strong 
correlations with Estonian inbound statistics on accommodation.50 combines CDR and Twitter data to predict 
tourism flows using graph neural networks in Spain.

The research gap
Although CDR data has been widely used to study human mobility, its application to freight transportation 
remains limited. To date,8 is the only study using CDR to identify freight vehicles, focusing on last-mile deliveries 
with traditional machine learning models. Moreover, image-based frameworks in the freight transportation 
literature are almost absent. This paper addresses these gaps by introducing a deep learning methodology 
that combines spatial heatmaps and aggregated features to detect heavy trucks, offering a scalable and robust 
alternative for freight transport analysis.

Data processing
In this paper, we deploy deep learning tools over cell phone data to detect heavy freight vehicles. Our research 
hypothesis is that the behavior of freight trucks can be synthesized from the connection data of an onboard device 
such as a cell phone. Since deep learning algorithms require a substantial volume of data to train effectively, a 
large amount of connection data is required. In what follows, we describe the data gathered from a mobile phone 
company we worked with, detailing the data cleaning process to mitigate problems related to CDR data, such as 
the ping-pong effect.

Raw data
We use data gathered from Empresa Nacional de Telecomunicaciones (Entel), one of the largest mobile operators 
in Chile. Entel offers several other services in addition to mobile telephony, including fixed telephony, Internet, 
and television. By 2021, the company had about a third of the wireless subscribers in Chile. While providing 
Internet access to its subscribers, Entel collects data for each connection named CDR.

The International Telecommunication Union (ITU), a UN agency founded in 1865, facilitates global 
communication by allocating radio frequencies, setting technical standards, and improving access to ICTs for 
underserved communities. ITU recommendations, like E.212, which defines the 15-character International 
Mobile Subscriber Identity (IMSI), are widely respected. Following E.212, CDR data is anonymized, with 
IMSI representing each user. For each network connection, the device from which the request originates 
simultaneously calls several antennas - a base antenna supported by two or three support antennas, depending 
on the quality of coverage. During this process, the network antennas identify the IMSI, triangulate its position, 
and record the connection time. Table 1 describes the structure of the CDR dataset. Table 2 presents a sample 
of the cleaned CDR data used in the study, showing anonymized IMSI identifiers, timestamps, and triangulated 
location coordinates.

CDRs are automatically collected by mobile operators to bill for connections. This collection mode is more 
economical and more accessible to repeat than mobility surveys carried out by statistical institutes or public 
players. Furthermore, the granularity of CDR data gives tracking a far greater spatial precision and temporal 
spread than surveys, which trace household movements over an arbitrary day. They are also immune to moral 
hazard, whereas the validity of surveys relies on the word of individuals who may lie or omit elements. Despite 

Hashed IMSI Timestamp Coordinates

a3f9c2e4b8d6492a 2021-08-02 16:58:23 POINT
(-70.607923 -33.444934)

e41b7a51dc4f4fdd 2021-08-02 14:25:14 POINT
(-70.650298 -33.454597)

f5a8dcf0e2db4ce4 2021-08-02 18:30:44 POINT
(-70.793916 -33.391698)

d02b9eaeb2f1c6d2 2021-08-02 17:58:33 POINT
(-70.633739 -33.435391)

c4b57a63d1e945e7 2021-08-02 13:09:58 POINT
(-70.560828 -33.420019)

Table 2.  Sample of cleaned CDR data used in the analysis.

 

Variable Description

IMSI Anonymized identifier of the device issuing the connection request

Timestamp Full date and time of the network interaction

Coordinates Triangulated location of the device as latitude and longitude

Table 1.  Structure of the CDR dataset.
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these advantages, cell phone data lacks the information generally available in travel surveys concerning a 
respondent (e.g., age or income) or the conditions of his or her trip (e.g., purpose or mode). In the case of the 
CDRs we had available for this study, only daily data were available from 7 am to midnight. This limitation implies 
gaps in the trajectories, especially as much truck traffic occurs at night. What’s more, the spatial triangulation 
performed by the antennas provides less spatial precision than the GPS method and sometimes even erroneous 
information.

Data cleaning
Preprocessing is necessary to clean the raw mobile phone data and reduce noise in the recorded trajectories. This 
section outlines the main steps we followed to prepare the dataset.

Correction of antenna-related location noise. Mobile operators often redistribute connections across nearby 
antennas to manage network load. This can result in sudden location changes, even when the user remains still, 
a phenomenon known as the load-sharing effect. Another issue is the ping-pong effect, where a device near the 
boundary between two antennas is alternately assigned to each one, producing artificial movement between two 
nearby points. To address this, we remove intermediate points when the angle formed between three consecutive 
positions falls within [−5◦, 5◦] and the speed between them exceeds 120 km/h. Figures 1a and 1b show how this 
filtering works in practice.

Removal of machine-generated IMSIs. Some IMSIs in the dataset come from machines rather than people, 
such as payment terminals or surveillance systems. These machine-to-machine (M2M) devices can be identified 
using a registry provided by Entel, which includes 470,619 known M2M IMSIs in Chile. We exclude these from 
the analysis.

Filtering of high-frequency anomalies. Certain IMSIs generate over 10,000 records per day, which is far 
beyond normal usage patterns. These are treated as anomalies and removed from the dataset.

Averaging coordinates over time. To reduce noise and smooth the trajectories, we average the coordinates 
of each IMSI per minute. This helps remove erratic short-term variations without losing relevant movement 
patterns.

Methodology
Stays and trips
Since the seminal contribution of51, the concepts of stays, destinations, and trips have become well-known for 
understanding the location history of tracking devices.

In our context, a stay is defined as a single instance of a device spending some time in one place. A stay is 
detected when successive location points of a device remain within a radius of D meters for more than a duration 
of T seconds. The stay is then characterized by the medoid of its points. A trip is simply defined as the segment 
between two stays of the same device. Figure 2a shows three different stays and two trips, with the red dots 
representing the medoids of the respective stays.

In contrast, a destination is defined as any place where one or more devices have experienced a stay. In other 
words, a destination can be thought of as a timeless counterpart of stays. Note, however, that two close stays 
can refer to the same destination (for example, a logistic facility). Thus, a clustering algorithm is necessary to 
group close stays into a single destination. In this paper, we use the DBSCAN algorithm52 for this purpose, as it 
allows us to specify the radius R of the clusters rather than the number of clusters, which in our context leads to 
easier interpretation. We then refine the definition of trips and define a long trip as a trip occurring between two 
different destinations. Figure 2b shows two different destinations and one long trip between them.

Classification method
Our classification method utilizes two primary input data sources. The first is based on images and corresponds 
to a heatmap of the IMSI’s interactions. The second consists of aggregated features. Figure 3 presents a general 

Fig. 1.  Eliminating the ping pong effect.
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framework of the proposed method, illustrating how the raw data is processed through parallel pipelines to feed 
a neural network.

On the right-hand side, interactions are labeled as either destinations or long trips using DBSCAN clustering, 
which allows for the computation of relevant aggregated features. These features are then concatenated with the 
heatmap of interactions from the left-hand pipeline. The resulting tensor is subsequently fed into the classifier.

Fig. 3.  Schematic diagram of the pipeline processing the data to feed the classifier.

 

Fig. 2.  Illustration of stays, trips, destinations and long trips.
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The following subsections look at data processing in each pipeline in more detail.

Heatmap of interactions
One of the main contributions of this research is the design of a new data architecture for the spatial 
representation of IMSI-related CDRs. Given a time interval—5 days in the case of the study—the interactions 
in a predetermined area of interest are grouped together in a heat map. This reduces the size of the data set fed 
into the neural network and improves the permanence zones of an IMSI. This approach is inspired on20 accident 
prediction which proposes a bar code image-based data arquitecture for predicting crashes in a highway. Figure 
4 illustrates the transformation of raw data into a heat map.

We define the spatial unit of the heatmap as the length of the side of each square cell. The resolution must 
be fine enough to capture meaningful variations in device density while avoiding excessive sparsity that could 
hinder model learning. After preliminary testing, the spatial resolution was set at 600 meters by 600 meters, 
balancing spatial detail and data density. Finer resolutions (e.g., 100 meters) resulted in highly sparse heatmaps, 
impairing the CNN’s ability to learn coherent spatial patterns. Conversely, coarser resolutions (e.g., 1 kilometer) 
smoothed out critical behavioral differences and diluted the distinctive spatial signatures of freight-related 
locations, such as ports and customs checkpoints. Thus, a 600-meter resolution was selected to ensure sufficient 
granularity to represent key freight activity patterns while maintaining computational efficiency and minimizing 
the risk of overfitting.

Aggregated features
Using a geospatial heatmap as input to the classifier is one of the main innovations in this study. However, while 
this input effectively captures spatial patterns, which is crucial for determining whether an IMSI is frequenting 
locations typical of a specific type of vehicle, it does not address the temporal dimension of movements. For 
instance, the trained algorithm may recognize a high-load truck passing through freight ports, road customs, 
or large warehouses. However, this criterion alone does not differentiate high-tonnage trucks from last-mile 
delivery trucks or even employees whose workplaces are at these locations. Therefore, it is necessary to introduce 
additional inputs that reflect the time dimension of journeys.

To address this, we adopt a similar approach to8, who used aggregated data to characterize IMSI behaviors 
and trained several classical classifiers. We consider several variables (see Table 3), such as the number of stays 
or destinations per day. To select the most relevant variables, we calibrate a random forest model and compute 
the Gini index, which helps determine the importance of each feature.

Convolutional neural network (CNN)
We use deep learning algorithms based on convolutional neural networks (CNNs) to generate predictions for 
each IMSI class. Introduced by53, CNNs are designed for image recognition tasks, initially classifying handwritten 
digits to recognize visual patterns from pixel data. Unlike traditional neural networks, CNNs employ convolution 

Features Feature importance

Destination number per day 0.155

Mean speed within long trips 0.129

Number of interactions within long trips per day 0.126

Mean duration within a destination 0.103

H3 number per day 0.100

Mean speed within destinations 0.083

Total interactions per day 0.080

Average cumulative duration of long trips per day 0.079

Average cumulative duration of destinations per day 0.073

Average number of interactions within destination per day 0.072

Table 3.  Variable importance according to mean decrease Gini.

 

Fig. 4.  Transformation of a raw interactions into a spatial heatmap.
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operations in at least one layer instead of general matrix products, reducing the number of fitted parameters54. 
Typically, in CNNs, convolution is applied to an input image I using a two-dimensional kernel K, as shown in 
Eq. (1).

	
S(i, j) = (I ∗ K)(i, j) =

ri−1∑
m=0

ck−1∑
n=0

I(m, n)K(i − m, j − n)� (1)

where S(i, j) represents the element of the output matrix at row i and column j, I is the input matrix, K is the 
kernel or filter, while ri and ck  denote the number of rows and columns in the input matrix I and kernel K 
respectively.

A filter is then applied to the convolution output. This step reduces the dimension, for example, by calculating 
the local average of pixels (mean pooling) or the local maximum (max pooling) while highlighting certain image 
features. Several kernels can be applied in parallel to select distinct features. The error rate between predicted and 
true classes is calculated during each iteration to adjust the model parameters.

In order to take advantage from both heatmaps and aggregated features, we design a two-fold neural network:

•	 First features are extracted from the heatmap using a set of Convolutional and Max Pooling layer.
•	 Then a classifier labels the vector resulting from the concatenation of the extracted features and the aggregated 

features as a high load truck (1) or not (0)

Figure 5 illustrates this process. The red arrows represent the feedback loop, i.e. how the parameters of the 
different layers are adjusted according to the classification error at each epoch.

Figure 6 shows more precisely the different steps of data processing throughout the layers of the neural 
network.

It is important to point out that our objective is not to benchmark or exhaustively compare the performance 
of various deep learning architectures. Instead, we specifically aim to assess whether representing device 
behaviors as spatial heatmaps enhances the predictive accuracy of heavy truck detection compared to using only 
numerical aggregated features. We deliberately adopt a standard CNN architecture to isolate and clearly attribute 
any observed improvements to the heatmap representation itself. CNNs are widely recognized as the benchmark 
approach for processing image-based data, offering strong generalization capabilities with comparatively low 
model complexity. Given the structured nature of the heatmaps we generate–where spatial patterns are key to 
classification–using a classical CNN is sufficient to capture the relevant spatial dependencies without the added 
complexity of more advanced architectures. This modeling choice ensures that any performance improvement 
can be attributed to the informational richness of the heatmap representation rather than to incremental gains 
from using increasingly sophisticated deep learning models.

Training set
Our methodology aims to train a supervised machine learning model capable of determining whether an IMSI 
belongs to a heavy truck driver. To do so, however, we require a training dataset, with some IMSIs labeled as truck 
drivers, and others IMSIs labeled as non-truck drivers. However, note that our data is unlabeled. Consequently, 
we devise a procedure to build a training dataset.

Fig. 5.  Schematic diagram of the CNN.

 

Scientific Reports |        (2025) 15:22150 7| https://doi.org/10.1038/s41598-025-06711-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Our approach begins by dividing the study area into grid cells and counting the number of interactions 
recorded in each square. The interaction counts are then visualized using a color scale proportional to the 
number of interactions per cell. Based on this representation, we manually identify a small subset of IMSIs that 
likely correspond to heavy truck drivers or non-truck users. Figure 7 provides an example of this process: the 
IMSI on the left shows interaction concentrations at key freight-related locations, such as Valparaíso’s port and 
the customs facility near Argentina, while the IMSI on the right shows localized activity within smaller villages, 
which is unlikely to correspond to truck behavior.

We follow this manual procedure until we have selected n IMSIs similar to the first example and label them 
as heavy trucks (set A0). Then, we select k · n random IMSIs from the rest and label them as non-trucks (set 
B0). This approach is based on the assumption that random IMSIs are highly likely not to be linked to truck 
drivers. Subsequently, we calibrate a logistic regression over the set of IMSIs C0 = A0 ∪ B0 and apply it to the 

Fig. 7.  Left: IMSI likely associated with a truck driver. Right: IMSI likely not associated with a truck driver.

 

Fig. 6.  Neural network architecture.
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remaining IMSIs to find candidates likely to be heavy trucks. These candidates are then visually inspected to 
decide whether they likely belong to heavy truck drivers. The intuition behind this procedure is that we cannot 
visually check every IMSI, so we use logistic regression to reduce the search space. We then complement this 
dataset with a random set of IMSIs (labeling them as non-trucks) to maintain the ratio 1 : k between trucks and 
non-trucks. We repeat this procedure until we have m IMSIs labeled as trucks.

Algorithm 1.  Pseudocode for training dataset building.

Finally, the same visual representation shown in Fig. 7 serves as the basis for constructing the input fed to 
the CNN model. As shown in Fig. 8, the same spatial aggregation of interactions is retained, but the underlying 
basemap is removed and the interaction counts are normalized into a grayscale scale. These standardized 
heatmaps are then used as inputs to the CNN, allowing the model to learn spatial behavioral patterns.

Experimental results
The experimental design of this study follows an ablation framework aimed at isolating the individual 
contributions of different input representations to heavy truck detection. A similar experimental design has 
been carried out in55,56, and57. We define three experimental configurations: (i) classical machine learning 
models trained solely on aggregated numerical features derived from mobile phone trajectories, (ii) a CNN 
trained exclusively on spatial heatmaps capturing the behavioral patterns of devices, and (iii) a CNN trained on 
the fusion of heatmaps and aggregated features. This setup allows us to independently evaluate the predictive 
power of spatial information and traditional aggregated indicators, as well as their potential complementarity. 
By maintaining model complexity constant within each input type (e.g., using a standard CNN for image-based 
inputs), we ensure that any observed performance differences can be explicitly attributed to the nature of the 
data representation rather than to differences in modeling sophistication. This ablation framework thus enables 
a systematic and transparent assessment of the marginal value introduced by incorporating heatmap-based 
representations into freight vehicle detection models.

To implement the proposed methodologies, we apply the described procedures to a dataset of 17,000 IMSIs 
provided by Entel. These IMSIs were randomly selected under two conditions: each had at least one recorded 

Fig. 8.  Inputs to CNN model. Left: IMSI likely associated with a truck driver. Right: IMSI likely not associated 
with a truck driver.
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interaction during the week of August 2nd to August 6th, 2021, and each was located within one of three key 
logistic regions in Chile–Metropolitan, Valparaíso, and O’Higgins. For this sample, we apply the data cleaning 
procedures detailed in Section 3.2, followed by the computation of stays, trips, long trips, and destinations 
as defined in Subsection 4.1. For the DBSCAN clustering algorithm used to identify destinations, we set the 
maximum distance between a point and its nearest neighbor to ϵ = 2700 meters and the minimum number of 
points required to form a cluster to ν = 4.

Interactions are grouped into rectangles measuring 600 meters by 600 meters. Each rectangle corresponds to 
one pixel in the heatmap, with intensity based on the number of interactions (as previously depicted in Figure 4). 
These dimensions strike a balance between reducing data size and maintaining spatial precision, making high-
concentration zones more apparent. Ultimately, a 3D tensor of size [260, 277, 1] is generated for each IMSI. The 
first dimension corresponds to the x-axis of the heatmap, the second to the y-axis, and the third to the number 
of interactions in each spatial unit.

We consider ten aggregated features to cope with other non-spatial variables. Using a random forest, we 
compute the feature importance for these ten variables according to the mean decrease of the Gini’s impurity 
(Table 3). These computations require labeled data, for which we use the proposed method explained in 
Subsection 4.3, taking n = 30 for the IMSIs inspected manually, m = 150 for the IMSIs belonging to truck 
drivers, and a ratio value of k = 2, which leads to 300 non-truck IMSIs. Overall, our labeled dataset has 450 
observations.

From Table 3, it follows that three most important features to detect truck are (i) number of destinations, (ii) 
mean speed, (iii) number of interactions. One hypothesis that explain the relevance of the number of destinations 
per day is the typical behavior of heavy trucks, which often make multiple stops at freight-related locations, such 
as warehouses, distribution centers, or ports. This pattern is less common for non-freight vehicles, making it a 
strong indicator of truck activity. Similarly, the mean speed is also a good indicator of truck activity: heavy trucks 
typically have different speed patterns compared to passenger vehicles due to their size, load, and the nature of 
their routes, often involving highways or industrial zones. Lower average speeds could indicate frequent stops or 
slower travel speeds, typical of trucks navigating urban areas or approaching loading/unloading sites. Finally, the 
number of interactions likely captures the intensity and frequency of stops, reflecting the operational patterns of 
trucks as they make deliveries or pickups.

We now compare the performance of the proposed approach with standard machine learning classification 
methodologies calibrated using only the aggregated feature dataset: logistic regression, SVM, and Random 
Forest. For this, we randomly select 75% of the labeled dataset for calibration and use the rest for validation. For 
the case of the CNN, we conducted a grid search procedure to tune the hyperparameters.

The final model was trained for 80 epochs using a learning rate of 0.001, the Adam optimizer, a hyperbolic 
tangent activation function, and cross-entropy loss. Table  4 summarizes the evaluation metrics, and Fig.  9 
shows the ROC curves for the different models. Each ROC curve shows the trade-off between the true positive 
rate (recall) and the false positive rate for different classification thresholds. The Area Under the Curve (AUC) 
measures overall model performance, where a higher AUC means better discrimination between heavy truck 
and non-truck IMSIs.

As shown in Fig.  9, the CNN model that uses spatial trajectories achieves better performance than the 
classical machine learning models based on aggregated features. The concatenated CNN model, which combines 
both heatmaps and aggregated features, reaches the highest AUC. It also obtains better precision, accuracy, 
recall, and F1 score, showing that combining both sources of information improves truck detection. In addition, 
Fig. 9 shows that the concatenated CNN model maintains very high sensitivity even at very low false positive 
rates. This behavior is important in practical applications where the goal is to detect heavy trucks reliably while 
minimizing false positives, such as in freight monitoring or logistic management systems.

Concluding remarks
The efficient monitoring of freight transportation is crucial for urban logistics and economic activities, especially 
in rapidly growing urban areas8. This is particularly true for intercity freight transport, which has broader urban 
implications as it contributes to regional integration by redistributing economic activities2. Traditional methods 
of tracking heavy trucks are often costly and lack scalability, limiting the decision-making support they provide. 
This study uses mobile phone CDR data within a novel deep learning framework to identify devices belonging 
to heavy truck drivers. Given the granularity and cost-effectiveness of CDR data, we believe our approach offers 
a high-potential solution for characterizing and studying freight systems.

Our proposed approach offers two main advantages. First, the graphical representation of devices’ behaviors 
captures disaggregated information that is lost when using simple aggregated values. Second, this graphical 
representation makes it natural to use state-of-the-art deep learning techniques designed for image processing. 

Model Dataset Accuracy Precision Recall F1 score AUC ROC

Logistic regression Aggregated 0.837 0.818 0.711 0.761 0.895

Random forest Aggregated 0.827 0.833 0.658 0.735 0.854

SVM (kernel rbf) Aggregated 0.817 0.732 0.789 0.759 0.853

CNN Heatmap 0.897 0.877 0.833 0.856 0.9294

CNN (concatenated) Aggregated/Heatmap 0.948 0.939 0.921 0.929 0.989

Table 4.  Comparison of performance indicators for different models.
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The main takeaway of this work is that our proposed architecture significantly outperforms traditional 
approaches based only on aggregated features. However, the best results are achieved when combining both type 
of features: image-based and aggregated data. Indeed, using only images reduces classifier performance because, 
while route images provide additional information, they lack the ability to represent key time-based attributes 
such as stay duration or mean speeds.

From this work, it follows that using deep learning algorithms for CDR data is promising for identifying and 
characterizing freight transportation, providing a robust support for decision-making. We believe the practical 
utility of our approach is clear: the combination of our adaptable methodology with a scalable technology such 
as CDR makes it suitable for large-scale logistics applications across various contexts and data volumes. Also, a 
byproduct of our approach is the graphical representation of the behavior of devices belonging to freight drivers. 
This output could help decision-makers to quickly identify, for example, congested zones, reacting consequently.

While CDR-based methods offer a scalable and cost-effective alternative for freight transport analysis, their 
value must be considered in light of the limitations associated with GPS-based approaches. In Chile, GPS usage 
is more common among large logistics firms but significantly lower among small and medium-sized carriers. 
This is especially critical given that the Chilean freight sector is highly fragmented, with many small operators. 
As a result, it is practically impossible to obtain comprehensive GPS data that represents the full spectrum 
of freight activity. Moreover, even when GPS systems are in place, access to this data is often restricted due 
to privacy concerns, proprietary ownership, and inconsistent spatial coverage. In contrast, CDR data enables 
observation at a much broader scale, allowing for estimating freight movement patterns across entire cities or 
even nationwide. This capability is particularly valuable for capturing behaviors in less digitized sector segments 
that would otherwise remain invisible to traditional monitoring systems.

Despite the promising results of our approach, several limitations must be acknowledged. First, our labeling 
strategy, based on manual inspection of IMSI trajectories and semi-automatic expansion using logistic regression, 
may introduce human biases. It could favor devices exhibiting typical heavy truck behaviors, such as regular 
visits to ports or logistics hubs, while underrepresenting atypical patterns like irregular or ad-hoc deliveries. 
Moreover, the labeled dataset (150 trucks versus 300 non-trucks) covers only a small portion of the 17,000 IMSIs 
analyzed, and the lack of exhaustive manual inspection raises the risk of false negatives, where truck drivers 
may have remained unlabeled. The absence of ground-truth validation, such as GPS-confirmed identifiers, also 
limits the assessment of labeling accuracy. Although multiple iterations of manual refinement were performed 
to diversify the training set, some residual biases may persist, particularly in classifying borderline mobility 
behaviors. Another limitation is that CDR data captures driver-owned mobile phones rather than telematics 
devices, causing personal and professional movements to overlap. Although we focused on daytime hours and 
incorporated features sensitive to freight patterns, full separation between personal and professional trips cannot 
be guaranteed.

Future research could address the limitations of this study by integrating external data sources, such as 
GPS records or fleet registries, to enhance label validation and coverage. Adopting semi-supervised or weakly 

Fig. 9.  ROC curves for the different models.
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supervised learning frameworks could also offer more robust classification strategies under limited labeling 
conditions. Incorporating more refined temporal and spatial filters, as well as using information on freight-
related locations, may further improve the separation between personal and freight mobility patterns, enhancing 
the reliability and applicability of CDR-based freight transport analysis. Beyond the scope of truck detection, 
future research could focus on expanding the applications of CDR data to other logistics topics, such as 
optimizing delivery routes, predicting traffic congestion, or improving fleet management. Investigating advanced 
machine learning models and integrating complementary data sources, including GPS and IoT sensors, could 
improve the accuracy and robustness of predictions. In addition, exploring real-time data processing techniques 
could enable dynamic decision-making, allowing rapid responses to changing traffic and demand conditions. 
Finally, future work could examine the impact of these advancements on cost savings, operational efficiency, 
and environmental sustainability, while collaboration with industry partners would facilitate the practical 
implementation of these methodologies to address real-world logistics challenges effectively. These directions 
would not only strengthen the methodological foundations of CDR-based freight analysis but also broaden its 
practical relevance for supporting data-driven decision-making in transportation logistics.

Data availability
The data that support the findings of this study are available from ENTEL but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors through the corresponding author, Franco Basso, upon reasonable request 
and with permission of ENTEL.
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