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Molecular characterization and
information entropies of chevron-
like graphene nanoribbons with
chemical applications

S. Manikanda Prabhu'™, A. R. Vijayalakshmi?, S. Govardhan? & S. Prabhu*

Carbon-based nanomaterials, such as graphene and graphene nanoribbons (GNRs), have attracted
researchers because of their optoelectronic properties. One of the most intriguing properties of GNRs
is their tunable bandgap. Unlike inherently metallic graphene sheets, GNRs can exhibit a bandgap,

a crucial property for electronic devices. By controlling the width and edge configuration of GNRs,
researchers can precisely tailor their electronic properties to meet specific requirements. Chevron-
like graphene nanoribbons (ChGNRs) are a class of nanomaterials with unique properties due to their
wavy morphology. The electrical conductivity of ChGNRs makes them potentially useful in devices
like organic solar cells and transistors. In this study, we computed the Shannon’s information entropy
measures of ChGNRs using a variety of degree-based topological descriptors (TDs). The basic graph
theoretical approach was utilized to derive the explicit mathematical equations of the TDs for the
ChGNRs. The results were compared with cove-edged graphene nanoribbons (cGNRs) to analyze the
thermodynamic stability of both ChGNRs and cGNRs and the different trends were pointed out.

Keywords Topological indices, Shannon’s information entropy, 7-electron energy (F), Resonance energy
(RE), Thermodynamic stability

Graphene is an essential and fascinating material that draws theoretical and practical research because of
its unique properties and applications; graphene is helpful in material research!~%. However, researchers are
interested in atomically precise graphene nanoribbons (GNRs) because of their intriguing electrical properties
and prospective uses in electronics, sensors, spintronics, and photovolatics®. The properties of GNRs are well
known to be substantially influenced by structural parameters like width, edge type, and chemical bioactivity.
Nanographenes include quasi-one dimensional graphene nanoribbons (GNRs) and quasi-zero dimensional
graphene quantum dots (GQDs), which are described as graphene cutouts on a nanoscale®”’. Both top-
down and bottom-up methods can synthesize GNRs are shown in®!2. The bottom-up GNR structures have a
significant advantage over conventional top-down GNRs because they are made from small molecular building
blocks that self-assemble to produce atomically smooth, well-defined edges and terminations'3~17. Because of
the molecular building blocks™ adaptability, it is possible to create a variety of GNRs with atomic precision.
This includes adjusting the width and edge structures and doing atomic doping and chemical functionalization
inside the GNRs or on their edges'®-2°. Consequently, a wide range of GNR structures realized through bottom-
up synthesis have shown great potential for band gap engineering, one-dimensional (1D) heterojunctions, and
other technologies in nanoelectronics and other fields*!~%.

GNRs can be broadly classified into four categories: armchair, zigzag, chiral, and chevron GNRs. The width
is the only distinguishing factor between armchair and zigzag GNRs. However, two factors are needed to
distinguish chiral GNRs from one another: their width and edge orientation. Along the edge of the chiral GNRs
unit cell, the number of graphene unit cell vectors (mal and na2) determines the edge orientation. There isn’t
a widely accepted classification system for chevron GNRs. Chevron GNRs are topologically meandering GNRs
which is shown in Figure 1, where unit of CtGNR(m, n) consists of m copies of hexabenzocoronene (HBC) with
varying length #. They may have an assortment of zigzag and armchair edge terminations. As shown in Figure
1,the rings colored with pink indicates the number of aromatic sextets in the Clar formula2®.
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Fig. 1. Chevron-like graphene nanoribbon ChGNR(6, 3).
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GNR heterostructures might theoretically be created to further alter GNR characteristics. Variations in
breadth, edge topology, or controlled chemical composition can be used to modify band gap and edge-related
electronic states along the GNR axis. Nevertheless, this approach relies on the meticulously controlled addition
of different precursor monomers to a targeted sequence, which has not yet been achieved. The chevron GNR class
has a lot of potential to be successful along this path since it is possible to achieve an alternation of width, edge
perspective, and chemical composition at the precursor monomer level. This enables the creation of homogenous
GNRs with an incredible range of physical characteristics. There has been lot of research going in the field of
various graphene and GNRs applications in the field of material science, structure property modelling, optical,
spectral and nuclear magnetic resonance (NMR) are shown in?’-3°,

Chemical graph (CG) modelling is based on graph theory (GT). GT is applied chemically to investigate a
variety of characteristics, including chemical, physical, and bio activities. These features are investigated using
numerical invariants called topological indices. Chemical graph theory (CGT) is a branch of mathematics
concerned with the study of CG’s. The tools of GT are used to mathematically express chemical phenomena. It
connects the uses of GT to solve molecular problems, which is important in the chemical sciences. The graph
theoretically obtained parameters are useful in predicting various physical and chemical properties. For example
graph spectrum is very useful in calculating 7- electron energy and HOMO-LUMO gap. In this study, we have
obtained various degree-based topological descriptors and their corresponding information entropy measures
with the help of simple graph theoretical parameters. Then the spectrum of ChGNRs are used to compute the 7
-electron energy and algebraic structure counts (ASC) are used to compute the RE. Finally the computed entropy
measures are compared with cove-edged graphene nanoribbons (cGNR’s) and it is observed that the cove-edged
GNRs exhibits greater entropy than chevron-like GNRs. Also it is shown that cGNR’s are thermodynamically
more stable than ChGNRS.

The novelty of this study lies in using degree-based topological descriptors (TDs) to apply Shannon’s
information entropy to chevron-like graphene nanoribbons (ChGNRs). This innovative approach allows for
a deeper understanding of the electronic properties and stability of ChGNRs. By analyzing the topological
features through entropy measures, we can uncover correlations that may enhance their performance in various
applications, such as nanoelectronics and materials science. This methodology provides a novel perspective for
assessing the structural complexity and thermodynamic stability of nanomaterials. This study presents a graph-
theoretical method for measuring and comparing the information content of ChGNRs and cove-edged GNRs
(cGNRs), whereas prior research has mostly concentrated on the electronic and morphological characteristics
of GNRs**¥. This study offers a novel framework for comprehending the connection between stability and
nanoribbon topology, an area with important implications for the design of next-generation optoelectronic
devices, by analyzing the entropy measures of various TDs and deriving explicit mathematical formulations for
them.

Methodology
Throughout this study chevron-like graphene nanoribbons (ChGNRs) are considered as a

simple graph G € U ChGNR(m,n) in which the vertices (atoms) and edges (bonds) of
G are denoted as tﬁgnﬁ(lG) and E(G), respectively. We define the neighborhood of a vertex p as
Ny(G) ={q e V(G) | (p,q) € E(G)}. For a vertex p€ V(G), the degree of p is defined as
¥p(G) = |Np(G)|.ConsiderthefollowingsetD(G) = {(a, 8) ; 1 < a < f <max7,(G)} ={1<a<p <4}

Let ¥(a,8)(G) = {(p,q) € E(G) ; 7(G) = o and v4(G) = 5}|. Then the degree-based topological index
function €2 is defined as,

Scientific Reports |

(2025) 15:20632 | https://doi.org/10.1038/s41598-025-06823-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Topological Index Notation | 2(c, B)
" 1
Randi¢ R \/@
Reciprocal Randi¢*! RR \/%
First Zagreb*? M, a+f
Second Zagreb*? Mo af

Atom Bond Connectivity** | ABC ath-2
af
1

Sum Connectivity** Ne \/7
a+f

Geometric Arithmetic* GA 2y op
a+p
2
Harmonic*® H
a+ 6
Hyper Zagreb’ HM (a + B)?
Forgotten®® F (a® 4+ B%)
3
Augmented Zagreb*’ AZ _*B
a+pB—2

Table 1. Degree-based topological index expressions.

Bond type | (do, dg) | Total no. of C-C bonds (edges)

Cc-C (2,2) 4mn — 4m +2n + 4

Cc-C (2,3) 8mn — 8m + 4n — 4

c-C (3.3) 27mn® — 52mn + 25m +n — 1

Table 2. Edge types of chevron-like graphene nanoribbons.

V@)= Y s @%s= D D@ 1)

(a,3)eD(G) (P, 9)EBE(G)

Chemistry has extensively used Shannon’s information entropy (SIE), especially in molecular structure and
quantum chemistry, because of its capacity to measure properties of information theory®®*. The SIE using these
TDs of any molecular structure is given below

1
Entfy(G) = log(Q7(G)) — (m(e)) < Y Q@ log va<c>,vq<c>>- )

(p,0)EE(G)
The indices and their index expressions are shown in Table 1.

Main results

We consider chevron-like graphene nanoribbons which has both zigzag and armchair edge terminations and
it is denoted as ChGNR(m, n). The ChGNR(m, n) consists 18mn? — 24mn + 6m + 6n atoms (vertices)
and 27mn? — 40mn + 13m + 7n — 1 bonds (edges). The degree-based topological descriptors and their
corresponding entropies of the ChGNRs are explained in the following sections.

Degree-based topological descriptors

The different degree-based TDs of ChGNRs, namely ChCGNR(m, n) for m, n > 1, are calculated with the help of
edge distributions shown in Tables 1-2 in which W*(G) € {R, RR, M1, M2, ABC,SC,GA, H,HM, F, AZ}.
The degree-based TDs are calculated by the equation

Q“’(ChGNR(m, n)) :’7(2,2)97(27 2) + W(2‘3)52’Y (37 3) + ’}/(3?3)52’Y (3, 3).

Q" (ChGN R(m,n)) =(2m + 4n + 4)Q7(2,2) + (4m + 8n — 4)Q7(2,3) + (18mn +m — Tn — 1)Q7 (3, 3). 3)

Result 1 The TDs of chevron-like graphene nanoribbon ChGNR with size (m, n) are given by
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(i)
(ii)
(iii)
(iv)
)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)

RY(ChGNR(m,n)) = 3.0673m + 2.9663n — 12.0673mn + 9mn? + 0.0337.
RRY(ChGNR(m,n)) = 47.4041m + 16.7980n — 128.4041mn + 81mn? — 4.7980.
M7} (ChGNR(m,n)) = 94m + 34n — 256mn + 162mn? — 10.

M) (ChGNR(m,n)) = 161m + 41n — 404mn + 243mn> — 17.
ABCY(ChGNR(m,n)) = 8.1814m + 4.9093n — 26.1814mn + 18mn* — 0.6667.
H"(ChGNR(m,n)) = 3.1333m + 2.9333n — 12.1333mn + 9mn? + 0.0667.
SC7(ChGNR(m,n)) = 4.6285m + 3.1971n — 15.6512mn + 11.0227mn? — 0.1971.
GAY(ChGNR(m,n)) = 13.1616m + 6.9192n — 40.1616mn + 27mn* — 0.9192.
HM"(ChGNR(m,n)) = 636m + 168n — 1608mn + 972mn* — 72.
F7(ChGNR(m,n)) = 86m + 10n + 324mn — 38.

AZY(ChGNR(m,n)) = 188.7656m + 59.3906n — 496.3125mn + 307.5469mn? — 11.3906.

Theorem 3.1 For the chevron-like GNR, Randi¢ entropy is:

Proof

O

Entr(G) = 1.442710g(3.0673m + 2.9663n — 12.0673mn + 9mn” 4 0.0337)+

6.9868m + 3.6389n — 21.2515mn + 14.2647mn? — 0.6389
3.0673m + 2.9663n — 12.0673mn + 9mn? + 0.0337

1 2 2
) [(4mn —4m+2n+4) <2+2> log <2+2>

“(s55)
(529

2
+ (27mn® — 52mn + 256m +n — 1) —— log
Entr(G) = log(3.0673m + 2.9663n — 12.0673mn + 9mn® + 0.0337)

Entr(G) = log(R(G)) —

2

3+3

1
N (3.0673m +2.9663n — 12.0673mn + 9mn? + 0.0337)

2 2
X {(4mn—4m+2n+4)<2+2>log<2+2>
+(8mnf8m+4n74)ilo 2
2+3 ®\2+3

2 2
27mn* — 52 2 ~——log | —= |
+ (27mn” — 52mn + 25m +n )3_’_3 og<3+3>:|

Entr(G) = 1.4427log(3.0673m + 2.9663n — 12.0673mn + 9mn> + 0.0337)

6.9868m + 3.6389n — 21.2515mn + 14.2647mn? — 0.6389
3.0673m + 2.9663n — 12.0673mn + 9mn? + 0.0337 '

Theorem 3.2 For the chevron-like GNR, reciprocal Randi¢ entropy is:

Entrr(G) = 1.442710g(47.4041m + 16.7980n — 128.4041mn + 81mn? — 4.7980)

[ 85.5448m + 21.4186n — 213.9268mn + 128.3820mn? — 9.4186
47.4041m + 16.7980n — 128.4041mn + 81mn?2 — 4.7980
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Entrr(G) = log(RR(G)) — #(G) (4mn — 4m + 2n + 4) (V2 x 2) log (V2 x 2)

+ (8mn — 8m + 4n — 4)v/2 x 3log (\/2 X 3)
+ (27mn® — 52mn + 25m +n — 1)V/3 x 3log (V3 x 3)}

= log(47.4041m + 16.7980n — 128.4041mn + 81mn° — 4.7980)

1
B (47.4041m + 16.7980n — 128.4041mn + 81mn? — 4.7980)

X {(4mn —4m +2n+4) (\/2 X 2) log <\/2 X 2)
+ (8mn — 8m + 4n — 4)v/2 x 3log <\/2 X 3)

+ (27mn’® — 52mn + 25m + n — 1)v/3 x 3log <\/3 X 3)}

= 1.4427log(47.4041m + 16.7980n — 128.4041mn + 81mn° — 4.7980)

[ 85.5448m + 21.4186n — 213.9268mn + 128.3820mn> — 9.4186
47.4041m + 16.7980n — 128.4041mn + 81mn?2 — 4.7980

Proof

O

Theorem 3.3 For the chevron-like GNR, first Zagreb entropy is:

Entar, (G) = 1.4427 log(94m + 34n — 256mn + 162mn” — 10) — (262.8673m + 77.9483n — 681.6312mn
+ 418.7639mn> — 29.9483)/(94m + 34n — 256mn + 162mn> — 10).

Proof
1
Entar, (G) = log(M1(G)) — WA (4mn — 4m + 2n + 4) (2 + 2) log (2 + 2)
+ (8mn — 8m + 4n — 4)(2 + 3) log (2 + 3)
+ (27mn” — 52mn + 25m +n — 1)(3 + 3) log (3 + 3)]

= log(94m + 34n — 256mn + 162mn° — 10)

1

- Amn — 4m + 2n + 4)(2 + 2) log(2 + 2
(94m+34n—256mn+162mn2—10){( mn = dm £ 20 +4)(2 +2) log(2 + 2)

+ (8mn — 8m + 4n — 4)(2 4 3) log(2 + 3)

+ (27mn® — 52mn + 25m +n — 1)(3 + 3) log(3 + 3)}

= 1.4427 log(94m + 34n — 256mn + 162mn” — 10)
— (262.8673m + 77.9483n — 681.6312mn
+ 418.7639mn> — 29.9483) /(94m + 34n — 256mn + 162mn” — 10).

O

Theorem 3.4 For the chevron-like GNR, second Zagreb entropy is:

Enta, (G) = 1.44271og(161m + 41n — 404mn + 243mn® — 17) — (557.1549m + 106.5684n — 1327.4mn
+ 770.2918mn? — 58.5684) /(161m + 41n — 404mn + 243mn® — 17).

Proof
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Entar, (G) = log(M2(G)) — m (4mn — 4m + 2n + 4) (2 x 2) log (2 x 2)

+ (8mn — 8m + 4n — 4)(2 x 3)log (2 x 3)
+ (27mn® — 52mn + 25m +n — 1)(3 x 3)log (3 x 3)}

= log(161m + 41n — 404mn + 243mn° — 17)

1
- dmn — 4m + 2n 4 4)(2 x 2) log(2 x 2
(161m+41n404mn+243mn217) {( mn = dm +2n +4)(2 x 2)log(2 x 2)
+ (8mn — 8m + 4n — 4)(2 x 3)log(2 x 3)
+(27mn2—52mn+25m+n—1)(3><3)10g(3><3)]

= 1.4427log(161m + 41n — 404mn + 243mn”> — 17)
— (557.1549m + 106.5684n — 1327.4mn
+ 770.2918mn” — 58.5684) /(161m + 41n — 404mn + 243mn* — 17).

O

Theorem 3.5 For the chevron-like GNR, ABC entropy is:

Entapc(G) = 1.442710g(8.1814m + 4.9093n — 26.1814mn + 18mn® — 0.6667) + (5.5067m + 2.5113n
—16.0361mn + 10.5293mn” — 0.3900)/(8.1814m + 4.9093n — 26.1814mn
+ 18mn® — 0.6667).

Proof

- 1 242-2 24+2-2
Entapc(G) =1log(ABC(Q)) ABCG) {(4mn 4m+2n+4)( 2><2) log (UM)
243-2 243-2
+(8mn—8m+4n—4)( 2><3) log (\/?)
2 34+3-2 3+3-2
+ (27Tmn” —52mn 4+ 25m +n 1)( —3x3 )log <\/7 3><3>]

= log(8.1814m + 4.9093n — 26.1814mn + 18mn> — 0.6667)

1
- <8.1814m +4.9093n — 26.1814mn + 18mn? — 0.6667)

242-2 242-2
4 —4 2 4 — 1 T ar—
><|:( mn — 4m + 2n + )( %3 >og<,/ %3 >
24+3-2 24+3-2
- an—a)( /2222 ) log 4/ 22222
+ (8mn — 8m + 4n )< %3 )0g< %3 )
3+3-2 34+3-2
27mn” — 52 2 -1 TS S log () et
+ (27mn” — 52mn + 25m +n )( %3 >0g< %3 >]

= 1.44271og(8.1814m + 4.9093n — 26.1814mn + 18mn” — 0.6667) + (5.5067m + 2.5113n
—16.0361mn + 10.5293mn” — 0.3900)/(8.1814m + 4.9093n — 26.1814mn
+ 18mn® — 0.6667).

g

Theorem 3.6 For the chevron-like GNR, geometric arithmetic entropy is:

Entca(G) = 1.442710g(13.1616m + 6.9192n — 40.1616mn + 27mn> — 0.9192)
— (0.0289(8m — 4n — 8mn + 4))/(13.1616m + 6.9192n — 40.1616mn + 27mn* — 0.9192).

Proof
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Entca(G) = log(GA(G)) — —— [(4mn Cdmton 4 (wm) g (wm)

(GA) 2+2 242
24/2 % 3 24/2 x 3
+(8mn—8m+4n—4)< 713 >log< 713 )
24/3 %3 24/3 %3
27mn” — 52 2 1| 225 ) log | 2SS
+ (27mn” — 52mn + 25m +n )( 313 )og( 313 >:|

= log(13.1616m + 6.9192n — 40.1616mn + 27mn’® — 0.9192)

1
- (8.1814m +4.9093n — 26.1814mn + 18mn? — 0.6667>
X [(4mn—4m+2n+4)<2 2 x 2) log (2 2x 2)

242 242
24/2 %3 2v/2x 3
+(8mn8m+4n4)< 773 )log( 513 )
2 2¢/3 %3 24/3 x 3
+ (27mn” — 52mn + 25m +n 1)( 343 )log< 353

= 1.4427log(8.1814m + 4.9093n — 26.1814mn + 18mn’ — 0.6667) + (5.5067m + 2.5113n
—16.0361mn + 10.5293mn> — 0.3900) /(8.1814m + 4.9093n — 26.1814mn
+ 18mn’ — 0.6667).

O

Theorem 3.7 For the chevron-like GNR, harmonic entropy is:

Entp(G) = 1.442710g(3.1333m + 2.9333n — 12.1333mn + 9mn® + 0.0667) + (6.9779m + 3.6434n
— 21.2425mn + 14.2647mn” — 0.6434) /(3.1333m + 2.9333n — 12.1333mn
+ 9mn® + 0.0667).

Proof
1

Ent(6) = lo8(H(G)) = g5 [(4mn —dm + 20+ 4) <%) log (%)

2 2

+ (27mn® — 52mn + 25m +n — 1)(3i3) log <32ﬂ>_

= log(3.1333m + 2.9333n — 12.1333mn + 9mn® + 0.0667)

1 [ 2
- dmn — d4m + 20 +4) [ ==
(3.1333m +2.9333n — 12.1333mn + 9mn? + 0.0667) (4 = dm 2 4) (2 + 2>

2 2 2
log [ —=— ) + —8mtdn—4)[ —— Jlog [ 2=
og(2 2) (8mn — 8m + 4n )(2 3) og (2 3)

+ (27mn® — 52mn + 25m +n — 1)(313) log (%)_

= 1.442710g(3.1333m + 2.9333n — 12.1333mn + 9Imn> + 0.0667) + (6.9779m + 3.6434n
— 21.2425mn 4 14.2647mn” — 0.6434) /(3.1333m + 2.9333n — 12.1333mn
+ 9mn® + 0.0667).

O

Theorem 3.8 For the chevron-like GNR, sum connectivity entropy is:

Entsc(G) = 1.44271og(4.6285m + 3.1971n — 15.6512mn + 11.0227mn’> — 0.1971) + (7.0377m
+ 3.6044n — 21.2844mn 4 14.2466mn”> — 0.6044) /(4.6285m + 3.1971n — 15.6512mn
+ 11.0227mn* — 0.1971).
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Proof
Entsc(G) =1og(SC(G)) — % {(4mn —4m +2n +4) (ﬁ) log (\/21_1_72)

+ (8mn — 8m +4n — 4) (\/21_’_73) log <\/21+73>

+ (27Tmn® — 52mn + 25m +n — 1) <

1 1
— ] lo
\/3—1—3) g<\/3+3>}
= log(4.6285m + 3.1971n — 15.6512mn + 11.0227mn® — 0.1971)

1
B (446285m +3.1971n — 15.6512mn + 11.0227mn? — 0.1971>

X l:(4mn—4m+2n+4)(\/2lﬁ>log<\/2lﬁ>

+(8mn—8m+4n—4)(

1 1
m) 1°g<¢m>

+ (27mn® — 52mn + 25m +n — 1) <

1 1
m) ‘o (m ﬂ
= 1.4427 log(4.6285m + 3.1971n — 15.6512mn + 11.0227mn2 — 0.1971)
+ (7.0377m + 3.6044n — 21.2844mn + 14.2466mn> — 0.6044) /(4.6285m + 3.1971n
— 15.6512mn + 11.0227mn? — 0.1971).

O

Theorem 3.9 For the chevron-like GNR, hyper Zagreb entropy is:

Entpa(G) = 1.442710g(636m + 168n — 1608mn + 972mn? — 72) — (3468.2m + 778.5029n — 8493.3mn
+ 5025.2mn” — 394.5029) /(636m + 168n — 1608mn + 972mn” — 72).

Proof
Entum(G) = log(HM(G)) — m (4mn — 4m + 2n + 4)((2 + 2)%) log((2 + 2)?)
+ (8mn — 8m + 4n — 4)((2 + 3)%) log((2 + 3)?)
+ (27mn® — 52mn 4 25m 4+ n — 1)((3 + 3)*) log((3 + 3)2)}
= log(636m + 168n — 1608mn + 972mn> — 72)

—< L >|:(4mn—4m—|—2n+4)((2+2)2)

636m + 168n — 1608mn + 972mn? — 72
log((2 4 2)?) + (8mn — 8m + 4n — 4)((2 + 3)?) log((2 + 3)?)

+ (27mn® — 52mn + 25m +n — 1)((3 4 3)*) log((3 + 3)2)}

= 1.44271og(636m + 168n — 1608mn + 972mn” — 72) — (3468.2m + 778.5029n
8493.3mn 4 5025.2mn” — 394.5029) /(636m + 168n — 1608mn + 972mn’ — 72).

g

Theorem 3.10 For the chevron-like GNR, forgotten entropy is:

Entp(G) = 1.4427log(314m + 86n — 800mn + 486mn” — 38) — (1395.6m + 315.4815n — 3422.2mn
+ 2026.6mn’> — 171.4815) /(314m + 86n — 800mn + 486mn*> — 38).

Proof
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Entp(G) = log(F(G)) — [(4mn —dm+2n 4+ 41)[(2) + (2)*]10g[(2)® + (2)?]

1
F(G)
+ (8mn — 8m + 4n — 4)[(2)° + (3)*] log[(2)* + (3)?]
+ (2Tmn® — 52mn + 25m +n — 1)[(3)> + (3)*] log[(3)* + (3)2]]
= log(314m + 86n — 800mn + 486mn> — 38)

1 2
- <314m + 861 — 800mn + 486mn? — 38) [(47”" —dm e+ + (@2 +27)

log((2 +2)%) + (8mn — 8m + 4n — 4)((2 + 3)*) log((2 + 3)?)

+ (27mn® — 52mn + 25m +n — 1)((3 4+ 3)*) log((3 + 3)2)}
= 1.4427log(314m + 86n — 800mn + 486mn” — 38) — (1395.6m + 315.4815n — 3422.2mn
+ 2026.6mn”> — 171.4815) /(314m + 86n — 800mn + 486mn”> — 38).

g

Theorem 3.11 For the chevron-like GNR, augmented Zagreb entropy is:

Entazi(G) = 1.44271og(188.7656m + 59.3906n — 496.3125mn + 307.5469mn> — 11.3906)
— (711.4633m + 183.9785n — 1790.9mn + 1079.4mn* — 39.9785)/(188.7656m + 59.3906n
— 496.3125mn + 307.5469mn* — 11.3906).

Proof

3 3
1 2x2 2x2

3 3
+ (8mn — 8m + 4n — 4) (%) log (%)

3 3
3x3 3x3
27mn® — 52 2 =) log | —22—
+ (27mn® — 52mn + 25m +n )(3+372> og(3+372>}

= log(188.7656m + 59.3906n — 496.3125mn + 307.5469mn” — 11.3906)

1
B (188.7656m + 59.3906n — 496.3125mn + 307.5469mn? — 11.3906)

3 3
X |:(4mn—4m+2n+4)(%> log (2?_;732)

3 3
+ (8mn — 8m + 4n — 4) (%) log (23_3%)

3 3
3 x3 3x3
2 252 2 - ——= ) 1 —_—
+ (27mn” — 52mn + 25m +n )<3+3_2) og(3+3_2)}

= 1.442710g(188.7656m + 59.3906n — 496.3125mn + 307.5469mn> — 11.3906)
— (711.4633m + 183.9785n — 1790.9mn + 1079.4mn> — 39.9785)/(188.7656m + 59.3906n
— 496.3125mn + 307.5469mn? — 11.3906).

O

Numerical results and applications
The various DBTD’s and the corresponding entropies calculated in this study are very much useful in predicting
the physical and chemical properties of the molecules under study. For example Zagreb type indices like
Mi(G), M2(G), HM(G), AZ(G) have shown very high correlation coefficient r = 0.9994 with 7- electron
energy (Er) values which is shown in Table 5 and the pictorial representation was given in Figure 3. Where as
the F/x values are computed from its spectrum. Hence it is observed that graph theoretically derived indices are
meaningful in predicting the numerous properties of the molecules.

Since entropy plays a vital role in various fields of science, such as software, engineering, medication,
and pharmaceutical, its numerical values and graphical representation are essential for researchers. Here, we
calculate some exact values of degree-based entropies of ChGNRs, which are shown in Table 3. Furthermore, to

Scientific Reports |

(2025) 15:20632 | https://doi.org/10.1038/s41598-025-06823-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(myn) | ChGNR(2,2) | ChGNR(4,2) | ChGNR(6,2) | ChGNR(2, 3) | ChGNR(4,3) | ChGNR(2,6) | ChGNR(4, 6)
R(G) | 6.5508 7.4504 8.0004 8.1762 9.1274 10.5732 11.5545
RR(G) | 6.5543 7.4539 8.0039 8.1798 9.1308 10,5756 115566
MI(G) | 6.5549 7.4546 8.0045 8.1803 9.1312 105758 11.5569
M2(G) | 65148 7.4196 7.9715 8.1558 9.1097 10.5647 11.547
ABC(G) | 6.5693 7.4671 8.0163 8.1894 9.1392 105801 115607
HG) 65512 7.4508 8.009 8.1767 9.1279 10,5736 115548
SC(G) | 6.5654 7.4637 8.0131 8.1868 9.1364 10.5788 11.5595
GA(G) | 65654 7.4637 8.0131 8.1868 9.1364 10,5788 115595
HM(G) | 65173 7.4221 7.9741 8.1577 9.1115 105656 115418
FG) |65194 7.4243 7.9763 8.1593 9.113 10.5665 11.5486
AZ(G) 6.5503 7.4493 7.9991 8.1763 9.1273 10.5737 11.5549

Table 3. Entropy values of the ChGNRs(m, n) based on TD’s.

(myn) | ChGNR(4,3) | cGNR(4, 3) | ChGNR(2, 6) | cGNR(2,6) | ChGNR(4, 6) | cGNR(4, 6)
R(G) | 0.016183 0.029294 | 0.006906 0.027683 | 0.003825 0.01719
RR(G) | 0.016189 0.029307 | 0.006908 0.027695 | 0.003825 0.017197
MI(G) |0.01619 0.029309 | 0.006908 0.027697 | 0.003826 0.017197
M2(G) 0.016152 0.029216 0.006901 0.027583 0.003822 0.017157
ABC(G) | 0.016204 0.029344 | 0.006911 0.027738 | 0.003827 0.017213
H(G) | 0016184 0.029296 | 0.006906 0.027685 | 0.003825 0.017191
SC(G) 0.016199 0.029334 0.00691 0.027727 0.003826 0.017208
GA(G) |0.016199 0.029345 | 0.00691 0.027739 | 0.003826 0.017213
HM(G) |0.016155 0.029223 | 0.006901 0.027592 | 0.003821 0.01716
FG) | 0016158 0.02923 0.006902 0.0276 0.003823 0.017163
AZ(G) | 0.016183 0.029295 | 0.006906 0.027679 | 0.003825 0.01719

Table 4. Scaled entropy comparision of ChGNR(m, n) versus cGNR(m, n).

compare and contrast these numerical entropies of ChGNRs, we adopted the technique called scaled entropies,
which is obtained from Table 3, dividing it by the total number of bonds (edges) of G will give the normalized
entropy values or scaled entropies which is used in meaningful predictions of the thermodynamic stability of
the chemical structures considered in this study are shown in Table 4. Then we have carried the comparative
analysis of scaled entropies which is shown in Table 4 with the scaled entropies of cove-edged graphene
nanoribbons (cGNR5) studied in?®. This comparision clearly shows that for given m = 2,4 and n = 3,6, the
cGNRs exhibit greater entropy than ChGNRs which is shown in Figure 2. Hence the ChGNRs are predicted to
be thermodynamically stable than cGNRs. Also there are several studies in the literature which focus on entropy
based energy prediction models are shown in®"->,

Another idea of measuring the thermodynamic stability is the Resonance Energy (RE). There are several
literature’s available to calculate the RE, which plays a vital role in predicting the aromaticity of a molecule. In
this study we have used Herdon’s approach RE = A x In(ASC'). Where A = 1.185 is an empirical parameter
and ASC is an algebraic structure count which is directly calculated from the constant coefficient of the
characteristic polynomial for bipartite graphs. Hence the RE measures obtained in Table 5, gives the idea about
the thermodynamic stability ChGNRs. Next we have done the comparative study of thermodynamic stability of
ChGNRS’ and cove-edged graphene nanoribbons cGNR’s with the help of RE. Once again this study reveals that
cGNRS’ exhibit greater RE when it is compared with ChGNR’s. Hence it is concluded that Shannon’s information
entropy and RE measures both reveals that cGNR’s are thermodynamically more stable than ChGNR’s because
both the molecules consists of same number of atoms on different stages but while comparing the total number
of bonds (edges) between these two molecules cGNR’s holds the greater number of bonds than ChGNRS.

Conclusion

In this study, we have computed various degree-based topological descriptors and their corresponding
information entropy measures for ChGNR’s with the help of chemical graph theory techniques. Our
computed entropies reveals that cove-edged graphene nanoribbons are thermodynamically more stable than
chevron-like graphene nanoribbons. Also the resonance energies are computed with the use of algebraic
structure count. This study also shows the same trend in thermodynamic measures of ChGNR’s and
c¢GNRs. Hence it is clear that chemical graph theoretical measures are useful in predicting the structural
properties of the molecules. From Table 5, we can observe the stability order of ChGNR(m, n) as follows
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Fig. 2. Comparision of scaled entropies between ChGNR’s and cGNR’s.

ChGNR(2,2) | 72 95 16,100 106.39045 | 0.1594
ChGNR(4,2) | 132 177 66,895,475 196.43581 | 0.1617
ChGNR(6,2) | 192 259 277,962,591,100 286.48127 | 0.1626
ChGNR(4, 3) | 402 564 21,963,985,607,373,003,224,028,260 | 611.5836 | 0.1720

Table 5. Energetic properties of ChtGNR(m, n).

ASC(ChGNR(2,2)) > ASC(ChGNR(4,2)) > ASC(ChGNR(6,2)) > ASC(ChGNR(4,3))
= E.(ChGNR(2,2)) > (ChGNR(4,2)) > (ChGNR(6,2)) > (ChGNR(4,3)). Consequently this
relations satisfies the Dewar and Longuet-Higgins rule.
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Fig. 3. Correlation between Zagreb type indices versus entropies of ChGNR’s.
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