Table 6 Performance evaluation of different ML models in CS prediction (testing phase).
Ref. | Concrete type | (ML) models | RMSE | MAE | R2 |
---|---|---|---|---|---|
Current study | UHPFRC | RF | 10.863 | 7.882 | 0.816 |
GB | 9.927 | 7.631 | 0.849 | ||
SVR | 7.743 | 4.178 | 0.91 | ||
ANN | 9.876 | 6.317 | 0.852 | ||
GPR | 6.835 | 3.345 | 0.932 | ||
Normal concrete at early age | ANN | 7.176 | 5.55 | 0.909 | |
SVR | 10.91 | 8.687 | 0.779 | ||
LR | 10.97 | 8.634 | 0.768 | ||
ANN + SVR + LR | 9.039 | 7.103 | 0.855 | ||
ANN + SVR + LR | 8.36 | 6.622 | 0.883 | ||
ANN + LR | 8.319 | 6.504 | 0.876 | ||
UHPC | CatBoost | 6.4 | 4.88 | 0.96 | |
PPSO-CatBoost | 6.23 | 0.039 | 0.976 | ||
DMO-CatBoost | 6.15 | 0.038 | 0.978 | ||
UHPC | MLP-ANN | 11.734 | 8.187 | 0.77 | |
DT | 11.014 | 7.285 | 0.8 | ||
RF | 9.335 | 6.485 | 0.85 | ||
SVR | 9.67 | 6.971 | 0.84 | ||
KNN | 10.63 | 7.67 | 0.81 | ||
BR | 15.308 | 12.294 | 0.61 |