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Cooperative observation optimization for maritime targets is crucial for improving marine monitoring 
precision. Existing research predominantly focuses on homogeneous platform cooperative observation 
optimization under random error influences, while neglecting the collaborative optimization 
challenges of heterogeneous platforms affected by systematic errors. To address these limitations, 
this paper proposes a heterogeneous unmanned platform cooperative observation optimization 
method based on Adaptive Enhanced Dung Beetle Optimization (AEDBO) algorithm. First, we 
derive optimal observation configurations for the aerial unmanned platform, maritime cooperative 
unmanned platform, and targets under azimuth systematic error impacts using an attitude correction 
algorithm. Subsequently, we design AEDBO by integrating an improved Tent chaotic mapping and 
centroid opposition-based learning strategy to enhance population diversity. An adaptive convergence 
factor and nonlinear ball-rolling dung beetle population decline model are introduced to balance 
global exploration and local exploitation capabilities, while Cauchy-Gaussian mutation strategies are 
employed to prevent premature convergence. Finally, AEDBO is applied to aerial unmanned platform 
trajectory optimization. Experimental results demonstrate that compared with DBO, AEDBO achieves 
improved optimization accuracy across 15 benchmark functions. In both safe and hazardous zone 
scenarios, optimized trajectories reduce target tracking errors to below 10 m, with optimal observation 
configurations validated through practical experiments. This study establishes a novel theoretical 
framework and optimization toolkit for heterogeneous unmanned platform cooperative observation.

Keywords  Unmanned platform, Cooperative tracking, Trajectory optimization, Error reduction, Dung 
beetle optimization, Systematic error

Unmanned platforms offer advantages of low cost, high convenience, and strong concealment, enabling efficient 
work and reduced personnel risk. They have wide applications across aerospace, maritime exploration and 
environmental monitoring1. Among them, path tracking2, trajectory tracking3,4 and target tracking5 are the core 
technologies for autonomous navigation and mission planning of unmanned platforms, and there are significant 
differences in the technical connotations of the three. Path tracking emphasizes time-constraint-free tracking of 
predefined geometric paths, trajectory tracking requires synergistic control of paths and temporal parameters, 
and target tracking focuses on real-time target state estimation. In this paper, we take target tracking as an entry 
point and focus on the trajectory optimization problem of unmanned platforms.

Methods to improve target tracking accuracy are divided into two main categories: the first is data processing 
optimization. Error in airborne unmanned platform marine target observation stems from sensor detection 
and attitude errors, which are generally composed of random error and systematic error6. Random error can 
be filtered out using algorithms like Kalman Filter (KF), Extended Kalman Filter (EKF) and Cubature Kalman 
Filter (CKF)7–9. Systematic error requires error reduction algorithms including real-time quality control, least 
squares10 , maximum likelihood11 , exact maximum likelihood estimation12 and other algorithms. In addition, 
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some researchers13 proposed a target localization method using auxiliary beacons. The unmanned platform 
observes the auxiliary beacons and the target simultaneously to reduce systematic error.

The second is observation geometry optimization. The positional relationship between the platforms and the 
target affects tracking accuracy. This is referred to as the optimal observation configuration for an unmanned 
platform, determined by target observation. Fisher Information Matrix (FIM) is commonly used to analyze 
optimal observation configurations, which can be divided into two categories: A-optimal and D-optimal. 
A-optimal aims to minimize the inverse trace of the FIM, while D-optimal seeks to maximize the determinant 
of the FIM.SHI et al.14 extended the optimal observation configuration for UAVs based on distance and angle 
measurements to 3D space. Hung et al.15 proposed a multi-UAV system using heterogeneous sensors for 
tracking, with a cost function based on the D-optimal criterion for the problem of unknown target tracking. 
Chen et al.16 focused on sensor deployment optimization for arrival time direct localization in shallow water 
multipath environments, considering multipath signal loss and angle and distance constraints. They proposed 
an optimization problem based on the A-optimal criterion to determine the optimal sensor location. Wu et al.17 
proposed a sensor deployment optimization method for the simultaneous time-of-arrival based multi-objective 
localization problem using A-optimal criterion, combining alternating minimization, the multiplier alternating 
direction method and maximizing minimization. However, most existing optimal observation configuration 
analysis based on FIM only considers the effect of observation random error on target tracking, with few 
considering the effect of observation systematic error.

Cooperative observation optimization is essentially a trajectory optimization problem, belonging to the control 
methods of airborne unmanned platforms. Common trajectory optimization methods for unmanned airborne 
platforms include optimal control18, guidance19 and intelligent algorithms20. Optimal control is a control strategy 
that optimizes the system performance index, and commonly uses dynamic programming, model predictive 
control and reinforcement learning. Literature21. proposed an end-to-end artificial intelligence framework 
to deal with the trajectory optimization problem for airborne unmanned platforms, significantly improving 
performance and efficiency. Literature22 proposed a dual-deep Q-network based trajectory optimization method 
for airborne unmanned platforms considering reconfigurable intelligent surfaces. Literature23 used a distributed 
model predictive control method to optimize the trajectory of an airborne unmanned platform in a dynamic 
environment. Although optimal control can achieve optimality and high accuracy, it has high computational 
complexity, strict model constraints, sensitivity to initial conditions, poor real-time performance and difficulty 
in dealing with complex constraints. Lyapunov potential field guidance method controls an airborne unmanned 
platform by forming a potential field around the guidance path, which has low computational complexity and 
real-time potential field changes, for rapid control and guidance. Literature24 controlled the airborne unmanned 
platform heading to complete tracking of straight lines, arcs and arbitrary paths based on the vector field. 
Literature25 designed the outer loop controller of the airborne unmanned platform to generate the required 
heading rate command via vector field . Although the guidance method has good real-time performance, it 
requires designing the guidance law based on the known optimal observation configuration. It cannot solve 
the trajectory optimization problem under complex unknown conditions. Compared to the guidance method, 
intelligent algorithms do not require an exact mathematical model. They can be solved by evaluating the 
objective function value, suitable for problems lacking accurate models. Intelligent algorithms have strong 
versatility and adaptability, enabling effective solutions to complex practical problems. Intelligent algorithms 
are widely used in unmanned platforms. Literature26 applied swarm intelligence algorithms to search and 
rescue scenarios of airborne unmanned platforms. Literature27 utilized a distributed control framework based 
on homing pigeon hierarchical strategy to address airborne unmanned platform swarming problems. Swarm 
intelligence algorithms are also widely used in trajectory optimization problems. Literature28 combined adaptive 
differential evolution with Nash optimization for trajectory optimization, improving target tracking accuracy 
and reducing complexity. The results showed that the new method performed better in real target trajectory 
tracking, airborne unmanned platform safety, and stability. Literature29 proposed an improved bat algorithm to 
optimize tracking trajectory of an airborne unmanned platform for dynamic intrusion target tracking in oilfield 
inspection. Literature30 proposed a new multi-objective trajectory optimization algorithm using a cut-and-fill 
coding strategy to optimize populations where individuals may have different lengths.

DBO31 is a new swarm intelligence algorithm proposed by XUE et al. in 2022. Compared to PSO32 , GWO33, 
SSA34, SCA35, MVO36 and HHO37, results proved the superiority of its performance. Once proposed, DBO had 
wide applications across various fields. Literature38 used DBO to determine optimal feature color combination 
for olfactory sensors to help determine fatty acids in stored wheat. Literature39 combined DBO with KELM 
(Extreme Learning Machine) to improve accuracy of recognizing internal leaks in unilateral and bilateral ball 
valves. Like other swarm intelligence algorithms. DBO also easily falls into local optima and has weak global 
exploration ability. To fully develop its performance, Literature40 improved IDBO to select hyperparameters 
for BiLSTM41–43 DBO algorithm is optimized in terms of population initialization, search strategy, and 
population diversity, effectively improving DBO performance. Existing studies have not used DBO for trajectory 
optimization of airborne unmanned platforms.

In summary, current research on optimizing unmanned platform cooperative observation of marine targets 
has two deficiencies: one is that the current observation optimization problem focuses on homogeneous 
platforms; the other is that previous research on trajectory optimization mainly considers the influence of 
random error, and rarely considers the influence of systematic error on tracking accuracy. In this paper, we 
address these problems, introduce the orientation system error of sensor observation, collaborate airborne 
unmanned platforms with sea unmanned platforms, and study the optimization method of multi-unmanned 
platforms collaborative observation of maritime targets.

The main contributions of this paper compared to previous studies are as follows:
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(1) Based on the error reduction algorithm, first-order Taylor expansion of error is used to analyze azimuthal 
systematic error’s impact on tracking error. Optimal observation configurations for the airborne unmanned 
platform, maritime cooperative unmanned platform, and target are derived;
(2) AEDBO is proposed using improved Tent chaos mapping and center-of-mass contrastive inverse learning 
for population initialization, a new adaptive convergence factor, an adaptive nonlinear ball-rolling dung bee-
tle tree-volume decreasing model, and an adaptive Cauchy-Gaussian mutation strategy.
(3) Taking airborne and maritime unmanned platforms as cooperative objects, AEDBO is used to optimize 
the flight trajectory of airborne unmanned platforms in safe and hazardous area environments to obtain the 
optimal observation configurations of the airborne unmanned platform, maritime cooperative unmanned 
platform and target, thereby improving target tracking accuracy under a receding horizon optimization 
framework.

The paper is organized as follows. Section II describes and models the problem. Section III analyzes the trajectory 
optimization of the airborne unmanned platform, based on the error reduction algorithm to analyze the optimal 
observation configuration under azimuthal system error. Section IV proposes an optimal control method 
for airborne unmanned platforms based on AEDBO, which consists of four improved methods: population 
initialization incorporating improved Tent chaos mapping and center-of-mass dyadic inverse learning, 
adaptive convergence factor, adaptive nonlinear rolling dung beetle decreasing number model, and adaptive 
Cauchy-Gaussian mutation strategy with complexity analysis. AEDBO solving steps for the optimal control 
method of airborne unmanned platforms are given. Section V conducts simulation experiment verification. 
The performance analysis of AEDBO is carried out firstly, and then the optimal trajectory optimization of the 
airborne unmanned platform in different environments is carried out using AEDBO. Section VI concludes with 
future outlook.

Problem description and models
Problem description
The marine target localization and tracking scenario for an airborne unmanned platform based on error reduction 
of a maritime cooperative unmanned platform is shown in Fig. 1. The airborne unmanned platform observes 
the maritime cooperative unmanned platform and target simultaneously via its radar, obtaining position and 
velocity information. It then eliminates systematic error effects on target localization and tracking through an 
error reduction algorithm. Finally, the platform obtains relatively accurate target state information via filtering 
estimation. In this case, observation configuration affects the performance of the error reduction algorithm. Due 
to the unmanned platform’s random initial position, ensuring an optimal observation configuration initially is 
challenging. The key of accurate target tracking via the maritime cooperative unmanned platform for airborne 
unmanned platform is determining the optimal observation geometry of the airborne unmanned platform, 
maritime cooperative unmanned platform, and marine target. The goal is to control the airborne unmanned 
platform to the optimal observation position.

Unmanned platform motion model
Airborne unmanned platforms are typically controlled using a mathematical model that incorporates an 
autopilot, a practical approach for engineering applications. Each platform is assumed to have a low-order flight 
controller that adjusts speed and heading angular velocity to regulate the platform’s flight state. The fixed-height 
model of an airborne unmanned platform in three-dimensional space is formulated as:

Fig. 1.  Marine target tracking scenario by airborne and maritime unmanned platforms cooperation.
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ẏ

ḣ
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where,x = [x, y, h, ψ, v, ω]T  denotes the state of the airborne unmanned platform, including its position, 
heading angle, velocity, and heading angular velocity of the airborne unmanned platform. τv  and τω  are velocity 
and angular velocity time delay constants related to the platform and its flight state. u = [uv, uω]T  constitutes the 
control input, indicating the autopilot speed control command and heading angular velocity control command. 
These commands adhere to the following constraints:

	 |uv − v0| ≤ vmax� (2)

	 |uω| ≤ ωmax� (3)

Here,v0 denotes the cruise speed of the platform.vmax and ωmax correspond to the maximum range of the cruise 
speed variation and the maximum heading angular velocity respectively.

In order to facilitate receding horizon optimization control of the airborne unmanned platform, the 
continuous-time model in Eq. (1) is converted into the following discrete-time model using Euler integration:

	 xk+1 = fd(xk,uk) = xk + Tsf(xk,uk)� (4)

where xk = [xk, yk, ψk, vk, ωk]T , uk = [uvk, uωk]T  and Ts is the sampling time.
The motion of a maritime unmanned platform can be approximated as two-dimensional space motion, 

mainly involving speed and heading control. This motion model is similar to that of the airborne unmanned 
platform.

Airborne unmanned platform observation model
In the three-dimensional space, the state of the marine target at time k is denoted as Xk = [xt, yt, zt]Tk ,  and 
the state of the airborne unmanned platform is Uk = [xu, yu, zu]Tk .  Relative vectors of the airborne unmanned 
platform and the target are rk = [rx, ry, rz]Tk , rx = xu − xt, ry = yu − yt, rz = zu − zt.  The target 
information observed by the airborne unmanned platform is:
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where v (k) denotes the observation noise at time k, obeying a zero-mean Gaussian distribution. The error 
covariance matrix is R = diag

(
σ2

r , σ2
α, σ2

β

)
,  where σr , σα,  and σβ  denote the standard deviation of the sensor 

measurement of distance, bearing, and pitch respectively.

Hazardous area model
Airborne unmanned platforms operating in complex environments at sea may face threats from other airborne 
platforms and incoming targets. Therefore, it is necessary to consider the impact of hazardous areas. Based on 
the literature13, hazardous areas are divided into collision avoidance and collision zones, and the hazardous area 
function is given by

	

Oi =




(
R2

a − ∥χ − P∥2
2

∥χ − P∥2
2 − R2

c

)2

, Rc < ∥χ − P∥ ≤ Ra

0 , ∥χ − P∥ ≥ Ra

� (6)

where χ denotes the position of the airborne unmanned platform and P denotes the position of 
the obstacle. The collision radius Φc =

{
χ ∈ R2| ∥χ − P∥ < Rc

}
 and obstacle avoidance radius 

Φa =
{
χ ∈ R2|Rc < ∥χ − P∥ ≤ Ra

}
 are defined as shown in Fig. 2.

Error reduction model
This paper utilizes an error reduction algorithm based on a maritime cooperative unmanned platform for target 
tracking. Assuming the observation value of the airborne unmanned platform on the maritime cooperative 
unmanned platform is (r + ∆r, α + ∆α, β + ∆β),  where r, α and β represent the true values of distance, 
azimuth and elevation angle observed by the airborne unmanned platform respectively, and ∆r, ∆α and ∆β 
are the corresponding observation errors. The position of the maritime cooperative unmanned platform in the 
airborne unmanned platform’s unstable carrier coordinate system is obtained
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Xco,u =
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(r + ∆r) sin (β + ∆β)

)
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In an ideal environment, there exists

	 Xc = Xf + Tuts(P)Xco,u� (8)

where: Xf  and Xc are the positions of the maritime cooperative and airborne unmanned platform in the Earth 
coordinate system,Tuts is the transformation from unstable to stable coordinate system, P is the attitude of the 
airborne unmanned platform.

However, in the real environment, Eq. (8) is difficult to establish due to attitude error, observation error and 
airborne unmanned platform position error. Therefore, Eq. (9) is constructed for error reduction

	 f (P) = |Xf + Tuts(P)Xco,u − Xc|� (9)

where:f (P) denotes the error between the position of the airborne unmanned platform observing the maritime 
cooperative unmanned platform and the true position of the maritime cooperative unmanned platform.

We solve Pmin to make min f (P) = f (Pmin).  Then Pmin is used for attitude value for marine target 
tracking to improve tracking accuracy.

Trajectory optimization
Tracking error analysis based on error reduction
Airborne unmanned platform observation model approximation
Airborne unmanned platforms observing maritime cooperative unmanned platform without accounting for 
random error can be described as Zc,m

	 Zc,m=Zc,t + Ec,se� (10)

where: Zc,t and Ec,se are the truth value and systematic error of observing the maritime cooperative unmanned 
platform.

Converted to Cartesian Coordinates

	 Xc,um=hstr(Zc,t + Ec,se)� (11)

where: hstr  denotes spherical coordinates in rectangular coordinates.
First-order Taylor expansion is at the truth value

	 Xc,um ≈ hstr(Zc,t) + Hstr(Zc,t)Ec,se� (12)

where: Hstr  is the Jacobian matrix of hstr .
Without considering random error, the corrected attitude of the airborne unmanned platform is

	 Pr=Pt + Prs� (13)

where: Pt and Prs are the truth and correction value of the attitude.
Unstable coordinate system transformed to stable coordinate system

	 Tuts(Pr)=Tuts(Pt + Prs)� (14)

First-order Taylor expansion is at the truth value

	 Tuts(Pr) ≈ Tuts(Pt) + dT(φ)T(θ)T(γ)φrs + T(φ)dT(θ)T(γ)θrs + T(φ)T(θ)dT(γ)γrs� (15)

Fig. 2.  Hazardous area for the unmanned platform.
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where: φ,θ,γ are yaw ,pitch and roll,φrsθrsγrs are the systematic error of yaw ,pitch and roll.

	
T(φ)=

[
cos (φ) - sin (φ) 0
sin (φ) cos (φ) 0

0 0 1

]
T(θ)=

[
1 0 0
0 cos (θ) - sin (θ)
0 sin (θ) cos (θ)

]
T(γ)=

[
cos (γ) 0 sin (γ)

0 1 0
sin (γ) 0 cos (γ)

]

	
dT(φ)=

[
- sin (φ) - cos (φ) 0
cos (φ) - sin (φ) 0

0 0 0

]
dT(θ)=

[
0 0 0
0 - sin (θ) - cos (θ)
0 cos (θ) - sin (θ)

]
dT(γ)=

[
- sin (γ) 0 cos (γ)

0 0 0
cos (γ) 0 - sin (γ)

]

Let

	 dT(Pr) = dT(φ)T(θ)T(γ)φrs + T(φ)dT(θ)T(γ)θrs + T(φ)T(θ)dT(γ)γrs� (16)

Therefore:

	 Tuts(Pr) ≈ Tuts(Pt) + dT(Pr)� (17)

True positions of the maritime cooperative unmanned platform and target in the stable coordinate system with 
the airborne unmanned platform as the origin and considering the airborne unmanned platform’s sway, are 
respectively

	 Xc,t = Tuts(Pt)Xc,ut� (18)

	 Xt,t = Tuts(Pt)Xt,ut� (19)

where Xc,ut, Xt,ut represent true positions of the maritime cooperative unmanned platform and target in the 
unstable coordinate system with the airborne unmanned platform as the origin.

Error calculation based on error reduction
Errors present after obtaining the corrected attitude Pr ,  theoretically

	 Xc,t = Tuts(Pr)Xc,um� (20)

	 Xt,t = Tuts(Pr)Xt,um� (21)

where Xc,um, Xt,um represent observation value of the maritime cooperative unmanned platform and target in 
the unstable coordinate system with the airborne unmanned platform as the origin.

Integration of (18), (19), (20), (21)

	 Tuts(Pt)Xc,ut − Tuts(Pt)Xt,ut = Tuts(Pr)Xc,um − Tuts(Pr)Xt,um� (22)

Simplified, it can be obtained that:

	 Tuts(Pt)(Xc,ut − Xt,ut) = Tuts(Pr)(Xc,um − Xt,um)� (23)

First order Taylor expansion

	

Tuts(Pt)(Xc,ut − Xt,ut)
≈ (Tuts(Pt) + dTuts(Pr))(Xc,ut + Hstr(Zc,t)Ec,se − Xt,ut − Hstr(Zt,t)Et,se)
= Tuts(Pt)(Xc,ut − Xt,ut) + Tuts(Pt)(Hstr(Zc,t)Ec,se − Hstr(Zt,t)Et,se)+
dTuts(Pr)(Xc,ut − Xt,ut) + dTuts(Pr)(Hstr(Zc,t)Ec,se − Hstr(Zt,t)Et,se)

� (24)

Let

	 e1 = Tuts(Pt)(Hstr(Zc,t)Ec,se − Hstr(Zt,t)Et,se)� (25)

	 e2 = dTuts(Pr)(Xc,ut − Xt,ut)� (26)

	 e3 = dTuts(Pr)(Hstr(Zc,t)Ec,se − Hstr(Zt,t)Et,se)� (27)

Among them,e1 is the main error caused by the sensor, e2 is the main error caused by the attitude and e3 is 
the coupling error between the sensor and the attitude, which is small and negligible compared to the former.

The final error mainly consists of

	 e = e1 + e2� (28)

	
e1 =

[
(cos φt cos γt + sin φt sin θt sin γt)σe1

1 + (cos φt sin γt + sin φt sin θt cos γt)σe1
1 − sin φt cos θtσ

e1
3

(sin φt cos γt − cos φt sin θt sin γt)σe1
1 + (sin φt sin γt − cos φt sin θt cos γt)σe1

2 + cos φt cos θtσ
e1
3

sin θtσ
e1
1 + cos θt sin γtσ

e1
2 + cos θt cos γtσ

e1
3

]
� (29)

Among them:
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σe1
1 = rc,se cos αc,t cos βc,t − rt,se cos αt,t cos βt,t − αc,serc,t sin αc,t cos βc,t+

αt,sert,t sin αt,t cos βt,t − βc,serc,t cos αc,t sin βc,t + βt,sert,t cos αt,t sin βt,t
� (30)

	

σe1
2 = rc,se sin αc,t cos βc,t − rt,se sin αt,t cos βt,t + αc,serc,t cos αc,t cos βc,t−

αt,sert,t cos αt,t cos βt,t − βc,serc,t sin αc,t sin βc,t + βt,sert,t sin αt,t sin βt,t
� (31)

	 σe1
3 = rc,se sin βc,t − rt,se sin βt,t + βc,serc,t cos βc,t − βt,sert,t cos βt,t� (32)

	
e2 =

[
e21
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e23

]
� (33)

Among them:
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(
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7
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)� (34)

	

e22 = σe2
3

(
φrs

(
σe2

10 + σe2
5

)
+ γrs

(
σe2

9 + σe2
6

)
− θrscosφtcosθtcosγt

)
−

(φrscosθtsinφt + θrscosφtsinθt) σe2
1 − σe2
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(
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(
σe2

8 + σe2
8
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− φrs

(
σe2
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)� (35)

	 e23 = σe2
2 (γrscosθtcosγt − θrssinθtsinγt) − (θrscosγtsinθt + γrscosθtsinγt) σe2

3 + θrscosθtσe2
1 � (36)

	 σe2
1 =rc,tcosβc,tsinαc,t − rt,tcosβt,tsinαt,t� (37)

	 σe2
2 = rc,tcosβc,tcosαc,t − rt,tcosβt,tcosαt,t� (38)

	 σe2
3 = rc,tsinβc,t − rt,tsinβt,t � (39)

	 σe2
4 = sinφtsinθtsinγt� (40)

	 σe2
5 = sinφtsinθtcosγt� (41)

	 σe2
6 = cosφtsinθtsinγt� (42)

	 σe2
7 = cosφtsinθtcosγt� (43)

	 σe2
8 = sinφt sinγt� (44)

	 σe2
9 = sin φt cos γt� (45)

	 σe2
10 = cosφtsinγt� (46)

	 σe2
11 = cosφtcosγt� (47)

where φt,θt,γt are true value of yaw ,pitch and roll; rc,t,αc,t,βc,t represent the true values of distance, azimuth 
and elevation angle of the airborne unmanned platform to the cooperative platform respectively; rc,se,αc,se,βc,se 
represent corresponding systematic errors of the airborne unmanned platform to the cooperative platform; 
rt,t,αt,t,βt,t represent the true values of distance, azimuth and elevation angle of the airborne unmanned 
platform to the maritime target respectively; rt,se,αt,se,βt,se represent corresponding systematic errors of the 
airborne unmanned platform to the maritime target.

Analysis of optimal observation configuration
Azimuth error is the main source of sensor error for long-range marine target detection. Therefore, this 
subsection focuses on azimuth systematic error to discuss optimal observation configurations for unmanned 
platforms.

Assuming the airborne unmanned platform flies at a fixed height, it can be regarded as moving in a two-
dimensional plane. The azimuths of the marine target observed by both the airborne and maritime cooperative 
unmanned platforms serve as reference quantities for the relative positions of these platforms, and the target.

For convenience in discussion, we set the distance, elevation and attitude systematic errors in Eq. (28) to 0. 
Equation (28) can be simplified to

	
eα =

[
rc,tαc,se cos βc,tsinαc,t − rt,tαt,se cos βt,tsinαt,t

rt,tαt,se cos βt,tcosαt,t − rc,tαc,se cos βc,tcosαc,t

0

]
� (48)

The systematic error in the azimuths of the airborne unmanned platform observing the target and the maritime 
cooperative unmanned platform during a cycle is so small that it can be approximated as the same value for both. 
This value can be denoted as αse. 

Solving the optimal observation configuration problem can be translated into minimizing the marine target 
position error. An objective function Gα is constructed as follows
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	 Gα =
√

(rc,tαc,se cos βc,tsinαc,t − rt,tαt,se cos βt,tsinαt,t)2 + (rt,tαt,se cos βt,tcosαt,t − rc,tαc,se cos βc,tcosαc,t)2� (49)

It can be simplified

	
Gα =

√
α2

se

(
r2

c,t
cos2 βc,t + r2

t,t
cos2 βt,t

)
− 2rt,trc,tα2

se
cos βc,t cos βt,t cos (αc,t − αt,t)� (50)

Let rc,xyt = rc,t cos βc,t, rt,xyt = rt,t cos βt,t, δ = αc,t − αt,t,  assume rc,xyt = |cr| rt,xyt,  where cr  is the 
scale factor, and |cr| < 1( for the safety of the detection platforms, it is assumed that the airborne unmanned 
platform is always closer to the maritime cooperative unmanned platform. Equation (50) is simplified

	

Gα =
√

α2
se

(
c2

rr2
t,xyt

+ r2
t,xyt

)
− 2α2

se
|cr| r2

t,xyt
cos δ

=
√

α2
se

r2
t,xyt

(c2
r − 2 cos δ |cr| + 1)

� (51)

From Eq. (51), we can conclude that there are two factors affecting the observation position cr  and δ. cr  denotes 
the distance position relationship between the airborne unmanned platform, maritime cooperative unmanned 
platform and target.δ denotes the angle position relationship between the airborne unmanned platform and 
maritime cooperative unmanned platform.

A two-stage analysis is used for the above two factors, with cr  considered in the first stage and δ in the second 
stage.

The phase1 begins with the analysis of cr . 
Equation (51) is rewritten as

	
Gα =

{ √
α2

se
r2

t,xyt
(c2

r + 2 cos δcr + 1) cr < 0√
α2

se
r2

t,xyt
(c2

r − 2 cos δcr + 1) cr ≥ 0 � (52)

It is easy to get the minimum value of Gα when cr = − cos δ or cos δGcr
α min

	
Gcr

α min =
√

α2
se

r2
t,xyt

(1 − cos2 δ) � (53)

In phase2, we analyze δ. 
It is easy to obtain that when cos δ = 1or − 1, Gcr

α min  obtains the minimum value Gδ
α min . 

When cos δ = 1or − 1 is δ = 0orπ,  the angular positional relationship is such that the airborne unmanned 
platform, maritime cooperative unmanned platform, and target are in a straight line.

When cos δ = 1or − 1 is rc,xyt = rt,xyt,  the distance positional relationship is that the horizontal 
projection from the airborne unmanned platform to the maritime cooperative unmanned platform is equal to 
the horizontal projection from the airborne unmanned platform to the marine target.

Among the above positional relationships, the angular positional relationship is easy to satisfy and should 
be satisfied as the primary position, and the distance positional relationship should be considered according to 
the actual observation environment. Therefore, the angular positional relationship is a primary consideration 
for trajectory optimization.

Objective function based on receding horizon optimization
Receding horizon optimization is an optimization method for dealing with dynamic systems. Based on the 
receding horizon optimization and the error analysis in 3.1, the performance index of unmanned platforms 
cooperatively in observing marine targets at moment k is obtained as:

	
Io,k =

k+Np∑
m=k

∥em∥� (54)

where Np is the number of predicted steps and em is the tracking error of the unmanned platform cooperative 
observation at time m. 

The hazardous area indicator Jh measures the ability of the airborne unmanned platform to avoid the 
hazardous area, and the value of Jh is inversely related to the distance from the hazardous area, i.e. The larger Jh 
is, the closer the airborne unmanned platform is to the obstacle, and the smaller Jh is, the further the airborne 
unmanned platform is from the obstacle. In order to make the airborne unmanned platform avoid the hazardous 
area, combined with the hazardous area model, we can get the hazardous area indicator at time k is:

	
Jh,k =

k+Np−1∑
n=k

On� (55)

Among them:
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On =




M∑
m=1

(
R2

a − ∥χn − Pm∥2
2

∥χn − Pm∥2
2 − R2

c

)2

, Rc < ∥χn − Pm∥ ≤ Ra

0 , ∥χn − Pm∥ ≥ Ra

� (56)

where:Pm denotes the location of the mth obstacle observed, and M  denotes the number of obstacles observed.
Therefore, when considering the hazardous area, the optimization problem of cooperative marine target 

observation by multiple unmanned platforms can be transformed into a nonlinear model optimal control 
problem of minimizing the objective function under constraints, and the mathematical model is as follows:

	





min
u∗

k

Io,k + Ih,k

s.t. xi,k+1 − fd(xi,k,ui,k) = 0

Lv(ui,k) = |ui,vk − v0| − vmax

vmax
≤ 0

Lω(ui,k) = |ui,ωk| − ωmax

ωmax
≤ 0

� (57)

where:uk  is the control input variable of the airborne unmanned platform at time k.v0 is the cruising speed of 
the airborne unmanned platform. vmax is the maximum speed value.ωmax is the maximum value of the angular 
velocity of the heading.

Optimal control of the airborne unmanned platform based on AEDBO
Adaptive enhanced dung beetle optimization
Improved population initialization
DBO employs low-randomness, high-uncertainty initialization, which often results in uneven initial populations 
with poor diversity and narrow search ranges. To ensure the convergence accuracy and speed of the algorithm, 
it is necessary to make the population distribution more uniform and increase population diversity during 
initialization. We propose an improved adaptive Tent chaotic mapping to achieve more uniform distributions 
and enhanced diversity.

The original Tent chaotic mapping expression is:

	
xtmi+1 = fT ent (xtmi) =

{
xtmi/κ 0 < xtmi < κ

(1 − xtmi) / (1 − κ) κ ≤ xtmi ≤ 1 � (58)

An improved version is:

	
xtmi+1 = fT ent (xtmi) =

{
1 − ζ ∗ rand (0, 1) + rand (0, 1) /N xtmi = 0

1 − xtmi/κ + rand (0, 1) /N 0 < xtmi < κ
(1 − xtmi) / (1 − κ) + rand (0, 1) /N κ ≤ xtmi ≤ 1

� (59)

where:ζ ∈ (0, 1] is the adjustment factor.κ ∈ (0, 2] is the chaos factor. This paper sets ζ  to 1and κ to 0.5.
Mapped populations are initialized as

	 xi,j = lb + (ub − lb) × xtmi� (60)

where:lb and ub denote lower and upper bound of search space respectively.
Figure 3 shows frequency distributions of different Tent chaotic sequences. Tent chaotic mapping 1 is from 

Ref.44 The Tent chaotic mapping 2 is from Ref.45 . As seen in Fig. 3, the improved chaotic mapping in this paper 
generates more uniform initial population distributions versus other common improved Tent chaotic mappings, 
enhancing initial search ability and the likelihood of obtaining the global optimum.

Moreover, algorithm development can entail significant meaningless search from chaotic inverse learning, 
increasing computational cost and impeding convergence. To address this, we introduce center-of-mass 
adversarial inverse learning to enhance initial population quality using fitness values.

The center of mass C is defined as:

	
C = X1 + X2 + · · · + Xn

n
� (61)

where:

	
Mj =

D∑
j=1

xi,j

n
, i = 1, 2, · · · , n

� (62)

The center of gravity reversal point 
⌢

Xi is defined as
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⌢

Xi = 2 × C − Xi, i = 1, 2, · · · , n� (63)

The reversal point lies in a dynamic boundary search space, denoted xi,j ∈ [aj , bj ].  A change in the dynamic 
boundary places the reversal point in a shrinking and constantly-changing space. The dynamic boundary 
expression is:

	 aj = min (xi,j)� (64)

	 bj = max (xi,j)� (65)

If the reversal point falls outside the dynamic boundary range, it is recalculated with the expression:

	
xi,j =

{
aj + rand (0, 1) × (Mj − aj) xi,j < aj

Mj + rand (0, 1) × (bj − Mj) xi,j > bj
� (66)

Adaptive convergence factor
The original convergence factor decreases linearly, and the area of the optimal spawning region decreases 
gradually, so the algorithm focuses on global search in the early stage and local search in the later stage. To enhance 
the search ability of the algorithm, a new adaptive convergence factor is proposed. When 0 ≤ t ≤ Tmax/2, 
R decreases first slowly and then quickly, and the optimal spawning area decreases slowly, allowing the dung 
beetle to explore more unknown areas and avoid falling into the local optimum, improving the algorithm’s 
search ability in the early stage; when Tmax/2 ≤ t ≤ Tmax, R decreases first quickly and then slowly, and the 
optimal spawning decreases fast, forcing the dung beetle to conduct a fine search in the vicinity of the current 
optimal solution to increase solution precision, improving the algorithm’s local search ability in the later stage. 
The algorithm can improve the local search ability in the later stage. In summary, new adaptive convergence 
factor improves the global search ability of the algorithm in the early stage and the local search ability in the late 
stage, thus enhancing the algorithm’s ability to obtain the optimal solution and convergence speed. Comparison 
of convergence factor is shown in Fig. 4. The expression of the new adaptive convergence factor is:

	
R =

{
1 − e2t/Tmax −1

2(e−1) 0 ≤ t ≤ Tmax
2

e2(1−t/Tmax)−1
2(e−1)

Tmax
2 ≤ t ≤ Tmax

� (67)

Adaptive nonlinear rolling dung beetle quantity decreasing model
The number of ball-rolling dung beetles in DBO was kept constant. Ball-rolling dung beetles provide global 
search capability to the algorithm. To further enhance the algorithm’s search capability in the early stage, an 
adaptive nonlinear ball-rolling dung beetle number decreasing model is designed. This model increases the 
proportion of ball-rolling dung beetles early, then gradually decreases it over iterations. The expression for 
rolling dung beetle quantity is:

	
P =

{
P1 + P2 ∗

[
cos

(
t

Tmax
π

)]q 0 ≤ t ≤ Tmax
2

P1 − P2 ∗
[
− cos

(
t

Tmax
π

)]q Tmax
2 ≤ t ≤ Tmax

� (68)

	
P1 = Pinitial + Pend

2
� (69)

	
P2 = Pinitial − Pend

2
� (70)

Fig. 3.  Frequency distribution of different Tent chaotic sequences. (a) Tent chaotic mapping1, (b) Tent chaotic 
mapping2, (c) Improved Tent chaotic mapping.
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where:Pinitial is the initial rolling dung beetle population proportion. Pend is the final rolling dung beetle 
population proportion. q ∈ (0, 1] is the decay index. In this paper,Pinitial is taken as 0.4,Pend is taken as 0.2and 
q is taken as 1.

The proportion of the number of dung beetles stolen is

	 Pt = 0.6 − P � (71)

Theft dung beetles contribute to the algorithm’s local search capability. As iterations proceed, the number of theft 
dung beetles increases, enhancing algorithm’s local search capability.

When 0 ≤ t ≤ Tmax/2, the number of rolling dung beetles is kept higher in the early stages to enhance 
global search; when Tmax/2 ≤ t ≤ Tmax, the number of rolling dung beetles is reduced in the later stages and 
the number of stealing dung beetles is increased, freeing up resources to be used to improve localized search.

Adaptive cauchy-gaussian mutation strategy
In the later stage of DBO, dung beetles gradually move closer to optimal individuals, potentially resulting in 
lack of population diversity and premature convergence. To address this, a Cauchy-Gaussian mutation strategy 
is introduced. The Cauchy distribution has heavy-tailed characteristics and is suitable for long-distance jumps, 
dominating global exploration in the early stage; the Gaussian distribution is suitable for local fine-tuning, 
promoting local development in the late stage. The algorithm selects the current best individual for mutation, 
compares positions before and after mutation, and selects the better position for the next iteration. The Cauchy-
Gaussian mutation strategy is mathematically defined as:

	 U t+1
best = Xt

best

[
1 + λ1Cauchy

(
0, σ2)

+ λ2Gauss
(
0, σ2)]

� (72)

	
σ =

{
1 f (Xbest) < f (Xi)

exp
(

f(Xbest)−f(Xi)
|f(Xbest)|

)
otherwise

� (73)

	
λ1= 1− t2

T 2
max

� (74)

	
λ2= t2

T 2
max

� (75)

where:Xbest is the position of the elite individual.U t+1
best is the position of the elite individual after mutation.σ 

is the standard deviation of the Cauchy-Gaussian mutation strategy. Cauchy
(
0, σ2)

 is a random variable 
satisfying the Cauchy distribution.Gauss

(
0, σ2)

 is a random variable satisfying the Gaussian distribution. λ1 
and λ2 are dynamic parameters adaptively adjusted with iterations. Initially,λ1 is larger so the algorithm can 
explore the optimal solution over a larger range with larger mutation steps, and λ2 is smaller so the algorithm 
can search near the optimal solution. During the search,λ1 gradually decreases and λ2 increases.

AEDBO framework is shown Algorithm.

Fig. 4.  Comparison of convergence factor.
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Algorithm.  AEDBO framework.

Computational complexity analysis
It is assumed that N ,D,Iter and represent the population size, optimization problem dimension and number of 
iterations respectively. The time complexity of DBO is O (N ∗ D ∗ Iter) and the space complexity is O (N ∗ D).

Analyze the time complexity of AEDBO. AEDBO adopts the improved Tent chaotic mapping in the 
population initialization stage to generate a chaotic sequence with a time complexity of O (N ∗ D), the time 
complexity of the center-of-mass adversarial inverse learning strategy to compute the center-of-mass and 
generate the adversarial solution is O (N ∗ D), and the total time complexity of initialization is O (N ∗ D). In 
the single iteration stage, the adaptive convergence factor changes the calculation method of the convergence 
factor without introducing additional loop commands, which does not affect the computational complexity; the 
adaptive nonlinear rolling ball dung beetle number decreasing model only changes the proportion of different 
species of dung beetles, not the total number of dung beetles, and the computational time complexity of a single 
position update for the whole population is O (N ∗ D); the introduction of the adaptive Cauchy-Gaussian 
mutation strategy increases the computation of the elite individuals, and the time complexity is O (D), and 
the single iteration time complexity is O (N ∗ D). In summary, the total time complexity is O (N ∗ D ∗ Iter).

Analyze the space complexity of AEDBO. When storing the population, the original population stores 
N ∗ D parameters; different dung beetles in the population generate temporary solutions during iteration, 
requiring O (N ∗ D) space for temporary storage, and the total population space is O (N ∗ D). When 
calculating intermediate variables, O (1) space is needed to store the D dimensional center-of-mass vector, the 
fitness values of N  individual dung beetles, and other parameters such as the convergence and scaling, and the 
total intermediate variable space is . The adaptive Cauchy-Gaussian mutation strategy increases elite individual’s 
positions and fitness, requiring O (N + D) space. In summary, the total space complexity is O (N ∗ D).

The above analysis reveals that AEDBO and DBO have the same computational time complexity and space 
complexity, indicating that their superior performance does not depend on higher complexity, proving their 
feasibility in practical applications.

Optimal control of the airborne unmanned platform Based on AEDBO
Based on the above analysis and improvements, AEDBO is utilized to solve the optimal control problem of an 
airborne unmanned platform. Specific solution steps are as follows:
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Step 1: Determine the initial parameters, including the unmanned platform system parameters (initial position 
of the airborne unmanned platform, initial position of the maritime unmanned platform), AEDBO parameters 
(population number, maximum number of iterations, etc.), and error reduction algorithm parameters;

Step 2: Real-time generation of observation information of the airborne unmanned platform on the maritime 
cooperative unmanned platform and target, and use AEDBO to obtain the optimal control sequence at the 
current moment;

Step 3: Control the movement of the airborne unmanned platform using the obtained control quantity to 
obtain the position of the airborne unmanned platform at the next moment;

Step 4: Repeat step 2 and 3 to obtain the optimal motion trajectory of the airborne unmanned platform.
Figure 5 shows the flowchart of optimal control of an airborne unmanned platform based on AEDBO.

Simulation results and discussions
Performance analysis of AEDBO
The performance of AEDBO is first analyzed, including comparisons with other swarm intelligence algorithms 
and ablation experiments.

Fig. 5.  Optimal control of the airborne unmanned platform based on AEDBO.

 

Scientific Reports |        (2025) 15:23448 13| https://doi.org/10.1038/s41598-025-06833-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Comparison of AEDBO with Other swarm intelligence optimization algorithms
To evaluate AEDBO performance, we test it on 15 benchmark function sets and compare it with 7 other swarm 
intelligence optimization algorithms. The 15 benchmark function sets are shown in Table 1. f1(x) ~ f4(x) are 
single-peak test functions for assessing algorithmic optimization performance; f5(x) ~ f7(x)  are multi-peak 
test functions for evaluating local optimum avoidance ability; f8(x) ~ f15(x)  are fixed-dimension multi-peak 
test functions for assessing local optimum avoidance and high-dimension problem handling performance. The 
7 swarm intelligence optimization algorithms include both classical and contemporary algorithms, specifically 
PSO, FOA, GWO, WOA, HHO, SSA and DBO to provide a comprehensive performance comparison. Evaluation 
metrics include optimal value, mean value and standard deviation of calculation results. To ensure the 
experimental validity, the initial population size of all algorithms is set to 30, and maximum number of iterations 
is 500.To eliminate experimental chance, each algorithm is run independently on test functions for 100 times.

Figure 6 shows the convergence curves of AEDBO with other 7 swarm intelligence algorithms on 15 test 
functions. Table 2 shows the metrics statistics of AEDBO and other 7 swarm intelligence algorithms on 15 test 
functions. Figure 7 shows the performance ranking of different algorithms in comparison experiments on the 
test functions.

The following analysis can be made from the experimental results:

(1) The experimental results on the single-peak test functions ~ show that both AEDBO have better global 
optimality seeking ability and robustness. In the early stage, the ability of optimization seeking of AEDBO is 
slightly weaker than that of HHO and SSA, but in the middle and late stage, both can obtain optimal perfor-
mance result. The experimental results verify the stronger global exploration ability of AEDBO compared to 
other algorithms.
(2) Experimental results on the multi-peak test functions ~ show that AEDBO has better performance com-
pared to the other seven algorithms. In f5(x) and f6(x),  AEDBO converges to the optimum in the fastest 
speed, and the convergence speed on f7(x) is slightly behind SSA. The results show that AEDBO performs 
better in terms of optimization seeking accuracy and robustness. It can converge to the global optimum 
quickly and effectively avoiding the problem of local optimality.
(3) The experimental results on the fixed dimensional multi-peaked test functions f8(x) ~ f15(x) show that 
AEDBO has better performance in dealing with high dimensional problems. Except for the lagging conver-
gence speed on f10(x),  AEDBO has a faster convergence speed on the other test functions. Except for the 
overall performance on f11(x) which is not as good as SSA, AEDBO has better performance, and especially 

Function dimension Scope optimum

f1(x) =
∑D

i=1
x2

i 30 [−100, 100] 0

f2(x) =
∑D

i=1
|xi| +

∏D

i−1
|xi| 30 [−10, 10] 0

f3(x) =
∑D

i=1
(
∑D

j−1
xi)2 30 [−100, 100] 0

f4(x) = maxi {|xi|, 1 ≤ i ≤ D} 30 [−100, 100] 0

f5(x) =
∑D

i=1
−xi sin(

√
|xi|) 30 [−500, 500] -418.9829*D

f6(x) = 20 + e − 20 exp(−0.2
√

1
D

∑D

i=1
x2

i
) − exp( 1

D

∑D

i=1
cos(2πxi)) 30 [−32, 32] 8.8818e-16

f7(x) = 1
4000

∑D

i=1
(x2

i ) −
(∏D

i=1
cos( xi√

i
)
)

+ 1 30 [−600, 600] 0

f8(x) =

(
1

500 +
∑25

j=1
1

j+
∑2

i=1
(xi−aij)6

)−1

2 [−65.53, 65.53] 0.998004

f9(x) =
∑11

i=1

(
ai −

x1(b2
i

+bix2)

b2
i

+bix3+x4

)−1

4 [−5, 5] 0.0003075

f10(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x
2
1 − 14x2 + 6x1x2 + 3x

2
2)]

×(30 + (2x1 − 3x2)2(18 − 32x1 + 12x
2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [−5, 5] 3

f11(x) = −
∑4

i=1

(
ci exp(−

∑3
j−1

aij(xj − pij)2
)

3 [0, 1] -3.8628

f12(x) = −
∑4

i=1

(
ci exp(−

∑6
j−1

aij(xj − pij)2
)

6 [0, 1] -3.32

f13(x) = −
∑5

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] -10.1532

f14(x) = −
∑7

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] -10.4029

f15(x) = −
∑10

i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] -10.5364

Table 1.  Benchmark function.

 

Scientific Reports |        (2025) 15:23448 14| https://doi.org/10.1038/s41598-025-06833-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


on f13(x),  f14(x),f15(x),  AEDBO has much better performance than other algorithms. The results show 
that search capability of AEDBO is greatly improved.

Ablation experimental analysis.
To further validate the algorithm’s effectiveness, ablation experiments were conducted on AEDBO. There are 
four variants in the ablation experiments, DBO1, DBO2, DBO3, and DBO4. DBO1 combines improved Tent 
chaotic mapping and center-of-mass inverse learning with DBO. DBO2 combines adaptive inertia weight factors 
with DBO. DBO3 combines population adaptive scaling with DBO. DBO4 combines adaptive Cauchy-Gaussian 

Fig. 6.  Convergence curves for different test functions.
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Fig. 7.  Performance comparison ranking.

 

Function PSO FOA GWO WOA HHO SSA DBO AEDBO

f1(x)
Mean 630.1029 0.0009 1.29E-27 4.10E-74 1.97E-94 3.15E-53 1.21E-106 6.29E-200

Std 316.7393 2.73E-05 2.19E-27 1.43E-73 1.39E-93 2.23E-52 8.57E-106 0.00E + 00

f2(x)
Mean 8.1367 0.2590 9.16E-17 3.28E-51 1.03E-49 6.70E-30 3.35E-54 1.78E-94

Std 2.0742 0.0028 7.20E-17 1.16E-50 6.25E-49 4.55E-29 1.87E-53 1.26E-93

f3(x)
Mean 8943.2227 0.2475 1.40E-05 4.33E + 04 2.34E-74 1.76E-25 2.34E-50 9.43E-166

Std 4649.0802 0.0075 3.08E-05 1.39E + 04 1.63E-73 1.21E-24 1.66E-49 0.00E + 00

f4(x)
Mean 7.1745 0.0084 9.11E-07 4.45E + 01 1.41E-48 1.77E-28 6.62E-51 1.47E-87

Std 1.7255 0.0003 1.09E-06 2.73E + 01 8.55E-48 1.07E-27 3.93E-50 1.00E-86

f5(x)
Mean -2593.9256 -80.7111 -6165.7153 -10,408.3878 -12,550.7311 -8599.2955 -8493.3766 -12,568.3969

Std 346.4069 63.8502 748.5036 1684.0398 124.6547 492.6521 2018.7956 3.1265

f6(x)
Mean 6.3330 0.0333 1.04E-13 4.37E-15 8.88E-16 8.88E-16 9.59E-16 8.88E-16

Std 1.1588 0.0004 2.28E-14 2.64E-15 0.00E + 00 0.00E + 00 5.02E-16 0.00E + 00

f7(x)
Mean 245.5143 5.01E-06 5.10E-03 1.41E-02 0.00E + 00 0.00E + 00 1.23E-03 0.00E + 00

Std 19.1067 4.17E-07 1.23E-02 4.28E-02 0.00E + 00 0.00E + 00 8.68E-03 0.00E + 00

f8(x)
Mean 1.6498 12.6705 4.4034 3.2345 1.4529 4.8965 1.3940 1.0179

Std 1.3744 2.01E-15 4.2952 3.4793 1.1995 5.1999 1.0377 0.1406

f9(x)
Mean 0.0012 0.0003 0.0040 0.0008 0.0004 0.0003 0.0009 0.0003

Std 0.0040 2.73E-06 7.74E-03 4.89E-04 1.63E-04 5.16E-05 3.88E-04 1.52E-06

f10(x)
Mean 3.0000 84.1097 3.0000 3.0000 3.0000 3.5400 3.0000 3.0000

Std 1.37E-15 0.1443 4.01E-05 0.0002 0.00E + 00 3.8184 0.00E + 00 3.00E-15

f11(x)
Mean -3.8623 -3.8608 -3.8616 -3.8569 -3.8599 -3.8628 -3.8614 -3.8614

Std 0.0019 0.0013 0.0023 0.0077 0.0040 9.54E-16 0.0029 0.0031

f12(x)
Mean -3.1861 -3.2693 -3.2614 -3.2504 -3.1031 -3.2792 -3.2273 -3.3063

Std 0.1438 0.0561 0.0797 0.1077 0.1116 0.0576 0.1018 0.0498

f13(x)
Mean -5.1524 -4.7391 -9.1147 -7.2798 -5.1527 -8.2526 -6.9028 -10.1459

Std 3.3836 0.5312 2.2777 2.8092 0.7108 2.4656 2.5975 0.0356

f14(x)
Mean -5.9464 -4.7231 -10.0358 -7.9733 -5.2653 -8.9174 -8.6563 -10.1903

Std 3.4773 0.5581 1.4853 3.0919 0.9011 2.4065 2.7370 1.0522

f15(x)
Mean -6.0885 -4.7112 -9.8821 -7.2692 -5.1651 -9.6711 -8.4609 -10.4282

Std 3.5883 0.7590 2.2348 3.5204 0.7878 2.0027 2.8455 0.7648

Table 2.  Statistical results of different algorithms.
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mutation with DBO. The rest of the settings are the same as in Section "Comparison of AEDBO with Other 
swarm intelligence optimization algorithms".

Figure 8 shows the convergence curves of AEDBO with the 4 algorithm variants on 15 test functions. Table 
3 shows the metrics statistics of AEDBO and the 4 algorithm variants on 15 test functions. Figure 9 shows the 
performance ranking of different algorithms in ablation experiments on the test functions.

Based on the experimental results the following analysis can be performed:

Fig. 8.  Convergence curves of different test functions in ablation experiments.
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(1) The results of the ablation experiments on the single-peak test functions f1(x) ~ f4(x) show that AEDBO 
improves the algorithm’s global optimization-seeking ability, and the population adaptive ratio has the great-
est impact on the algorithm’s global optimization-seeking ability. In the pre-iteration period of f1(x),  DBO3 
and AEDBO have similar performance, and in the pre-iteration period of f4(x),  AEDBO is slightly weaker 
than DBO3, but in the late period of the iteration, AEDBO performs better than DBO3 on all test functions. 
The experimental results verify the improvement of the population adaptive scaling strategy on the optimiza-
tion seeking ability of DBO.

Fig. 8.  (continued)
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(2) The experimental results on multi-peak test functions f5(x) ~ f7(x) show that AEDBO effectively solves 
the problem that DBO easily falls into local optimality. In f5(x),  DBO, DBO3 and DBO4 all fall into the 
local optimum, and DBO1 and AEDBO can quickly jump out of the local optimum and converge to the opti-
mum. In f6(x) and f7(x),  DBO3 has similar performance to AEDBO. The results show that the population 
initialization method and the population adaptive scaling strategy based on improved Tent chaotic mapping 
and center-of-mass inverse learning improve the ability of DBO to avoid local optimum, followed by adaptive 
inertia weighting.
(3) The experimental results on fixed-dimensional multi-peak test functions f8(x) ~ f15(x) show that AED-
BO improves the ability of DBO to handle high-dimensional problems. On f8(x), f9(x), f12(x), f13(x),  
and f15(x),  the optimization seeking ability of DBO1 is comparable to that of AEDBO. On f10(x),  DBO3 
and DBO4 have better optimization accuracy than AEDBO in the early stage. The results show that AEDBO’s 
ability to handle high dimensions is enhanced.
(4) The experimental results show that in most of the test functions, each strategy improves the algorithm’s 
optimization accuracy. Only in f4(x) and f6(x), the population initialization problem resulted in a decrease 
in the accuracy of the algorithm.
(5) Except f4,  DBO1 outperforms DBO in all test functions, and the results show that the population initial-
ization strategy incorporating improved Tent chaos mapping and center-of-mass adversarial inverse learning 
can effectively improve the performance of the algorithm; Except f9、f12、f13, DBO2 outperforms DBO in 
all test functions, and the results show that the proposed adaptive convergence factor can effectively improve 
the performance of the algorithm; Except f5、f11、f12、f15, DBO3 outperforms DBO, and the results 
show that the proposed adaptive nonlinear rolling dung beetle decreasing number model can effectively im-
prove the performance of the algorithm; Except f6、f11、f12、f13, DBO4 outperforms DBO in the test 
functions, and the results show that the proposed adaptive Cauchy-Gaussian mutation strategy can effectively 
improve the performance of the algorithm.

Fig. 8.  (continued)
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Optimal observation trajectory of the airborne unmanned platform
Non-hazardous area
In this part, AEDBO is used to realize the control of the airborne unmanned platform to obtain the optimal 
flight trajectory. Table 4 shows the relevant parameters set of the unmanned platform during the simulation 
experiment.

Two typical postures are selected in a no-hazardous-area environment: Posture 1- the maritime cooperative 
and airborne unmanned platform and the target are on the same side, with the airborne initial position at 
[-5000,-10,000,3500]m; Posture 2 -the maritime cooperative and airborne unmanned platform and target are 
oppositely positioned, with the airborne initial position at [-5000,10,000,3500]m.

Figure 10 shows airborne unmanned platform trajectory optimization under Posture 1, including the overall 
posture, line-of-sight angle change, tracking error, and state vector / control volume change of the airborne 
unmanned platform under Posture 1, respectively. Figure  11 shows airborne unmanned platform trajectory 
optimization under Posture 2, including the overall posture, line-of-sight angle change, tracking error, and state 
vector/control volume change of the airborne unmanned platform under Posture 2, respectively.

From Fig.  10, the airborne unmanned platform quickly flies rearward of the maritime cooperative 
unmanned platform at maximum speed, with the line-of-sight angle gradually approaching 0 aligning the three 
on a horizontal plane. It maintains this observation configuration; thereafter, forming an optimal observation 
configuration around 77s; Compared to the initial tracking error of 50.51m, the error is 12.29m by 77s improving 
accuracy over 4 times compared to stationary observation. From Fig. 11, the airborne unmanned platform flies 
towards the marine target at maximum speed, with the line-of-sight angle gradually approaching 180 aligning 
the three on a horizontal plane. It maintains this observation configuration; thereafter, forming an optimal 
observation configuration around 200s. Compared to the initial tracking error of 36.88m, the error is 3.58m by 
200s improving accuracy over 10 times compared to stationary observation.

From Fig. 10 and Fig. 11, the marine target tracking error decreases rapidly during observation configuration 
formation, and is smaller and slower after formation proving suitable observation configuration directly 
affects tracking accuracy. The above results show AEDBO has good trajectory optimization ability and optimal 
observation configuration formation effectively improves tracking accuracy.

function DBO1 DBO2 DBO3 DBO4 DBO AEDBO

f1(x)
Mean 7.52E-111 1.16E-112 7.65E-150 1.30E-134 2.18E-105 5.76E-188

Std 5.32E-110 6.08E-112 5.41E-149 9.17E-134 1.54E-104 0.00E + 00

f2(x)
Mean 1.75E-54 4.38E-57 2.58E-84 3.45E-67 2.80E-53 1.57E-84

Std 1.20E-53 3.08E-56 1.82E-83 2.44E-66 1.93E-52 1.11E-83

f3(x)
Mean 3.86E-54 2.13E-60 6.77E-119 2.34E-91 2.05E-45 2.23E-166

Std 2.63E-53 1.50E-59 4.78E-118 1.65E-90 1.45E-44 0.00E + 00

f4(x)
Mean 3.12E-32 6.25E-50 3.12E-64 7.08E-70 3.16E-49 2.48E-82

Std 2.03E-31 4.42E-49 2.21E-63 3.54E-69 2.23E-48 1.72E-81

f5(x)
Mean -12,568.7418 -9787.4516 -7899.3983 -8535.0550 -8365.5957 -12,566.8179

Std 2.25E + 00 2.11E + 03 1.28E + 03 1.82E + 03 1.64E + 03 9.27E + 00

f6(x)
Mean 8.88E-16 8.88E-16 8.88E-16 1.10E-15 9.59E-16 8.88E-16

Std 0.00E + 00 0.00E + 00 0.00E + 00 8.52E-16 5.02E-16 0.00E + 00

f7(x)
Mean 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.40E-09 0.00E + 00

Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.41E-08 0.00E + 00

f8(x)
Mean 1.1933 1.6099 1.6487 1.6068 1.8248 1.0775

Std 1.3810 1.5707 1.7003 2.0039 2.0576 0.2724

f9(x)
Mean 3.11E-04 9.63E-04 8.04E-04 8.42E-04 8.34E-04 3.10E-04

Std 2.38E-05 5.78E-04 4.56E-04 4.30E-04 4.09E-04 1.11E-05

f10(x)
Mean 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Std 4.76E-14 4.00E-15 2.81E-15 2.83E-15 3.08E-15 2.49E-15

f11(x)
Mean -3.8622 -3.8618 -3.8610 -3.8611 -3.8617 -3.8620

Std 2.16E-03 2.59E-03 3.30E-03 3.29E-03 2.76E-03 2.39E-03

f12(x)
Mean -3.2871 -3.2228 -3.2301 -3.2131 -3.2392 -3.2930

Std 0.0738 0.1135 0.1097 0.1045 0.1138 0.0854

f13(x)
Mean -9.9493 -6.8069 -7.2820 -6.9365 -7.1881 -10.1506

Std 1.0091 2.5789 2.7206 2.4452 2.6472 0.0172

f14(x)
Mean -9.55796 -8.03272 -8.30672 -8.78507 -8.02025 -10.4029

Std 1.9549 2.6762 2.7321 2.5020 2.8936 1.13E-11

f15(x)
Mean -10.1063 -9.0900 -7.5429 -8.8746 -8.1068 -10.4121

Std 1.4725 2.3756 3.2891 2.5293 3.1016 0.76526

Table 3.  Statistical results in ablation experiments.
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Hazardous area
Given the airborne unmanned platform may be impacted by hazardous areas during flight, this section simulates 
and analyzes the airborne unmanned platform in environments with hazardous areas. Two typical postures 
are selected in the environment with hazardous area: Posture 3- the maritime cooperative unmanned platform 
and target are on the same side of the unmanned platform and there is a hazardous area from 1 to 4. The initial 
position of the unmanned platform is [-5000,-10,000,3500]m; Posture 4- the maritime cooperative unmanned 
platform and target are on the opposite side of the unmanned platform and there is a hazardous area from 5 to 
8. The initial position of the unmanned platform is [ -5000,10,000,3500]m.

Hazardous area 1 is an ellipse with center point at (-2700m, -12000m), and horizontal radius is 400m, vertical 
radius is 500m; Hazardous area 2 is an ellipse with center point at (-4000m, -14000m), and horizontal radius is 
1000m, vertical radius is 1200m; Hazardous area 3 is a rectangular area with side lengths of 1000m and 2,000m 
rectangular area, the lower right point is located at (500m, -15,000m); Hazardous area 4 is an elliptical area, 
the center point is located at (0m, -20,000m), the horizontal radius is 400m, and the vertical radius is 500m; 
Hazardous area 5 is an elliptical area, the center point is located at (-4,000m, 13,000m), the horizontal radius is 
400m, the vertical radius is 500m; Hazardous area 6 is an elliptical area, the center point is located at (-3000m, 
16000m), the horizontal radius is 1000m, and the vertical radius is 1200m; Hazardous area 7 is a rectangular area 
with the side lengths of 1000m and 2000m respectively, and the lower right point is located at (0m, 14000m); 
Hazardous area 8 is an elliptical area with center point at (0m, 21000m), and horizontal radius is 400m, vertical 
radius is 500m. The marine target is moving in the north direction with a speed of 5m/s, and the other simulation 
parameters are the same as in 5.2.1.

Figure 12 shows the simulation result of airborne unmanned platform trajectory optimization under Posture 
3, including the overall posture diagram, line-of-sight angle change diagram, tracking error diagram, and the 
change process of state vector and control quantities of the airborne unmanned platform respectively. Figure 13 

Parameter Value

Initial heading of the airborne unmanned platform/(°) 0

Maritime cooperative unmanned platform location/(m) [0,0,0]

Marine target position/(m) [0,0,80000]

Speed control delay time constant 0.8

Angular velocity control delay time constant 0.8

Airborne unmanned platform cruising speed/(m/s) 100

Maximum speed change range/(m/s) 10

Maximum angular velocity/(°/s) 20

Table 4.  Parameters related to unmanned platforms.

 

Fig. 9.  Ranking of ablation experiments.

 

Scientific Reports |        (2025) 15:23448 21| https://doi.org/10.1038/s41598-025-06833-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


shows the simulation result of the airborne unmanned platform trajectory optimization under posture 4, 
including the overall posture diagram, the line-of-sight angle change diagram, the tracking error diagram, and 
the state vector and control volume change process of the airborne unmanned platform trajectory optimization 
under posture 4 respectively.

From Fig. 12, it can be seen that the airborne unmanned platform can effectively avoid hazardous area and 
still form the optimal observation configuration under the influence of hazardous area. In the influence of 
hazardous areas in 21 ~ 25s, 53 ~ 57s, 102 ~ 153s, the line-of-sight angle of the airborne unmanned platform 

Fig. 10.  Simulation result of the airborne unmanned platform optimization trajectory in posture 1, (a) Overall 
posture, (b)Line-of-sight angle, (c) Tracking error, (d) State vector and control.
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tends to slow down towards 0, and even increases in the opposite direction in 102 ~ 153s, and the reduction 
speed of the tracking error slows down accordingly, but the overall still shows a decreasing trend, because in 
the process of obstacle avoidance, the tracking error has a smaller influence in the objective function, and the 
airborne unmanned platform makes obstacle avoidance as the main objective. From Fig. 13, it can be seen that 
the airborne unmanned platform can effectively avoid the hazardous area and still form the optimal observation 
configuration in the influence of hazardous area. In the influence of hazardous area, in 33 ~ 45s and 108 ~ 121s, 
the line-of-sight angle of the airborne unmanned platform tends to slow down towards 180, and even increases 

Fig. 11.  Simulation result of the airborne unmanned platform trajectory optimization in posture 2. (a) Overall 
posture, (b) Line-of-sight angle, (c) Tracking error, (d) State vector and control.
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in the opposite direction in 108 ~ 121s, and the reduction of tracking error slows down accordingly, but the 
overall still shows a decreasing trend, because in the process of obstacle avoidance, the tracking error has a 
smaller influence in the objective function, and the airborne unmanned platform takes obstacle avoidance as 
the primary objective.

Fig. 12.  Simulation result of the airborne unmanned platform trajectory optimization in posture 3. (a) Overall 
posture, (b) Line-of-sight angle, (c) Tracking error, (d) State vector and control.
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Overall, after considering the hazardous area, the airborne unmanned platform still forms the optimal 
observation configuration, and the tracking error keeps decreasing, proving the effectiveness of the algorithms 
in complex environments.

Fig. 13.  Simulation result of the airborne unmanned platform trajectory optimization in posture 4. (a) Overall 
posture, (b) Line-of-sight angle, (c) Tracking error, (d) State vector and control.
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Practical experiment
We developed a realistic scenario to collect data for verifying the practical application value. Due to the high 
cost of UAV radar observation, we chose inertial guidance plus radar to simulate UAV observation Two small 
boats served as the cooperation platform and the target moving on the lake, respectively. The high-precision 
positions of the observation platform and small boats were acquired by RTK measurements, as shown in Fig. 14 
The processed data results are shown in Figs. 15, 16, 17.

The line-of-sight angle changes of the three datasets range from 0 to 90°, and the overall trend of line-of-sight 
angle changes is consistent with the trend of tracking error, which is manifested in the fact that the closer to 0° 

Fig. 16.  Data 2 result. (a) Line-of-sight angle, (b) Tracking error.

 

Fig. 15.  Data 1 result. (a) Line-of-sight angle, (b) Tracking error.

 

Fig. 14.  Schematic diagram of the practical experiment.
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the smaller the tracking error is, and the closer to 90° the larger the tracking error is. However, there are certain 
fluctuations present, which are caused by external factors such as environmental conditions and the hardware 
conditions of the equipment. In summary, the conclusion of the practical experiment is consistent with the 
conclusion of the simulation experiment.

Conclusion and future work
This paper takes air unmanned platform and maritime unmanned cooperative platform synergy as the research 
body to improve target tracking accuracy. It analyzes the optimal observation configuration based on error 
reduction algorithm and proposes AEDBO for optimal control of airborne unmanned platform. The following 
conclusions are drawn:

(1) Error analysis based on error reduction shows the tracking error mainly consists of three parts: sensor 
error, attitude error, and sensor and attitude coupling error. The latter is small compared to the first two errors, 
and can be ignored with limited computational resource.
(2) Optimal observation configuration considering azimuthal systematic error as the main error indicates all 
three platforms- the air unmanned platform, maritime unmanned cooperative platform, and target should 
be in a horizontal straight line. This means the observation line-of-sight angle of the airborne unmanned 
platform is 0 or π. 
(3) AEDBO is proposed for control of unmanned airborne platform. We propose a population initialization 
method integrating improved Tent chaos mapping and center-of-mass contrastive inverse learning, an adap-
tive convergence factor, an adaptive nonlinear ball-rolling dung beetle number decreasing model, and an 
adaptive Cauchy-Gaussian mutation strategy to enhance DBO. This allows realization of the optimal flight 
trajectory of the airborne unmanned platform. Comparison with other swarm intelligence algorithms and 
ablation experiments prove the effectiveness of each improvement method and the superiority of algorithm 
performance;
(4) The proposed AEDBO effectively optimizes the trajectory of airborne unmanned platforms in different 
initial conditions and environments to achieve optimal observation configuration.

Future steps will focus on:

(1) Introducing more systematic error to further investigate optimal observation configuration under com-
plex error conditions;
(2) Introducing more unmanned platforms to study trajectory optimization and marine target tracking un-
der complex environments with multiple airborne unmanned platforms, multiple maritime cooperative un-
manned platforms, and multiple marine targets.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to privacy issues. 
If someone wants to obtain data from this study, please contact Qiuyang Dai.
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