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An intelligent transportation system consists of a variety of applications that analyze and exchange 
information to reduce traffic, enhance traffic management, lessen the impact on the environment, 
and boost the advantages of transportation for both business users and the general public. Moreover, 
Intelligent Transportation Systems is different from the standard vehicular ad hoc network design 
since it functions in a highly dynamic environment brought on by the quick mobility between the 
nodes in short connection times. These traits make various threats, weaknesses, and denial-of-service 
assaults possible. The protection of the intelligent transportation system from attacks and continual 
maintenance is crucial. In this research work, a Distributed Denial of Service attack detection scheme 
is proposed to protect the Intelligent Transportation System ecosystem, making use of the Adaptive 
Neuro-Fuzzy Inference System. By resolving the flaws in the DDoS attack detection methods that are 
currently in use, the security needs of the Intelligent Transportation Systems ecosystem are taken into 
account. The learning approach of artificial neural networks and the fuzzy logic model is integrated into 
the Fuzzy System. Based on the experimental results, the proposed model achieved 94.3% accuracy, 
outperforming traditional classifiers such as Support Vector Machine, Random Forest, Extreme 
Gradient Boosting, and Convolutional Neural Network. The system demonstrated low false positive 
rates and high detection reliability, ensuring suitability for real-world Intelligent Transportation 
Systems security. The proposed scheme attained better results in terms of accuracy, precision, recall, 
and F1 score.
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According to projections, the market for intelligent transportation systems would increase from $22.91 billion 
in 2021 to $42.80  billion in 2028, with a CAGR of 9.34% during that period1. The industry for intelligent 
transportation systems (ITS) is expanding as a result of a variety of factors, including the rising demand for 
traffic control solutions, vehicles, better safety and surveillance provided by contemporary cameras, License 
Plate Recognition (LPR) technology, and the quickening development of smart cities. Positive market prospects 
are produced by Intelligent Transportation Systems’ provision of traffic management systems that improve 
mobility, traffic flow, and road safety. The COVID-19 epidemic has impeded the sales and installation of new 
Intelligent Transportation Systems in 2020. However, the Intelligent Transportation Systems sector experienced 
major growth in the middle of 2021 as a result of increased funding from various governments for infrastructure 
development projects aimed at reviving the post-pandemic economy.

The number of vehicles on the road is increasing, the infrastructure is ageing, and there is a shortage of 
traffic data management, among other things, which are all expected to support the expansion of the Intelligent 
Transportation Systems market. Therefore, there is a growing need for better traffic management technology 
to control traffic flow on highways and in city corridors. Many initiatives have been made by both public and 
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private entities to implement smart technologies, showing how technology will influence the development of 
the intelligent transportation system market. The Intelligent Transportation Systems solution includes a Traffic 
Management Center (TMC), which can handle real-time data and help cars discover alternate routes to minimize 
traffic issues.

The TMC solution consists of several systems and components, including sensors, vehicle probes, navigation 
systems, and video surveillance systems. Dynamic signboards, the internet, or mobile telephony are used to 
analyze, process, and transmit to the user the results of the data acquired by devices. The use of Intelligent 
Transportation Systems is anticipated to increase over the projected period, notably due to developments in 
sensing and communications technology. But one of the key drivers of the Intelligent Transportation Systems 
industry’s expansion is the growing preference for the digitalization of numerous features for the implementation 
of intelligent transportation system solutions.

One of the main factors propelling the market’s growth is the adoption and widespread use of Intelligent 
Transportation Systems to lower traffic accidents and improve road safety. In addition, it is anticipated that over 
the coming few years, demand for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication 
will continue to grow2,3. The continued advancements in the transportation sector, such as blind-spot detection 
and electronic toll collection, have heightened the need for an effective transportation system that has the potential 
to enhance road networks and reframe the anticipations and possibilities of self-sustaining transportation and 
traffic management. Over 30% of the market in 2022 was occupied by the Advanced Traffic Management System 
(ATMS) component.

DoS attacks are carried out by dispersing the most data packets possible to interfere with network 
functioning4–7. When an attack is launched from a single source, it is much easier to identify and mitigate than 
when it is launched with a large number of data packets, which can severely harm the system. Attackers often 
use a large number of compromised nodes to conduct DDoS assaults to avoid being easily detected. On the other 
hand, despite taking into account low-rate DDoS attacks, attackers use them to complicate their detection and 
mitigation as well. Sincere attention is being paid in this work to both high- and low-rate DDoS attacks8,9.

This research work, which primarily addresses DDoS attacks, depends on the safety of the people participating 
in the Intelligent Transportation Systems ecosystem as well as the safety of Intelligent Transportation Systems 
nodes. The proposed scheme will help monitor the ITS environment for malicious activity, identifying traits 
of distributed denial of service (DDoS) assaults and DoS attacks. Possibilities are made to lessen dangers and 
chances of deaths by minimising assailants’ malevolent acts to safeguard the lives of pedestrians and vehicle 
users.

Despite the growing body of work on intrusion detection in vehicular networks, most existing solutions 
suffer from one or more of the following limitations: high false positive rates, lack of adaptability to dynamic 
traffic conditions, dependency on complex optimization techniques, or computational inefficiency. Deep 
learning models often demand significant processing power, making real-time deployment in intelligent 
transportation systems impractical. Traditional machine learning models lack the flexibility to generalize 
to unseen attack patterns in fast-changing vehicular environments. This creates a significant research gap in 
developing a lightweight, interpretable, and adaptive intrusion detection framework that can operate effectively 
in real-time ITS scenarios. The proposed adaptive neuro-fuzzy inference system-based approach addresses this 
gap by integrating fuzzy decision rules with neural learning, offering a novel and efficient alternative tailored 
to the dynamic nature of ITS security. The proposed approach effectively reduces false alarms and enhances 
detection accuracy, making it a robust solution for real-time ITS cybersecurity.

The research’s main contributions are listed below as follows.

	(1)	 ANFIS-based DDoS Detection Framework: We propose a novel detection framework leveraging Adaptive 
Neuro-Fuzzy Inference System (ANFIS), which combines the adaptive learning of neural networks with the 
decision-making capabilities of fuzzy logic. This integration ensures better handling of dynamic vehicular 
traffic in real-time ITS environments.

	(2)	 Entropy and Information Gain-based Feature Selection: An effective feature selection strategy using en-
tropy and Information Gain is employed to identify the most relevant features from the UNSW-NB15 and 
CICDDoS2019 datasets. This enhances classification performance while reducing computational complex-
ity.

	(3)	 Dual-Dataset Evaluation and Simulation: The proposed model is evaluated using two widely accepted in-
trusion detection datasets (UNSW-NB15 and CICDDoS2019). Additionally, a simulated DDoS environ-
ment is created using the LOCUST tool to validate real-time detection capabilities.

	(4)	 Comprehensive Comparative Analysis: Extensive experiments demonstrate that the proposed ANFIS mod-
el outperforms traditional machine learning classifiers (SVM, RF, XGBoost, CNN) across all key perfor-
mance metrics—accuracy, precision, recall, F1-score—while maintaining a low false positive rate and com-
putational efficiency.

The organization of this paper is divided into the following sections: In Section “Related works”, security 
risks, threats, and countermeasures for Internet of Things security are discussed. In Section “Methodology”, 
a literature survey of recently proposed DDoS attack detection methods is covered. In Section “Results”, the 
proposed Hybrid Deep CNN model-based DDoS flooding attack detection framework is discussed. In Section 
“Discussion”, the experimental results are presented. In Section “Conclusion”, the conclusion and future work 
are mentioned.
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Related works
In the field of ITS and Vehicular networks security, abundant research works have been carried out, mostly on 
DDoS attacks detection10 and mitigation. Recently carried out research works are accumulated in this section, 
and Table 1 provides a summary of recent research works.

To quickly identify and remove suspicious sensors that generated a distributed denial of service (DDoS) attack 
in the IVN, a joint K-means clustering and software-defined networking removal framework is suggested11. 
This framework uses software-defined networking and machine learning. The proposed JKS is integrated into 
the current network architecture and has the capacity to quickly identify and stop a DDoS attack on the IVN. 
The SDN controller instructs the necessary switches to deny the DDoS attack when the K-means algorithm 
has recognized it. Once the attack is over or the traffic flow has returned to normal, the stopped flows can be 
forwarded to the network once more. Once the attack is over or the traffic flow is restored to normal, the stopped 
flows can be redirected to the network.

The architecture of a MEC-enabled SDVN system is proposed and includes edge DDoS attack mitigation and 
computation offloading12. When allocating resources, the architecture assesses the trustworthiness of the cars 
and takes it into account. It also distributes computing workloads among MEC servers to balance the demands 
placed on those servers and the available computing resources. The goal of MEC-enabled SDVN’s resource 
allocation and mitigation is to reduce energy consumption and latency across all computing offloading and 
transferring tasks. To find a solution to the stated optimization problem, an integrated algorithm called GCDRL 
is suggested. Amongst those, the convolutional neural network (CNN) and the generalised neural network 
(GNN) are utilised to extract, respectively, vehicle spatial data and structure features of edge nodes. In addition, 
the temporal features of the full state space are extracted using long short-term memory (LSTM). To compare 
the suggested algorithm’s throughput, latency, and energy usage to those of alternative approaches, experiments 
are carried out to assess its performance. According to the results of the experiments, the GCDRL approach 
successfully lessens the negative impacts caused by edge DDoS attacks.

A method for dealing with the security and authentication problems that affect vehicles in VANET is 
presented13. This approach makes a substantial contribution to the intelligent transport communication network 
by authenticating cars in the VANET and detecting various cyberattacks like DDoS. Identity-based encryption 
is used in this strategy to manage vehicle access, and deep learning-based approaches are used to filter malicious 
traffic. A cutting-edge deep learning approach detects fraudulent packets with an accuracy of 99.72% and is 
IND-sID-CCA secure for this identity-based encryption method. The findings highlight the applicability of the 
suggested strategy for VANETs in 6G communication systems.

A feature adaptation reinforcement learning strategy called FAST is suggested using reinforcement 
learning, and it is based on the space-time flow regularities in IoV for DDoS mitigation14. A feature adaptation 
reinforcement learning strategy called FAST is suggested using reinforcement learning, and it is based on the 
space-time flow regularities in IoV for DDoS mitigation. Furthermore, by integrating Q-learning with DDQN, 
FAST may choose features and detect DDoS attacks in an environment-aware manner. The Shenzhen taxicab 
dataset is used in tests to assess FAST’s performance. Two distinct DDoS simulation tools, namely “ddosflowgen” 
and “hping3”, are utilised to simulate and deploy DDoS attacks into Shenzhen taxicabs.

In IoV, a Real-Time Edge Detection Scheme is presented for Sybil DDoS. The traffic distribution is measured 
using the entropy theory, and a Fast Quartile Deviation Check (FQDC) algorithm is then developed to detect and 
identify the attack15. The computation is further optimised with various helpful techniques, like the optimised 
sliding window and the incremental calculation of entropy values, to make it feasible for the IoV environment 
due to the calculation limitation in IoV scenarios. A temporal index is then suggested. The effectiveness of 
response speed and omission rate is measured using the Temporal False Omission Rate (TFOR). With an average 
warning latency of 4.9193 s and an average TFOR of 1.6024%, all Sybil DDoS attacks presented in the F2MD 
datasets are successfully identified during evaluation.

To enhance cloud vehicle service security, an intelligent application protection methodology is developed 
for smart car services in a Vehicle to Cloud (V2C) environment16. Anomalous activity detection is performed 
via image-based system resource monitoring, making use of AI (ISRM-AI). While using V2C cloud services, 
the ISRM-AI creates pictures of system data like CPU, network, and memory. Additionally, the method uses a 

Research Work Features Algorithms of classification Detection method

Huang et al. (2022)20 Machine learning, SDN controller K-means algorithm Joint K-means clustering

Deng et al. (2022)19 Optimization problem, CNN, GNN, LSTM GCDRL MEC-enabled SDVN system

Zhou et al. (2022)18 Identity-based encryption, 6G Deep learning-based approaches DL based

Li et al. (2022)17 Ddosflowgen, hping3, Shenzhen taxicabs Reinforcement learning FAST

Li et al. (2021)16 Temporal index, F2MD dataset FQDC, entropy theory Real-Time Edge Detection Scheme

Kim et al. (2020)15 CPU, network, and memory CNN ISRM-AI

Poongodi et al. (2019)14 Frequency value statistics, trust hypothesis statistics, residual 
energy, trust policy Trust mechanism Trust based

Gao et al. (2019)13 Spark and HDFS, NSL-KDD, and UNSW-NB15 datasets RF Big data technologies based

Poongodi et al. (2019)12 Rule frequency and entropy value, belief score reCAPTCHA controller technique reCAPTCHA controller technique

Guo et al. (2018)11 Trigger mechanism, multidimensional information SVM SDN based

Table 1.  Summary of recent works.
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convolutional neural network (CNN) for evaluating the status to identify any anomalous service behaviour. A 
service environment is built to evaluate the effectiveness of the suggested technique. Furthermore, using actual 
attack data, the suggested mechanism’s capacity to identify DDoS attacks is simulated. The suggested approach 
strengthens the security of the V2C environment to ensure the dependability of a smart service. Based on the 
simulation results, the host system’s GPU utilization is obtained as 0.2% with a 7.36% detection error rate.

Trust trust-based DDoS attack detection mechanism is proposed for the VANET environment17. Frequency 
value statistics, trust hypothesis statistics, residual energy, trust policy, and data factor are considered as the 
main trust components in trust evaluation, and a trust evaluation matrix is created based on trust elements. The 
proposed trust mechanism was created in a way to improve security by keeping outsiders out of the network. 
Based on the experimental results, the proposed trust mechanism attained a 95.8% detection rate, which is 
observed as better results than the prevailing techniques like Firecol and AODV.

Based on big data technologies, a distributed DDoS network intrusion detection system is suggested for 
the VANET environment18. It is comprised of two modules, which are real-time network traffic collection and 
network traffic detection. It is developed making use of Spark and HDFS, which are used for data processing and 
storing massive suspicious attacks, respectively. The micro-batch data processing methodology is employed in 
the network collection module to enhance the performance level of traffic feature gathering. The classification 
technique based on Random Forest (RF) is employed by the traffic detection module. Using the NSL-KDD 
and UNSW-NB15 datasets, respectively, the experimental findings demonstrate that the suggested detection 
algorithm achieved accuracy rates of 99.95% and 98.75%, as well as false alarm rates (FAR) of 0.05% and 1.08%.

To detect and isolate DDoS attacks in VANET, reCAPTCHA evaluation is done by a density-based attack 
analyzer during the attack scenario. Similar to botnet zombies, the reCAPTCHA controller mechanism stops 
automated attacks. Every rule within the rule metrics indicates an instance of traffic being filtered to block a 
certain IP address or port. Each rule’s frequency and entropy value are calculated for all incoming packets during 
every detection window. The difference between the stored traffic profiles and the recent ones indicates a high 
likelihood of assault. The belief scores are determined by deviating each detection’s present score from its past 
score, and they are updated at the conclusion. Additionally, it improves the Packet Delivery Ratio (PDR) and DR 
while minimizing latency and energy consumption as evaluated by parameters AL and EC, accordingly. The DR 
controller technique is proposed19. Network performance for the suggested reCAPTCHA Controller technique 
is 94.7% according to the experimentation results.

Based on software-defined networking (SDN), a platform is created to effectively identify and quickly 
respond to DDoS attacks in VNs20. The suggested platform includes a flow feature extraction approach that uses 
multidimensional information in addition to a trigger mechanism based on the OpenFlow protocol message 
(i.e., PACKET IN message) for an untimely response. Based on the OpenFlow flow table feature and the flow 
table entry entropy feature, an efficient global network flow table feature values are also established. A trained 
SVM is utilized for identifying all flow table entries. Based on experimentation, various kernel functions of SVM 
are analysed, and the linear kernel function attained a 97.68% Detection Rate (DR).

In recent years, artificial intelligence models integrated with metaheuristic optimization techniques have 
emerged as effective solutions for enhancing intrusion detection systems (IDS) across IoT, IIoT, and vehicular 
environments. Kocherla et al.21 developed a stacked recurrent neural network (RNN) architecture combined 
with bio-inspired optimization to improve detection performance in Industrial Control Systems. Similarly, 
Alzubi et al.4 proposed an IoT intrusion detection system using the Salp Swarm Algorithm (SSA) for tuning an 
artificial neural network (ANN), which improved convergence and classification accuracy.

Hybrid machine learning models have also been explored, particularly using XGBoost as the core classifier. 
XGBoost tuned with Hybridized Sine Cosine Algorithm (SCA) metaheuristics demonstrated notable 
improvements in Healthcare 4.0 IoT scenarios, where tuning allowed the model to adapt dynamically to complex 
patterns. Moreover, the Firefly Algorithm and its improved variants have been employed to optimize XGBoost’s 
hyperparameters, yielding high detection rates with reduced false positives in network security applications. 
These optimization strategies enable enhanced learning, but they also introduce computational overhead and 
require careful parameter selection.

In another stream of research, K-means clustering has been combined with metaheuristic algorithms such as 
Genetic Algorithm and Firefly Algorithm for improved anomaly grouping and feature refinement in IDS. These 
hybrid methods offer better interpretability but often require iterative adjustments and computational resources, 
which may limit real-time applicability in highly dynamic environments such as ITS.

While these approaches exhibit strong detection capabilities, the proposed ANFIS-based model differs 
by offering a lightweight and interpretable hybrid framework that combines fuzzy logic with neural network 
learning. This eliminates the dependency on heavy optimization routines and ensures real-time adaptability, 
making it better suited for the ITS ecosystem.

Intrusion detection systems (IDS) leveraging artificial intelligence have gained significant traction in 
cybersecurity. Several studies have integrated machine learning with metaheuristic optimization techniques 
to enhance detection accuracy and reduce false positives. For example, K-means clustering combined with 
metaheuristic methods, such as Genetic Algorithms (GA) and Firefly Algorithm, has been proposed to optimize 
anomaly detection in IoT networks21. Similarly, XGBoost-based IDS models have been fine-tuned using 
Hybridized SCA Metaheuristics, yielding significant improvements in intrusion detection within Healthcare 
4.0 IoT systems.

Beyond traditional classifiers, deep learning models such as CNNs and LSTMs have also been explored 
for network security. Recent works have implemented hybrid CNN-GNN frameworks to extract spatial and 
structural network traffic features for anomaly detection in ITS22. However, these models often suffer from high 
computational overhead, making them less practical for real-time intrusion detection in ITS environments. 
In contrast, the proposed ANFIS-based approach in this study leverages fuzzy logic and neural networks to 
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achieve a balance between accuracy and computational efficiency, making it well-suited for the dynamic nature 
of vehicular networks.

Furthermore, studies have explored the application of metaheuristic optimization in IDS across various 
domains such as IoT, IIoT, and cloud security. The hybridization of optimization techniques such as the Firefly 
Algorithm and Improved SCA has demonstrated enhanced accuracy in IDS models4. Given the adaptability of 
these approaches, future research may explore their potential integration with ANFIS for further improvement 
in ITS cybersecurity.

In SCADA-based networks, a comparative analysis was conducted to evaluate two countermeasure techniques 
using sniffers for detecting DDoS attacks23. The study demonstrated the role of lightweight monitoring tools 
in identifying attack patterns effectively within a structured industrial environment. While SCADA systems 
are relatively static, Intelligent Transportation Systems (ITS) operate under dynamic, real-time conditions. 
Therefore, detection models designed for ITS, such as our proposed ANFIS-based approach, must be adaptable 
to rapidly changing traffic patterns and mobile network elements.

In the IoT domain, a novel intrusion detection framework was proposed using Decisive Red Fox Optimization 
and a back-propagated radial basis function neural network24. This hybrid approach demonstrated improved 
detection accuracy by optimizing the neural network structure for enhanced learning. Such optimization 
strategies are powerful but may introduce computational overhead. In contrast, our ANFIS-based approach 
offers a lightweight and interpretable solution more suitable for time-sensitive ITS environments.

Thiruppathy Kesavan et al.25 proposed an ANFIS-PSO hybrid model to enhance rule tuning in VANETs, 
addressing scalability and precision limitations in fuzzy inference. This highlights the potential of optimization 
algorithms to enhance adaptability in evolving environments.

In a recent approach targeting smart city cybersecurity, a hybrid framework was proposed using Conjugate 
Self-Organizing Migration (CSOM) and Reconciliate Multi-agent Markov Learning (RMML) under a cyborg 
intelligence paradigm26. This multi-agent strategy enables distributed detection and response, making it suitable 
for large-scale dynamic environments. While such models offer high adaptability and scalability, they are 
complex to train and deploy. In contrast, the proposed ANFIS-based framework provides a more lightweight 
and interpretable solution, with scope for future integration of multi-agent learning in ITS contexts.

A comprehensive study of modern optimization techniques and their applicability to engineering challenges 
was recently presented, covering methods such as swarm intelligence, genetic algorithms, and evolutionary 
computation27. These techniques offer strong potential for enhancing feature selection and model training in 
security-sensitive environments such as ITS. In our work, while ANFIS does not employ such optimization 
directly, future research may consider integrating such methods to fine-tune fuzzy rules dynamically28,29.

For real-time intrusion detection in SCADA/IoT settings, Bhukya, Raghuram, et al.30 introduced the SPARK 
and SAD frameworks, which demonstrated superior computational efficiency compared to traditional deep 
learning approaches. Their architecture offers insights applicable to latency-sensitive ITS systems.

Selvarajan, Shitharth, et al.31 employed adversarial learning techniques to enhance the robustness of cyber-
physical systems against evolving threats. Such techniques could be incorporated into future iterations of the 
ANFIS-based framework to improve resistance to adversarial perturbations.

Methodology
This section details the components of the proposed ANFIS-based DDoS detection scheme for the ITS 
environment in Fig. 1. Figure 3 depicts the complete proposed scheme, which includes two major parts which 
are Fuzzy Expert System and the Adaptive Neuro-Fuzzy Inference System.

Fuzzy expert system
Data collection
The ITS ecosystem is heavily dependent on data, and many ITS applications generate, analyse, store, and 
communicate that data. Data requirements can be broken down into multiple categories, including background 
information, configurations, data collected, daily functional inputs, real-time data obtained from ITS devices as 
well as ITS applications, and downstream processing data. Two distinct datasets are utilized for experimental 
purposes, which are the UNSW-NB15 dataset and the CICDDoS2019 dataset.

Data pre-processing
Pre-processing is primarily utilized to arrange and clean unprocessed data to make sure it is suitable for building 
the model. Pre-processing is applied to input traffic data collected from the ITS ecosystem. After pre-processing, 
features like utilization, packet rate, byte rate, packet delay, and packet size are considered for selecting the 
appropriate features from the DDoS datasets. The Information Gain (IG) algorithm is used for feature selection. 
The IG algorithm relies on entropy, and entropy is computed for categorizing an appropriate feature. If E=(E, 
P) is discrete probability space in which E = {E1,E2,….En} is defined as a finite set of chosen features. Entropy is 
formulated as follows.

	
Entropy (E) = −

∑
ipilog2 (pi) i = 1, 2?n� (1)

In Eq. (1), pi represents the probability of class i occurring within the dataset, and n denotes the total number of 
distinct classes. Entropy H(E) quantifies the uncertainty or impurity in the data distribution.

Once entropy is computed, then IG value computation is done based on the previously computed entropy 
value, and it is formulated as follows.

Scientific Reports |        (2025) 15:20597 5| https://doi.org/10.1038/s41598-025-06719-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
IG = Entropy (E) −

∑ EK

n
Entropy (EK) .� (2)

In Eq. (2), Information Gain IG(E) is computed as the difference between the entropy of the entire dataset H(E) 
and the weighted sum of entropies of each subset Hk​(E). Here, nk​ represents the number of instances in subset k, 
and n is the total number of instances in the dataset. The term nk

n ​​ Acts as the weight for each subset’s entropy.

Decision support
The foundation of fuzzy logic is a set of multiple-valued rules, where the variables’ true values fall between 0 and 
1. It will be regarded as a subset of AI and used mostly in the decision-making process. In a real-world setting, 
there may be some complex circumstances where it is impossible to determine if something is true or false. 
Fuzzy logic simplifies decision-making in this scenario.

In a Boolean system, the truth values are shown with absolute truth values of 1 and 0; however, in a fuzzy 
logic system, no logic is applied to the fixed truth and false values, and instead, it is made up of in-between values 
that are utilized to display partially true and false values. Membership functions are also used in the fuzzy logic 
system to transfer values between 0 and 1 to graph representations.

All available data is taken into account by the fuzzy logic algorithm while addressing problems. From the 
supplied input, the best possible decision is further determined. FL resembles the decision-making procedure of 
a human being, which emphasizes every alternative between the T value and the F value. The idea of fuzzy logic 
dates back to the 1920s, but Lotfi Zadeh coined the phrase in 1965 after observing how traditional computer 
logic was utilized to manipulate data.

One of the crucial components of the fuzzy system is the section responsible for fuzzy rule generation. The 
fuzzy rule basis of the suggested scheme was produced to identify the level of attack using a straightforward 
technique. The fuzzy rules were created using professional knowledge of DDOS attack detection, collected range 
values (Low, Medium, High), and extensive research into the correlation between the most important aspects 
and DDOS intrusion detection.

Adaptive neuro-fuzzy inference systems
Adaptive Neuro-Fuzzy Inference Systems (ANFIS), created by J.S. Roger Jang in 1993. ANFIS is often referred to 
as the standard estimator or Takagi-Sugeno Fuzzy System. In this method, the fuzzy logic model and the learning 
method for artificial neural networks (ANN) are combined. To establish the ideal distribution of membership 
functions, ANFIS assesses and simulates the mapping relationship between the input and output data over a 
hybrid system.

Selection of ANFIS for ITS Intrusion Detection:
In designing an intrusion detection system for Intelligent Transportation Systems (ITS), it was critical to 

select a classification model that could efficiently handle the unique challenges posed by vehicular networks. 
These include high mobility, real-time processing demands, unpredictable traffic flow, and heterogeneous 
network conditions. Several machine learning classifiers were considered, including Support Vector Machines 
(SVM), Decision Trees (DT), Random Forest (RF), XGBoost, and Deep Neural Networks (DNN).

We conducted an initial evaluation of these classifiers using sample subsets of CICDDoS2019 and UNSW-
NB15 datasets. The evaluation was based on the following criteria:

Fig. 1.  Proposed DDoS detection scheme.
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Detection Accuracy: The ability to correctly classify normal and attack traffic.
Computational Efficiency: The feasibility of deployment in real-time ITS environments.
Scalability: The ability to handle large, high-speed network data.
Adaptability: The ability to handle evolving attack patterns in ITS networks.
Key Observations from Initial Evaluations.
Traditional classifiers (SVM, Decision Trees, and Random Forest) showed moderate accuracy but struggled 

with dynamic, evolving attack types, leading to higher false positives. Gradient boosting models (e.g., XGBoost) 
performed well in terms of accuracy but required significant hyperparameter tuning and had longer processing 
times, making them less suitable for real-time deployment. Deep learning models (CNN, LSTM, and DNN) 
achieved high accuracy but were computationally expensive, requiring large training datasets and specialized 
hardware, which may not be feasible in real-world ITS deployments.

Several classification models were evaluated, including Support Vector Machine (SVM), Decision Tree (DT), 
Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Convolutional Neural Network (CNN), using 
benchmark datasets (UNSW-NB15 and CICDDoS2019). While SVM and DT showed moderate accuracy, they 
lacked adaptability to dynamic traffic patterns. RF improved stability but was computationally heavier. XGBoost 
achieved high accuracy but required intensive tuning, and CNN was computationally expensive, limiting real-
time applicability.

In contrast, the Adaptive Neuro-Fuzzy Inference System (ANFIS) offered a balanced solution—combining 
fuzzy logic for interpretability with neural learning for adaptability. It demonstrated real-time efficiency, reduced 
false positives, and required lower computational resources. These factors made ANFIS well-suited for the 
dynamic and resource-constrained intelligent transportation system environment.

After careful consideration, ANFIS (Adaptive Neuro-Fuzzy Inference System) was chosen because it provides 
an optimal balance between accuracy, interpretability, and adaptability:

Hybrid Intelligence: ANFIS merges fuzzy logic (for handling uncertainty in vehicular traffic) with neural 
networks (for learning from evolving attack patterns), making it well-suited for the dynamic ITS environment.

Reduced False Positives: The combination of rule-based decision-making (fuzzy logic) and adaptive learning 
(neural networks) resulted in lower false positive rates compared to SVM and XGBoost.

Lightweight and Efficient: Unlike deep learning models, ANFIS does not require massive computational 
power, making it more practical for real-time intrusion detection.

Self-Adaptive Model: ANFIS can dynamically adjust detection rules as traffic conditions change, an essential 
feature for high-speed vehicular networks.

Performance Evaluation Summary.
Final model testing using the full CICDDoS2019 and UNSW-NB15 datasets confirmed that ANFIS 

outperformed traditional classifiers in terms of both accuracy and real-time efficiency, making it the most 
suitable choice for ITS security applications.

ANFIS is comprised with five layers which are fuzzification, implication, normalization, defuzzification, and 
summation. The node function defines a number of nodes that make up these layers. The same thing can be 
done with nodes in each layer. The nodes’ adjustable parameters have a major impact on the network output. The 
nodes’ adjustable parameters have a major impact on the network output. With the purpose of reducing error, 
the network learning rules change these parameters. Figure 2 displays the ANFIS architecture, which has two 
inputs as well as one output. Two if-then rules based on an inference system of the Takagi-Sugeno type are taken 
into consideration in order to make the structure of ANFIS.

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y+r1.
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y+r2.

Fig. 2.  ANFIS architecture adapted for the proposed solution.
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Where A1, A2 are fuzzy sets for the input parameter x and B1,B2 are fuzzy sets for input parameter y. Output of 
ANFIS model is denoted as f and the resultant parameters are denoted as p1, p2, q1, q2, r1 and r2.

Fuzzification layer
In this layer, each node produces a membership for a linguistic variable, and its output is calculated as follows:

	

O1
i = µ Ai (x) = 1

1 +
[(

x−vi
σ i

)2
]bi � (3)

.
Where x is represented as input value of node i and linguistic variable related with node i is Ai. Function 

parameters are represented as σi, vi and bi.

Implication layer
Here neurons hold product of basic input parameters on the basis of weight. Computation of node output is 
formulated as follows.

	 O2
1 = wi = µ Ai (x) .µ Bi (x) i = 1, 2� (4)

Where wi is represents the weight of neuron.

Normalization layer
In this layer by adding the weights of each neuron in this layer, neurons are fixed and normalised.

	
O3

1 = −
wi=

wi∑
wi

i = 1, 2� (5)

Where wi
_

 represents neuron with normalized weight.

Defuzzification layer
In this Defuzzification Layer every neuron acts as an adaptive node by containing the consequent parameters of 
the system. Node output computation is formulated as follows.

	 O4
1 = −

wi fi = −
wi (pix + qiy + ri)i = 1, 2� (6)

Where wi
_

v the result of layer 3 and consequent parameters is are denoted as pi, qi and ri.

Summation layer
In this layer, output is presented by single neuron by adding all the inputs. It is formulated as follows

	
O5

1 = f(x, y) =
∑ −

wi fi = Σ iwifi

Σ iwi
i = 1, 2� (7)

This ANFIS employs a hybrid learning method in which parameters are modified over the course of two passes 
using two separate optimization algorithms. The consequent parameters are modified during the forward pass 
when the inputs are given to ANFIS and the hypothesis parameters are maintained constant utilizing Least 
Square Estimation (LSE). The consequent parameters are refreshed in Layer 4 and the final output is computed 
as a result.

The backward pass begins once the final output is computed, and during this time the premise parameters are 
modified and the error is conveyed back to Layer 1. The ensuing parameters are fixed for this pass.

Datasets
For validating the proposed scheme two datasets are utilized which are UNSW-NB15 dataset21 and CICDDoS2019 
dataset22.

UNSW-NB15 dataset
The UNSW-NB 15 dataset’s raw network packets were generated by the IXIA PerfectStorm tool in the Cyber 
Range Lab of UNSW Canberra to produce a blend of real, existing normal activities and synthetic, current attack 
behaviours. 100 GB of the raw traffic were captured using the tcpdump utility. UNSW-NB15 dataset has set Nine 
distinct attacks are included in it, including DoS, malware, backdoors, and fuzzers. Raw network packets are part 
of the dataset. The testing set has 82,332 records from the several kinds, including attack and normal records, 
while the training set contains 175,341 records.

CICDDoS2019 dataset
This dataset provides a broad range of distributed denial of service attacks, the majority of which use amplification 
via reflection. The dataset, together with the CIC NIDS datasets IDS2017, IDS2018, and DoS2017, share a 
common set of features. 12,794,627 DDoS attack traces were collected as part of the CICDoS2019 data collection. 
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Flow length, total forward packets, total reverse packets, and other features make up the 86 features. Benign, 
UDP, NETBIOS, UDP-LAG, NTP, LDAP, TFTP, SSDP, and MSSQL classifications are given to the dataset.

Dataset preparation

•	 Figure 3 shows the heatmap projection and important significant feature selection for both the datasets.

Fig. 3.  Heapmap projected for the major significant features.
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•	 Gathering data values from the mentioned dataset of traffic information from an Intelligent Transport System 
(ITS), including traffic flow, speed, and occupancy data.

•	 Simulate a DDoS attack by generating a high volume of artificial traffic to the ITS using LOCUST traffic 
generation tool.

•	 Superimposing the simulated DDoS traffic into the dataset by merging it with the real traffic data.

The UNSW-NB15 and CICDDoS2019 datasets were selected due to their strong alignment with vehicular 
and denial-of-service attack scenarios in intelligent transportation systems. UNSW-NB15 contains diverse, 
real-world attack types mixed with normal traffic, making it effective for training general-purpose intrusion 
detection systems. CICDDoS2019 specifically focuses on distributed denial-of-service patterns across multiple 
attack vectors, which are highly representative of threats in ITS environments. Although newer datasets like 
CIC IoT 2023 offer updated attack types in broader IoT settings, our objective was to evaluate DDoS detection 
schemes in the vehicular context, where these benchmark datasets are still widely used and validated. As part of 
our future work, we plan to extend the proposed model to CIC IoT 2023 to assess generalizability across modern 
IoT-based ITS scenarios.

Results
Attack simulation
To simulate a DDoS attack in a ITS, an attacker can flood the network with a large number of packets, causing 
the network to become congested and causing delays in communication between the vehicles. The attacker can 
also target specific vehicles by sending packets to the vehicle’s MAC address, causing the vehicle to become 
overloaded and unable to respond to legitimate communication requests.

To simulate the attack, a traffic generator tool LOCUST is used to generate traffic in the network. The traffic 
generator is configured to generate traffic that simulates a DDoS attack by flooding the network with a large 
number of packets. The packets is crafted to target specific vehicles or to flood the network indiscriminately.

Once the attack traffic is generated, it is injected into the network using a network emulator. The network 
emulator tools such as CORE and Netkit are used to create a virtual ITS environment that simulates the behavior 
of the real network. The emulator is configured to replicate the network topology, the communication protocols, 
and the traffic patterns of the real network.

The experimental setup includes on-premises DDoS detection system which is deployed on the network 
that is designed to detect and mitigate DDoS attacks in the ITS. The system is deployed with certain rule-based 
methods to work along with the pfSense firewall that analyze the network traffic in real-time and identify 
patterns of malicious behavior.

The experimental evaluation that utilizes the CICDDoS2019 dataset for experimentation. The dataset has a 
collection of network traffic data that includes both normal and malicious traffic. The system is trained on both 
normal and malicious traffic.

The goal of the experimentation is to evaluate the performance of the proposed system in detecting and 
identifying malicious attacks in the network traffic.

Figure 4 displays the overall statistics of the total number of attacks and differentiates the traffic into 
anomalous or benign. The traffic abnormality classification includes all the data packets including forwarded 
packets between other entities such as Road Side Units and other vehicles. This provides a deeper insight in 
breaking down the types of traffic that were used in the attacks and the total number of attacks that were carried 
out. This information can be useful for identifying patterns and trends in the attacks and for determining the 
most common types of files that are targeted by attackers.

Discussion
Figure 5 shows the overall statistics of the total attack surface. The attack surface refers to the potential avenues 
of attack that are available to an attacker. This figure also provides an overview of the different attack surfaces 
that were targeted by the attackers (Different assets (IP)), which can help in identifying the potential vulnerable 
systems that need to be addressed to improve the security.

The experimental evaluation of the system concludes that all the attacks performed by the attacker seem to be 
malicious. This suggests that the proposed system was successful in detecting and identifying all the malicious 
attacks in the dataset. This is a positive result that demonstrates the effectiveness of the system in detecting and 
mitigating attacks in an Intelligent Transport System.

Overall, the statistics provided in the figures help in identifying patterns and trends in the attacks, which can 
be used to improve the security of the system. The experimental evaluation results demonstrate the effectiveness 
of the proposed system in detecting and identifying malicious attacks.

Performance evaluation
To evaluate the performance of the system, the attack traffic is injected into the network and the system is 
monitored for its ability to detect and mitigate the attack. The performance of the system is evaluated using 
performance metrics such as accuracy, precision, recall, and F1-score. The system can also be evaluated for its 
ability to handle different types of DDoS attacks and for its scalability in handling large-scale attacks.

The effectiveness of the proposed ANFIS-based DDoS detection system was evaluated using the UNSW-
NB15 and CICDDoS2019 datasets. To validate the model, we conducted experiments comparing ANFIS with 
traditional classifiers including Support Vector Machines (SVM), Random Forest (RF), XGBoost, and CNN.

Experimental setup
Datasets Used: UNSW-NB15, CICDDoS2019.
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Train-Test Split: 80% training, 20% testing.
Evaluation Metrics: Accuracy, Precision, Recall, F1-score, False Positive Rate (FPR).
Hardware: Intel i7 12th Gen CPU, 16GB RAM, NVIDIA RTX 3060 GPU.
Software: Python 3.9, TensorFlow, Scikit-Learn.

Evaluation metrics
Throughout the evaluation phase, a variety of evaluation metrics are employed to gauge the effectiveness of the 
scheme and identify its positive and negative aspects. This is done in order to understand the scheme’s operation 
better. It is necessary to analyse a model in order to decide whether it can be used in the beginning stages of the 
study.

Accuracy
By comparing the percentage of correctly categorised DDoS attacks and common occurrences to the overall 
number of occurrences, the suggested detection scheme’s accuracy is demonstrated.

	
Accuracy = TP + TN

TP + TN + FP + FN

Fig. 4.  Traffic classification (anomalous traffic or Benign).
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True Positive (TP) stands for an attack incident that has been accurately categorised, whereas True Negative 
(TN) stands for an normal occurrence. False Positive (FP) suggests improper classification of normal instances, 
while False Negative (FN) implies incorrect classification of assault incidents. Figure 6 shows the accuracy of the 
proposed solution over the superimposed dataset and its parameters.

Fig. 6.  The performance analysis of the proposed solution vs. the state of the art classifiers.

 

Fig. 5.  The overall statistics of the total attack and its requests.
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Precision
The efficiency of the proposed framework is predicted by estimating the fraction of attack observation.

	
Precision = TP

TP + FP

Recall
It displays real-time attack categorization in percentage form and uses that information to compute the overall 
rate of success of the suggested scheme.

	
Recall = TP

(TP + FN)

F1 score
A symmetrical average of the precision and recall measures is used to determine the F1 score. To improve 
forecasting accuracy, it performs as a statistical function.

	
F1 score = 2*TP

2*TP + FP + FN

The comparative performance metrics of the proposed ANFIS model and other baseline classifiers are presented 
in Table 2.

As shown in Table 2, the ANFIS model consistently outperforms other models across all metrics, justifying 
its suitability for ITS-based DDoS detection.

The ANFIS-based model achieved the highest accuracy (94.3%), outperforming traditional machine 
learning models such as SVM (86.3%), Random Forest (89.7%), and XGBoost (91.8%). While CNN achieved 
close performance (93.5%), ANFIS had a lower false positive rate (4.8%), making it more reliable for real-time 
detection.

While this study compares the proposed ANFIS model with widely adopted ML and DL baselines (SVM, RF, 
CNN, XGBoost), the selection reflects a focus on interpretability, computational feasibility, and reproducibility 
in real-time ITS environments. Although hybrid deep learning and optimization-based models (e.g., CNN-GA, 
LSTM-PSO) have shown high accuracy, they often introduce significant complexity and latency, which can be 
challenging in resource-constrained ITS deployments. Incorporating such models remains an important future 
direction for extending this study’s benchmarking scope.

In the context of ITS, even small false positive rates triggering unnecessary alerts, affect routing systems, 
or disrupt vehicle coordination. Based on related ITS literature, FPRs below 5% are considered acceptable 
for operational safety, provided the detection system is lightweight and responsive. Our model’s FPR of 4.8% 
meets this criterion. However, further refinement using real-time feedback mechanisms or adaptive learning is 
essential for long-term deployment.

The superior performance of ANFIS can be attributed to:
Hybrid Learning Mechanism: The combination of fuzzy logic and neural networks enables better adaptability 

to dynamic traffic conditions.
Lower False Positives: The use of fuzzy membership functions improves classification granularity, reducing 

misclassification of normal traffic as attacks.
Computational Efficiency: Compared to deep learning models like CNN, ANFIS requires less computational 

power, making it suitable for real-time ITS applications.
While ANFIS performed well in most cases, its training time was slightly higher than XGBoost due to rule-

based processing.
The model could further benefit from hybrid optimization techniques (e.g., genetic algorithms, swarm 

intelligence) to fine-tune fuzzy rules dynamically.
Practical Implications:
The proposed ANFIS-based detection model is lightweight, interpretable, and requires minimal 

computational resources, making it suitable for real-time deployment in Intelligent Transportation Systems. It 
can be integrated with roadside infrastructure, edge gateways, or vehicular units to monitor network activity and 
detect DDoS attacks with minimal delay. The low false positive rate reduces unnecessary alerts, supporting stable 
traffic communication and improved road safety in smart transportation ecosystems.

Limitations:

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) False positive rate (%)

Support vector machine 86.3 84.5 85.1 84.8 7.9

Random forest 89.7 88.9 89.4 89.1 6.3

XGBoost 91.8 91.0 90.8 90.9 5.8

Convolutional neural network 93.5 93.0 92.7 92.8 5.2

ANFIS (proposed) 94.3 94.1 93.8 93.9 4.8

Table 2.  Comparative performance analysis.
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The proposed ANFIS model, while achieving high accuracy and low false positives, has certain limitations. 
Its rule-based structure can become complex with large feature sets or multi-class scenarios, and training time 
increases with the number of fuzzy rules. The model’s effectiveness may reduce with previously unseen attacks, 
requiring periodic updates or adaptive mechanisms.

While the feature set was intentionally constrained to manage rule complexity, we acknowledge that 
scaling to denser traffic or sensor environments may introduce challenges. The fuzzy rule explosion problem 
and increased training time could affect real-time efficiency in large-scale urban ITS scenarios. Future work 
will involve evaluating the model’s behavior under high-volume traffic and exploring hierarchical or modular 
extensions to preserve performance.

Although LOCUST-based simulations emulate high-throughput DDoS behavior in real-time, they do not 
fully capture real-world vehicular dynamics like mobility, wireless delays, or edge constraints. Future work will 
address this through deployment in an operational ITS testbed.

The evaluation, based on UNSW-NB15 and CICDDoS2019, covers diverse DDoS patterns but may not reflect 
all traffic contexts, such as urban vs. rural deployments or rare attacks. The ANFIS architecture, however, supports 
adaptability and will be extended with synthetic scenarios and additional datasets to improve generalizability.

The feature selection in this work was based on entropy and information gain due to their interpretability and 
computational efficiency in real-time scenarios. However, we acknowledge that such filter-based approaches may 
overlook complex non-linear feature interactions. Recent strategies using deep learning models, SHAP analysis, 
or autoencoder-based feature selection can capture higher-order dependencies. Future work will explore these 
advanced techniques to reduce selection bias and further improve detection robustness.

Finally, while membership functions are adaptively tuned, the fuzzy rules were manually defined. Future 
work will incorporate rule evolution techniques to better align with evolving cyber threat landscapes.

Conclusion
In the interests of addressing the security goals of the intelligent transport system, a DDoS attack detection 
scheme based on Adaptive Neuro-Inference System (ANFIS) is proposed in this work. ANFIS-based DDoS 
detection in ITS is a powerful technique that can effectively detect DDoS attacks in real-time. Its ability to adapt 
to changing network traffic patterns and its high accuracy make it a promising approach for network security. 
However, it is crucial to combine ANFIS with other detection techniques to create a robust and comprehensive 
DDoS detection system. The shortcomings of the currently presented methods are taken into account, and our 
new detection scheme will get around them. The security flaws need to be fixed because of the high dynamic 
nature of the V2V and V2I vehicular communication. In ANFIS, the fuzzy logic model and artificial neural 
networks’ (ANN’s) learning strategy are combined. Performance of the proposed scheme is evaluated by 
considering the metrics like accuracy, precision, recall, and F1 score. The proposed system produced better 
outcomes according to the experiment’s findings. Future research can focus on extending the model for multi-
class intrusion detection and evaluating its performance on recent datasets such as CIC IoT 2023. Additionally, 
integrating metaheuristic optimization techniques into dynamically fine-tune fuzzy rules and membership 
functions may further improve detection accuracy and adaptability in evolving ITS environments.

Data availability
The datasets generated and analysed during the current study are available in the CICDDoS2019, UNSW-NB15 
repository, WEB LINK TO DATASETS: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​r​o​d​​r​i​g​o​r​o​​s​a​s​i​l​v​​a​/​c​i​c​​-​d​d​o​s​2​​0​1​9​-​3​0​​g​b​-​
f​u​l​​l​-​d​a​t​a​s​e​t​-​c​s​v​-​f​i​l​e​s, ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​m​r​w​​e​l​l​s​d​a​​v​i​d​/​u​n​​s​w​-​n​b​1​5.

Received: 27 October 2024; Accepted: 10 June 2025

References
	 1.	 ​h​t​t​p​s​:​​/​/​w​w​w​.​​f​o​r​t​u​n​​e​b​u​s​i​n​​e​s​s​i​n​​s​i​g​h​t​s​​.​c​o​m​/​i​​n​t​e​l​l​i​​g​e​n​t​-​​t​r​a​n​s​p​​o​r​t​a​t​i​​o​n​-​s​y​s​​t​e​m​-​m​a​r​k​e​t​-​1​0​2​0​6​5
	 2.	 Sakiz, F. & Sen, S. A survey of attacks and detection mechanisms on intelligent transportation systems: vanets and iov. Ad Hoc 

Netw. 61, 33–50 (2017).
	 3.	 Hasrouny, H., Samhat, A. E., Bassil, C. & Laouiti, A. VANet security challenges and solutions: A survey. Veh. Commun. 7, 7–20 

(2017).
	 4.	 Alzubi, O. A. et al. An iot intrusion detection approach based on salp swarm and artificial neural network. Int. J. Network Manage. 

35 (1), e2296 (2025).
	 5.	 ​h​t​t​p​:​​​/​​/​r​e​s​e​a​r​c​​h​.​u​n​s​​w​.​e​​​d​u​.​​a​u​​/​p​r​o​j​e​​​c​t​s​/​u​​​n​s​w​-​​n​​b​1​5​-​d​a​t​a​s​e​t
	 6.	 Sharafaldin, I., Lashkari, A. H., Hakak, S. & Ghorbani, A. A. Developing realistic distributed denial of service (DDoS) attack 

dataset and taxonomy. In IEEE 53rd International Carnahan Conference on Security Technology (2019).
	 7.	 Gopinath, M. & Sibi Chakkaravarthy, S. A comprehensive survey on deep learning based malware detection techniques. Comput. 

Sci. Rev. 47 (2023).
	 8.	 Arivudainambi, D., Varun Kumar, K. A., Sibi Chakkaravarthy, S. & Visu, P. Malware traffic classification using principal component 

analysis and artificial neural network for extreme surveillance. Comput. Commun. 147, 50–57 (2019).
	 9.	 Sibi Chakkaravarthy, S.,  Sangeetha, D.,  Vaidehi, V. A survey on malware analysis and mitigation techniques. Comput. Sci. Rev., 32,  

1–23 (2019).
	10.	 Devi Priya, V. S. & Sethuraman, S. C. Containerized cloud-based honeypot deception for tracking attackers. Sci. Rep. (2023).
	11.	 Huang, T. C., Huang, C. Y. & Chen, Y. C. Real-time DDoS detection and alleviation in software-defined in-vehicle networks. IEEE 

Sens. Lett. 6 (9), 1–4. https://doi.org/10.1109/LSENS.2022.3202301 (2022).
	12.	 Deng, Y. et al. Resource provisioning for mitigating edge DDoS attacks in MEC-enabled SDVN. IEEE Internet Things J. 9 (23), 

24264–24280. https://doi.org/10.1109/JIOT.2022.3189975  (2022).
	13.	 Zhou, Z., Gaurav, A., Gupta, B. B., Lytras, M. D. & Razzak, I. A Fine-Grained access control and security approach for intelligent 

vehicular transport in 6G communication system. IEEE Trans. Intell. Transp. Syst. 23 (7), 9726–9735. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​T​I​T​
S​.​2​0​2​1​.​3​1​0​6​8​2​5​​​​ (2022).

Scientific Reports |        (2025) 15:20597 14| https://doi.org/10.1038/s41598-025-06719-x

www.nature.com/scientificreports/

https://www.kaggle.com/datasets/rodrigorosasilva/cic-ddos2019-30gb-full-dataset-csv-files
https://www.kaggle.com/datasets/rodrigorosasilva/cic-ddos2019-30gb-full-dataset-csv-files
https://www.kaggle.com/datasets/mrwellsdavid/unsw-nb15
https://www.fortunebusinessinsights.com/intelligent-transportation-system-market-102065
http://research.unsw.edu.au/projects/unsw-nb15-dataset
https://doi.org/10.1109/LSENS.2022.3202301
https://doi.org/10.1109/JIOT.2022.3189975
https://doi.org/10.1109/TITS.2021.3106825
https://doi.org/10.1109/TITS.2021.3106825
http://www.nature.com/scientificreports


	14.	 Li, Z., Kong, Y., Wang, C. & Jiang, C. DDoS mitigation based on Space-Time flow regularities in iov: A feature adaption 
reinforcement learning approach. IEEE Trans. Intell. Transp. Syst. 23 (3), 2262–2278. https://doi.org/10.1109/TITS.2021.3066404 
(2022).

	15.	 Li, J., Xue, Z., Li, C. & Liu, M. RTED-SD: A Real-Time edge detection scheme for sybil ddos in the internet of vehicles.  IEEE Access 
9,  11296–11305. https://doi.org/10.1109/ACCESS.2021.3049830 (2021).

	16.	 Kim, H., Hong, S., Kim, J. & Ryou, J. Intelligent application protection mechanism for transportation in V2C environment.  IEEE 
Access 8, 86777–86787. https://doi.org/10.1109/ACCESS.2020.2991273  (2020).

	17.	 Poongodi, M., Hamdi, M., Sharma, A., Ma, M. & Singh, P. K. DDoS detection mechanism using trust-based evaluation system in 
VANET. IEEE Access 7, 183532–183544. https://doi.org/10.1109/ACCESS.2019.2960367 (2019).

	18.	 Gao, Y. et al. A distributed network intrusion detection system for distributed denial of service attacks in vehicular ad hoc network. 
IEEE Access 7, 154560–154571. https://doi.org/10.1109/ACCESS.2019.2948382  (2019).

	19.	 Poongodi, M., Vijayakumar, V., Al-Turjman, F., Hamdi, M. & Ma, M. Intrusion prevention system for DDoS attack on VANET with 
reCAPTCHA controller using information based metrics.  IEEE Access 7,  158481–158491. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​A​C​C​E​S​S​.​2​0​1​9​
.​2​9​4​5​6​8​2​​​​ (2019).

	20.	 Yu, Y., Guo, L., Liu, Y., Zheng, J. & Zong, Y. An Efficient SDN-based DDoS attack detection and rapid response platform in 
vehicular networks. IEEE Access 6, 44570–44579. https://doi.org/10.1109/ACCESS.2018.2854567  (2018).

	21.	 Kocherla, R. et al. Deep learning based stacked recurrent neural networks for intrusion detection in industrial control systems 
using bio inspired meta heuristics. In International Conference on Emerging Trends in Mathematical Sciences & Computing 
(Springer, 2024).

	22.	 Li, W. & Mohammadnezhad, N. Improvement of intrusion detection system in industrial internet of things based on deep learning 
with fog computing capability. Electron. Commer. Res., 1–37 (2024).

	23.	 Shitharth, S. & Prince Winston, D. A comparative analysis between two countermeasure techniques to detect ddos with sniffers in 
a SCADA network. Procedia Technol. 21, 179–186 (2015).

	24.	 Rabie, O. B. J. et al. A novel iot intrusion detection framework using decisive red fox optimization and descriptive back propagated 
radial basis function models. Sci. Rep. 14 (1), 386 (2024).

	25.	 Thiruppathy Kesavan, V. et al. Adaptive neuro-fuzzy inference system and particle swarm optimization: A modern paradigm for 
securing vanets. IET Commun. 17 (19), 2219–2236 (2023).

	26.	 Shitharth, S. et al. A conjugate self-organizing migration (CSOM) and reconciliate multi-agent Markov learning (RMML) based 
cyborg intelligence mechanism for smart city security. Sci. Rep. 13, 15681.

	27.	 Zhang, C., Cai, Z., Chen, W., Luo, X. & Yin, J. Flow level detection and filtering of low-rate ddos. Comput. Netw. 56 (15), 3417–3431 
(2012).

	28.	 Chen, Z., Yeo, C. K., Lee, B. S. & Lau, C. T. Power spectrum entropy based detection and mitigation of low-rate dos attacks. 
Comput. Netw. 136, 80–94 (2018).

	29.	 Arivudainambi, D., Varun Kumar, K. A. & Chakkaravarthy, S. S. LION IDS: A meta-heuristic approach to detect DDoS attacks 
against software defined networks. Neural Comput. Appl.  31 (5) (2019).

	30.	 Bhukya, R. et al. SPARK and SAD: Leading-edge deep learning frameworks for robust and effective intrusion detection in SCADA 
systems. Int. J. Crit. Infrastruct. Protect. 49, 100759  (2025).

	31.	 Selvarajan, S. et al. Diagnostic behavior analysis of profuse data intrusions in cyber physical systems using adversarial learning 
techniques. Sci. Rep. 15  (1), 7287 (2025).

Acknowledgements
We would like to thank Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of 
Higher Education for providing facilities of this paper work.

Author contributions
The theoretical interpretation, writing, and review of the manuscript were done by G. U., H.K., who also revised 
the paper and included the quantum gate design, and K.G., N.P, who elaborated and revise the manuscript on 
some concepts and validated them through simulation.

Funding
Open access funding provided by Manipal Academy of Higher Education, Manipal. Manipal Institute of Tech-
nology, Manipal Academy of Higher Education.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​0​6​7​1​9​-​x​​​​​.​​

Correspondence and requests for materials should be addressed to N.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:20597 15| https://doi.org/10.1038/s41598-025-06719-x

www.nature.com/scientificreports/

https://doi.org/10.1109/TITS.2021.3066404
https://doi.org/10.1109/ACCESS.2021.3049830
https://doi.org/10.1109/ACCESS.2020.2991273
https://doi.org/10.1109/ACCESS.2019.2960367
https://doi.org/10.1109/ACCESS.2019.2948382
https://doi.org/10.1109/ACCESS.2019.2945682
https://doi.org/10.1109/ACCESS.2019.2945682
https://doi.org/10.1109/ACCESS.2018.2854567
https://doi.org/10.1038/s41598-025-06719-x
https://doi.org/10.1038/s41598-025-06719-x
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:20597 16| https://doi.org/10.1038/s41598-025-06719-x

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿DDoS attack detection in intelligent transport systems using adaptive neuro-fuzzy inference system
	﻿Related works
	﻿﻿Methodology
	﻿Fuzzy expert system
	﻿Data collection
	﻿Data pre-processing
	﻿Decision support


	﻿Adaptive neuro-fuzzy inference systems
	﻿Fuzzification layer
	﻿Implication layer
	﻿Normalization layer
	﻿Defuzzification layer
	﻿Summation layer

	﻿Datasets
	﻿UNSW-NB15 dataset
	﻿CICDDoS2019 dataset
	﻿Dataset preparation

	﻿﻿Results
	﻿Attack simulation

	﻿﻿Discussion
	﻿Performance evaluation
	﻿Experimental setup
	﻿Evaluation metrics
	﻿Accuracy
	﻿Precision
	﻿Recall
	﻿F1 score

	﻿﻿Conclusion
	﻿References


