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This study addresses the optimization of fully convolutional networks (FCNs) for deployment 
on resource-limited devices in real-time scenarios. While prior research has extensively applied 
quantization techniques to architectures like VGG-16, there is limited exploration of comprehensive 
layer-wise quantization specifically within the FCN-8 architecture. To fill this gap, we propose an 
innovative approach utilizing full-layer quantization with an L2 error minimization algorithm, 
accompanied by sensitivity analysis to optimize fixed-point representation of network weights. 
Our results demonstrate that this method significantly enhances sparsity, achieving up to 40%, 
while preserving performance, yielding an impressive 89.3% pixel accuracy under extreme 
quantization conditions. The findings highlight the efficacy of full-layer quantization and retraining in 
simultaneously reducing network complexity and maintaining accuracy in both image classification 
and semantic segmentation tasks.
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Deep learning models with multiple layers have revolutionized computer vision, boosting performance 
in various applications, such as music generation and semantic segmentation1. This success stems from 
abundant labelled data, new network architectures, and powerful GPUs2. By effectively approximating complex 
functions, these models, particularly Convolutional Neural Networks (CNNs), excel in machine learning 
tasks like classification3,4, segmentation5, and regression6. CNNs overcome the limitations of earlier models by 
introducing convolution and pooling layers, tackling overfitting and spatial ratio issues in 2D data7. These layers 
preserve spatial information and make the network resistant to translations, rotations, and scaling7. Advances 
like transposed convolutional layers, skip connections, and variable-sized inputs/outputs have led to Fully 
Convolutional Networks (FCNs) that excel in semantic segmentation, assigning class labels to each pixel in an 
image8. While CNNs have achieved good results in semantic segmentation tasks9, FCNs have demonstrated the 
best performance in pixel-wise classification for semantic segmentation when trained end-to-end5.

Although FCNs and other deep learning models have demonstrated effectiveness in semantic segmentation, 
their application on resource-constrained devices is limited10. Neural networks tend to have excessive 
parameters, and deep learning models have significant redundancies, leading to inefficient use of memory and 
computational resources11. The floating-point arithmetic operations used in artificial neural networks also tend 
to be more expensive than integer and fixed-point operations, making deep learning-based applications difficult 
to deploy on mobile devices10.

Quantization techniques
The optimization of storage and energy utilization in deep learning models, enabling their deployment on 
resource-constrained devices, has been a topic of ongoing research. Several strategies based on fixed-point 
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approximations have been proposed to mitigate the computational requirements of deep learning models. 
These include the 8-bit fixed-point method12, low-precision fixed-point arithmetic for inference13,14, low-rank 
approximation of network parameters with accuracy trade-off15, training the network with binary weights16, and 
the L2 error minimization approach17,18. Another group of popular quantization techniques involves codebook-
based methods19, such as the sparse network with random behaviour and ternary weights20 or the HashedNet 
approach based on hashing21. These fixed-point approximations and codebook-based methods reduce the 
complexity of deep learning models through compression and quantization. Additional solutions include 
the consolidation of multiple models into a single model22 and the combination of pruning and quantization 
techniques23.

Recent literature has explored various directions to enhance the effectiveness of quantization and binarization. 
For instance, LoRA-based quantization techniques for large language models have focused on preserving 
information retention during fine-tuning24, while methods like QuantSR have applied low-bit quantization for 
efficient super-resolution in vision tasks25. Generative approaches for data-free quantization have also emerged 
to improve flexibility and accuracy under strict constraints26. On the binarization front, distribution-sensitive 
training strategies have been shown to improve representational capacity in binary neural networks27, and 
binarization has been successfully employed for efficient video matting in low-resource environments28. These 
works demonstrate the broad applicability of quantization and binarization across domains, and our study builds 
on this foundation by adapting low-bit quantization to dense semantic segmentation with memory awareness 
and retraining strategies.

Gap analysis
While quantization and compression methods effectively reduce the size of deep learning models, they also 
result in a decline in the accuracy of inferences. Furthermore, current fixed-point optimization techniques, 
such as those proposed by Anwar et al.17 and Shin et al.18, only focus on quantizing convolution and pooling 
layers. Quantization of the complete FCN has been performed by Xu et al.29, including both convolution and 
transposed convolution, up-convolution, and de-convolution layers. However, to the best of our knowledge, 
there is currently no technique that has quantized all layers of the FCN-8 architecture based on VGG-16. Thus, 
the reduction of the size of the network while maintaining accuracy through the quantization of other layers in 
the FCN-8 architecture of VGG-16 remains an unexplored area of research.

Our contribution
This study investigates the idea of quantizing each layer of an FCN-8 using the same network configuration as 
Shelhamer et al.30 for reducing the computational cost of inference via the L2 error minimization approach. 
The network is first quantized, then a layer-wise sensitivity analysis is performed to find the optimal value of 
quantization for each layer in the network, and an updated retraining algorithm is then deployed to quantize 
weights to recover loss in accuracy even with low precision. In addition, this study examines the impact of using 
parallel architecture on training time with and without using a GPU. It also compares our method’s findings 
to those of other quantization techniques. The results show that, across all layers, the L2 error minimization 
technique retains the best ratio between network performance and network sparsity size with fewer bits than 
both the embedded fixed-point algorithm and Lloyd’s method. Figure 1 illustrates the overall summary of the 
experiments performed in the current work.

Table 1 illustrates the summary of the research work performed in the field of quantization of FCNs and 
highlights the contributions and novelty of the proposed approach.

Materials and methods
The dataset used, the architecture of FCN deployed, an overview of the modified L2 error minimization 
technique used, and the comparison methodology are mentioned in detail below.

Dataset
FCN8 was trained on the PASCAL VOC 2012 dataset and validated on the PASCAL VOC 2011 dataset31. The 
PASCAL VOC 2012 dataset contains 20 classes with 9630 labelled images and is used as a standard benchmark 
dataset for object detection and segmentation32. A few sample images from the VOC 2012 dataset, their labels, 
and their pixel-wise classification are shown in Appendix A. The PASCAL VOC 2011 dataset consists of 736 
non-intersecting labelled images and was used for validation.

Architecture of fully convolutional network
For this study, the same network architecture (FCN-8) as that proposed by Shelhamer et al.30 and illustrated in 
Fig. ure 2 was deployed so that the results from the proposed method are comparable with other quantization 
techniques. FCN-8 architecture adopts the pixel-wise loss function, and the stochastic gradient descent approach 
is used in the current study to optimize the weights and biases of the network.

For quick learning, a VGG pre-trained model is picked for initializing the encoder sub-network. The VGG 
network uses fewer trainable parameters per layer due to the introduction of a small filter of size 3 × 3. A fixed 
learning rate is used during training. Table 2 shows the network configuration to train the FCN for performing 
segmentation on the PASCAL VOC dataset.
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Fixed-point quantization techniques
Embedded fixed-point algorithm
An example of direct quantization, the same quantization level M, is set for all the layers in the embedded fixed-
point quantization algorithm. Various M quantization levels are opted for, where each level represents a certain 
number of bits, i.e., M=3 for 2 bits, M=7 for 3 bits, M=15 for 4 bits, and M=31 for 5 bits, respectively.

Paper
name

FCNs
used

L2  error
minim.

Applied on

Signal
quantized Dataset used

No. of
bits

Layerwise
sens.
analysis

Sem.
segm.

Conv.
layer

Skip
layer

Trans.
layer

Fully conn.
layer

Vanhoucke et al.26 ✓ ✓

Courbariaux et al.27 ✓ ✓
MNIST,
SVHN,
CIFAR-10

10

Gupta et al.28 ✓ ✓ MNIST,
CIFAR-10 12

Denton et al.29 ✓ ✓ ImageNet 2012

Lin et al.30 ✓ ✓
MNIST,
SVHN,
CIFAR-10

Hwang et al.31 ✓ ✓ MNIST 2,3,4,5

Anwar et al.32 ✓ ✓ ✓ MNIST 2,3,4,5

Shin et al. 33 ✓ ✓ TIMIT Corpus,
MNIST 2,3,4,5 ✓

Gong et al.34 ✓ ✓ ImageNet 2012

Xu et al.  [39] ✓ ✓ ✓ ✓ MICCAI Gland 2015 7 ✓

Hubara et al. [46] ✓ ✓ ✓

MNIST,
SVHN,
CIFAR-10,
ImageNet 2012,
Penn-tree bank

4

Lin et al. [47] ✓ ✓ CIFAR-10 1,2,3,4

Cai et al. [48] ✓ ✓ Microsoft COCO,
ImageNet 2012 8, 32 ✓ ×

Proposed Approach ✓ ✓ ✓ ✓ ✓ PASCAL VOC 2012 2,3,4,5 ✓ ✓

Table 1.  Literature review table showing various contributions in the quantization of networks.

 

Fig. 1.  Figure showing the flowchart proposed for FCN-8 quantization and the comparison pipeline followed 
(for quantization techniques, i.e., direct quantization, Lloyd’s quantizer, and L2 error minimization) in the 
current study based on pixel accuracy, mean IOU, and mean accuracy.
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Lloyd’s quantizer
Lloyd’s quantizer33 (LQ) is a codebook-based quantization technique that uses partitions (different adjacent 
and non-overlapping ranges of values that belong to a set of real numbers) and a codebook (a lookup table) to 
determine the quantization of input values. Hence, by design, LQ transforms the input weights into a codebook 
entry, which results in retaining the network performance while significantly decreasing the network size.

Our proposed approach
Quantization mechanism
The weights of neural networks are represented in floating-point precision. Still, a fixed-point representation 
of network parameters greatly reduces the cost of each operation at the cost of precision and accuracy. In this 
study, we quantize the weights of the network to convert continuous data into discrete points for fixed-point 
representation using the L2 error minimization technique, as inspired by several studies17,18 for network 
quantization. The network is first divided into signals, weights, and biases. The weights and biases are translated 
to fixed-points, but the signals are kept in floating-point precision. Direct quantization is used first, followed by 
layer-wise sensitivity analysis, and finally, retraining is performed using a modified back-propagation algorithm.

Layer-wise sensitivity analysis
A layer-wise sensitivity analysis was performed for the convolutional layer and transposed convolution layer to 
achieve maximum sparsity while maintaining the same accuracy, where weights in one layer were quantized with 
a given M quantization level and the weights of remaining layers were used with floating-points to maintain high 
precision. This process was repeated for each layer in the network, and the effective quantization level for that 
layer was calculated. Table 3 shows the six different quantization levels (M) configurations used in this analysis. 
After conducting the sensitivity analysis, FCN layers were grouped layer-by-layer according to their range and 
sensitivity, and an optimum value of M for each layer was calculated.

Network configuration

Epochs 50

Learning rate 0.0001

Mini batch size 20

Optimizer SGD

Momentum 0.9

Weight decay 0.0002

L2  Regularization None

Samples in training set 8498

Samples in validation set 786

Table 2.  Configuration table showing the network configuration of FCN used in this study. The table shows 
the various configuration settings used for FCN-8.

 

Fig. 2.  Figure showing the architecture of FCN-8. The figure displays the different layers and the number of 
units in each layer for the FCN-8. Each box indicates a certain layer in the architecture, where the colour of 
the box indicates the type of layer present, while the number of units in the layer is written underneath it. 
Light yellow colour represents the convolution layer, red colour is for the pooling layer, light turquoise colour 
indicates the transpose convolution layer, pink depicts the softmax activation (output layer), and lavender 
colour shows the skip connection layer.
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Retraining the quantized network
A modified back-propagation algorithm was used for retraining the network to adjust the quantized weights. 
The modified back-propagation algorithm is given in Appendix D. The results from the L2 error minimization 
technique applied to all layers are compared with the embedded fixed-point algorithm and with Lloyd’s quantizer 
approach in this study.

Experiment settings and implementation details
To test the efficacy of applying quantization to FCNs, several simulations were performed. The Nvidia GeForce 
GTX 1060 GPU was used to train and test the models, and experiments were run in the MatConvNet simulation 
environment. The quantization procedure for L2 error minimization was implemented in CUDA, and a MEX 
function was used to link the CUDA code to MATLAB.

Comparison metrics
Pixel accuracy (PA), the mean intersection of the union (mean IoU), and the mean accuracy (MA) as percentages 
were used to determine the best configuration for L2 error minimization and for comparing our method with 
other quantization techniques. PA is the percentage of pixels of the image that are correctly classified. IoU is 
the field of overlap divided by the area of the union between the predicted label and the ground-truth label. For 
multi-class segmentation, Mean IoU calculates the percent intersection over the union of each class and then 
determines the average for all classes. On the other hand, MA takes the percentage of average accuracy of all 
classes.

Let pij  be the number of pixels of class i that are predicted to belong to class j, ti be the total number of pixels 
in class i, then PA, is given in Eq. 1.

	
P A =

∑
i

pij/
∑

i

ti� (1)

Let pij  be the numbers of pixels of class i that are predicted to belong to class j and pcl be the number of pixels 
for different classes, then Mean IoU, MeanIoU, is given in Eq. 2.

	
MeanIoU = (1/pcl)

∑
i

pij

(ti +
∑

j
pji + pij) � (2)

The MA, is given in Eq. 3

	
MA = (1/pcl)

∑
i

pij/ti� (3)

The comparison for the performance of the L2 error minimization technique, the embedded fixed-point 
algorithm, and the Lloyd quantizer (LQ) was made using mean IoU, PA, and MA. Since it was impossible to plot 
a graph for every layer, averaging the results from the encoder and decoder groups was applied by evaluating the 
accuracy metrics.

Hybrid quantized network
The accuracy for all configurations for the retrained quantized network was calculated using the hybrid quantized 
network. In the hybrid quantized network, skip connection layers (SC1 and SC2) were quantized directly, while 
the remaining layers (C1-16 and TC1-3) were quantized using the layer-wise sensitivity analysis.

Modified backpropagation algorithm for L2 error minimization
The error signal, represented by δi, in ith iteration of the original back-propagation algorithm is shown in Eq. 4.

Config
Quantization level (M)
for encoder layers

Quantization level (M)
for decoder layers

Name C1 C2 C3 - C10 C11 C12 C13 C14 C15 - C16 TC1 SC1 TC2 SC2 TC3

E33-D33-SC0 3 3 3 3 3 3 3 3 3 0 3 0 3

E77-D77-SC0 7 7 7 7 7 7 7 7 7 0 7 0 7

E73-D33-SC0 7 7 7 3 3 3 3 3 3 0 3 0 3

E37-D33-SC0 3 3 7 7 3 7 3 3 3 0 3 0 3

E33-D33-SC3 3 3 3 3 3 3 3 3 3 3 3 3 3

E77-D77-SC7 7 7 7 7 7 7 7 7 7 7 7 7 7

Table 3.  Configurations for Quantization. The table shows the different configurations applied on each layer 
of the floating-point network with P A = 91.01%,MIU = 62.2%,MA = 78.1% accuracy (FCN-8 used for 
image segmentation). C indicates the convolution layer, TC represents the transpose convolution layer, and SC 
is used for the skip connections layer.
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δi = − ∂E

∂neti
� (4)

where δi is the error signal in ith iteration, E is the output error and neti is the sum of all the input values that 
belong to i.

The neti and the output of a neuron y(q)
j  in the updated feedforward pass are defined, respectively, in Eqs.s 5 

and 6.

	
neti =

∑
j∈Ai

w
(q)
i,j y

(q)
j � (5)

	 y
(q)
j = Ri (ϕi (neti))� (6)

where w(q)
i,j  are the quantized weights, y(q)

j  is the quantized signal, Ai is the neuron i that are near to input layer 
in the network, R(.) is the signal quantizer, and ϕ(.) is the activation function.

The delta in the updated back-propagation pass is given in Eq. 7.

	
δj = ϕ′

j (neti)
∑
i∈pi

δjw
(q)
i,j � (7)

where ϕ′
j  is the change in activation function, w(q)

i,j  is the quantized weight, δj  is the error in neuron j, and pi is 
the unit i that are near to end layer in the network.

Now the error gradient ∂E
∂wi,j

 is calculated as shown in Eq. 8.

	
∂E

∂wi,j
= −δiy

(q)
j � (8)

where ∂wi,j  is the change in weight, ∂E is the change in error, and y(q)
j  is the quantized signal.

The weight update wij,new  can be calculated as shown in Eq. 9.

	
wij,new = wij − α

⟨
∂E

∂wi,j

⟩
� (9)

Then the weight update during an iteration q is denoted by wq
ij,new  and given in Eq. 10.

	 wq
ij,new = Qij (wij,new)� (10)

where α is the learning rate, and wi,j  is the floating-point weight.

Results
To investigate the impact of GPU processing on time, we first developed results for FCN without quantization 
and then used a parallel quantization algorithm. After that, layer-wise sensitivity analysis is performed, which 
is then evaluated using standard assessment metrics such as mean IoU, PA, and MA. We compared the results 
of our approach with other popular quantization techniques on network sparsity, mean IoU, PA, and MA after 
determining the best configuration for L2 error minimization.

Accuracy of FCN without quantization
The network is first trained with the stochastic gradient descent and error-back propagation algorithms. For 
comparison purposes, the same dataset was used in training as that used by Shelhamer et al.30. On the PASCAL 
VOC 2011 dataset, the model took about 34 hours to train on the GPU, with a PA of 91.01%, a mean IoU of 
62.2%, and a MA of 78.1%.

Accuracy of FCN with direct quantization
After standard training, the network is directly quantized where the quantization is embedded in the retraining 
procedure. The layer-wise weights and the zero weights before and after quantization in the network are displayed 
as raw tables in Appendix B. Table 4 demonstrates the results of direct quantization on the trained FCN network 
for the 6 quantization configurations shown in Table 3.

Layer-wise sensitivity analysis
Mean intersection over union
Figure 3 Panel A) shows the Mean IoU after performing a sensitivity analysis on the weights of the encoder 
layers at various levels. At level M = 3, the weights of all encoder layers showed more sensitivity to quantization, 
especially C1, C7, C11, and C13. On the other hand, at level M = 7, weights of all the encoder layers exhibited 
low sensitivity to quantization except C1.
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Figure 3 Panel B) shows the Mean IoU after performing a sensitivity analysis on the weights of the decoder 
layers. At level M = 3, the weights of all decoder layers show low sensitivity to quantization, while at level 
M = 7 they showed comparably improved results.

Pixel accuracy
Figure 3 Panel C) shows the PA after performing a sensitivity analysis on the weights of the encoder layers. At 
level M = 3, the weights of all layers show more sensitivity to quantization, especially layers C1, C3, C7, and 
C5. On the other hand, at M = 7 weights of almost all layers show less sensitivity to quantization except the 
C1 layer. However, C13, C11, and C9 interestingly give more accurate results than the ones obtained from the 
floating-point network.

Figure 3 Panel D) shows the PA after performing sensitivity analysis on the weights of the decoder layer, 
which shows that at level M = 3, all layers show less sensitivity to quantization, and at level M = 7, all layers 
show higher accuracy than at M = 3.

Fig. 3.  Figure showing the sensitivity analysis of the retrieved quantized network for different quantization 
levels. Panels (a), (c), and (e) show mean IoU, PA, and MA values for encoder layers (C1–C14), while panels 
(b), (d), and (f) display the same values for decoder layers (C15-16, SC1-2 and TC1-3). All evaluation methods 
show that each layer is sensitive to the number of bits in the quantizer, where more bits mean higher accuracy.

 

FCN without 
quantization FCN with quantized networks

Percentage accuracy 
(%) Config

#

Percentage accuracy
with direct
quantization (%)

Percentage accuracy
with retrained
quantization (%)

 PA Mean IOU PA PA Mean IOU MA PA Mean IOU MA

91 62 78 E33-D33-SC0 75 4 5 83 46 58

E77-D77-SC0 76 7 8 90 59 77

E73-D33-SC0 75 4 5 88 53 74

E37-D33-SC0 75 4 5 89 56 75

E33-D33-SC3 75 4 5 75 4 10

E77-D77-SC7 76 7 8 76 4 5

Table 4.  Performance of FCN without quantization (base case) and with direct and retrained quantizations. 
The table shows the performance of FCN in terms of percentage accuracy (PA, mean intersection over union 
(mean IoU), and MA). Notice the severe degradation in performance with direct quantization of the network, 
while the performance is almost retained by the retrained network in the first four configurations. A retrained 
network with configuration E77-D77-SC0 produces the best performance.
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Mean accuracy
Figure 3 Panel E) shows the MA after performing sensitivity analysis on the weights of the encoder layers, where 
it was found that at level M = 3, C2 and C14 layers give comparably better results, but all other layers show 
higher sensitivity to quantization, mainly C11, C1, C13, and C5. On the other hand, at level M = 7, the accuracy 
of C14 is the same as that for a floating-point network. However, all layers, except C11, C1, and C13, show lower 
sensitivity to quantization than M = 3.

Figure 3 Panel F) shows the MA after performing a sensitivity analysis on the weights of the decoder layers. 
At level M = 3, layers SC2 and C15 give more accurate results than the floating-point network. However, the 
weights of other layers show lower sensitivity to quantization.

Retrained quantized network
After the layer-wise sensitivity analysis, the network layers were retrained one by one based on the configuration 
in Table 2. All the networks took nine days for training.

Table  4 shows the results for the retrained quantized network, where the first four configurations show 
significant improvement in network performance, while the last two configurations show the same network 
performance as that of the direct quantization network. Therefore, the two skip connection layers, SC1 and SC2, 
are very sensitive when we apply any M level to quantize these layers. In addition, configuration E77-D77-SC0 
shows nearly the same accuracy as the floating-point network on the test set.

Figure 4 shows five sample images taken from the PASCAL VOC 2012 dataset, used as a test dataset, along 
with the resulting pixel labels for these images from the unquantized FCN-8 network, the hybrid quantized 
network, and a few selected retrained quantized networks. Figure 5 presents qualitative segmentation results 
on a diverse set of challenging examples. These include scenes with occlusions, fine-grained object boundaries, 
and visually similar classes such as chair vs. sofa or person vs. bike. Each image is shown with its ground truth, 
the prediction from the floating-point FCN8 model, and outputs from four different quantized configurations. 
This comparison highlights how different quantization strategies perform in complex scenarios, illustrating the 
trade-offs between model compression and segmentation accuracy.

In terms of sparsity produced by different configurations for retrained networks with L2 error minimization, 
configuration E73-D33-SC0 induces the highest network sparsity of 45.2% followed by configuration E37-D33-
SC0 (network sparsity of 40.8%) and then configuration E77-D77-SC0 (network sparsity of 27.9%). The rest of 
the quantization configurations mentioned in Table 3 produced lower sparsity than the configuration E77-D77-
SC0.

Fig. 4.  Image showing some sample images present in the dataset, their pixel-wise labels, and resulting pixel 
labels from the floating-point network, hybrid quantized network, and two configurations of quantized 
networks. The legend displays the colour and class (name) of the object to be identified in the image. Five 
sample images containing aeroplanes, dogs, person, and chairs are shown along with their classification. The 
data and the pixel labels (ground truth) are taken from the PASCAL VOC 2012 dataset.
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The network’s parameter distribution before and after quantization provides valuable information about each 
layer’s sparsity. Figure 6 displays the fraction of network weights present in each layer, along with the percent of 
layer-wise sparsity achieved for the layer and its M level for configuration E37-D33-SC0.

Sparsity induced by the best performing configuration
The best-performing configuration is defined as the configuration that produces the most sparsity while 
minimizing the loss of accuracy. As illustrated in Table 4, we find that the configuration E77-D77-SC0 produced 
the best ratio. The proposed solution achieves an average network sparsity of 45 percent. For some layers, extreme 
sparsity is induced by L2 error minimization technique, e.g., for two of three transpose convolution layers, more 
than 95% sparsity is induced. On the other hand, a minimum of 30% sparsity is induced for the remaining layers, 
with the lowest sparsity of 30.07% for the skip connection layer SC1.

Fig. 5.  Qualitative segmentation outputs on challenging examples. Sixteen sample images with their pixel-wise 
classification results are shown for a variety of visually complex or ambiguous scenes. Each row illustrates the 
segmentation produced by the unquantized (floating-point) FCN8 network and by four different quantized 
configurations (Config 1–4), alongside the ground truth. These examples include thin structures, occlusions, 
or inter-class confusion (e.g., person vs. bike, sofa vs. chair), and are selected to demonstrate performance in 
difficult cases, as requested by the reviewer..
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Comparison with other quantization techniques
After applying sensitivity analysis using Fixed-Point (FP), Lloyd’s Quantizer (LQ), and L2 error minimization 
techniques, the performance of each method is illustrated in Fig. 7. The three panels display results for mean 
IoU, PA, and MA across encoder and decoder layers. The Y-axis in each panel represents the corresponding 
evaluation metric, while the X-axis indicates the bit width used for quantization. Quantizers are colour-coded, 
and encoder/decoder results are grouped to facilitate comparison. The figure highlights that both LQ and L2 
consistently outperform FP, with reduced sensitivity to bit width variations.

In terms of reduction in the size of the network by the quantization technique, Fig.  8 compares the memory 
footprint and pixel-level accuracy of three quantization strategies–full precision (FP), linear quantization (LQ), 
and the proposed L2-based quantization–at 2-bit and 3-bit weight configurations. The original network size 
before quantization is 457 MB. FP achieves the smallest model size but at the cost of significantly lower accuracy. 
In contrast, the L2 method achieves accuracy on par with LQ while requiring less memory in both quantization 
settings. For instance, at 2-bit precision, L2 reduces memory usage by approximately 8MB compared to LQ, 
with both achieving 90.25% accuracy. Similarly, at 3-bit precision, L2 attains 91% accuracy while using 2 MB 

Fig. 7.  Performance comparison of three quantization techniques–Fixed-Point (FP), Lloyd’s Quantizer (LQ), 
and L2 Error Minimization–across encoder and decoder layers. The three panels show mean IoU, PA, and MA 
as a function of bit width. Quantizers are colour-coded for clarity, and encoder/decoder results are visually 
grouped. Best-performing regions are highlighted to emphasize trends. The L2 and LQ methods consistently 
outperform FP across all metrics and bit widths, demonstrating greater robustness to quantization.

 

Fig. 6.  Bar graph showing the sparsity induced by each layer. The figure shows a bar chart showing the effect 
of quantization on the overall sparsity of the network. The blue bars show the quantization level as defined 
for Configuration E37-D33-SC0, the green bars show the percentage sparsity induced by the configuration in 
the retrained network, and the gray bars indicate the percentage of weights contained in the layer. Notice that 
the maximum sparsity (green bars) is induced in TC1 and TC2 (greater than 95%), while the greatest number 
of weights are contained in the C14 and C15 layers (approximately 79%). Many layers contain close to 0% 
weights, hence, any configuration for those layers does not affect the overall sparsity of the network.
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less memory than LQ. Compared to FP, L2 offers considerable accuracy gains–22.75% and 13% at 2-bit and 3-bit 
levels respectively–with only a moderate increase in memory usage. These results highlight the efficiency of L2 
quantization as a compelling alternative for memory-constrained deployments, offering a favourable trade-off 
between compactness and predictive performance.

Discussion
In this study, various quantization techniques for fully convolutional networks for semantic segmentation were 
explored and compared for performance and induced sparsity. FCNs are hard to deploy on resource-limited 
devices because enormous computational power and large memory storage are required. FCN has millions of 
trainable parameters and contains diverse types of layers such as convolution, transposed convolution, and skip 
connections. The general solution proposed in the literature to this challenge is to perform quantization using 
various techniques, e.g., embedded fixed-point quantization and Lloyd’s Quantizer, to induce sparsity at the 
cost of network performance. However, these techniques fail to find the right balance and result in either little 
sparsity or severe degradation of network performance, or both.

The solution proposed in this study for quantizing FCNs is to perform layer-wise sensitivity analysis to find 
the optimal quantization level for each layer. An updated retraining algorithm with error backpropagation was 
employed to recover the network loss during training. A direct relationship between quantization level and 
the performance of the encoder layers is observed due to the higher sensitivity of these layers to quantization, 
i.e., the higher the quantization level of the encoder part, the better the performance of the network (shown in 
Fig.  3). Therefore, selecting the right quantization level of these layers is significant to finding the right balance 
between network performance and induced sparsity.

Since the kernel of a skip connection layer is initialized with zeros, quantizing the skip connection layer with 
any level of M produces the same accuracy as that for direct quantization. Hence, instead of quantizing the FCN-
8 network using the layer-wise sensitivity analysis, hybrid quantization is used, where the skip connection layers 
(SC1 and SC2) are quantized directly, and the remaining layers are quantized using the layer-wise sensitivity 
analysis. The skip connection layers (SC1 and SC2) in the FCN-8 architecture were quantized directly without 
performing sensitivity analysis. This decision was due to their zero-initialization, which inherently results in 
minimal initial contribution to the output distributions of the network. Consequently, sensitivity analysis would 
yield negligible insights for these layers, as their quantization does not substantially impact overall accuracy or 
stability. This rationale aligns with findings in existing literature, which indicate that zero-initialized layers or 
connections typically show robustness against quantization-induced variations, particularly within image-based 
deep learning architectures34. Thus, sensitivity analysis was reserved for layers whose quantization significantly 
affects network performance.

Fig. 8.  Memory-accuracy trade-off comparison of Full Precision (FP), Linear Quantization (LQ), and the 
proposed L2 Quantization under 2-bit and 3-bit configurations. Bar plots represent model size in megabytes 
(MB), while dashed lines with solid black markers indicate pixel-level accuracy (%). Annotated bidirectional 
arrows emphasize L2’s effectiveness: it achieves the same accuracy as LQ with reduced memory usage and 
significantly outperforms FP in accuracy with a moderate memory increase. These results highlight L2’s 
suitability for resource-constrained environments where both memory efficiency and predictive performance 
are critical.
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Although our experiments were conducted on a single NVIDIA GTX 1060 GPU, the core quantization 
methods proposed in this work are intended to improve deployability on memory- and compute-constrained 
platforms. The reduction in model size and fixed-point representation is expected to translate well to mobile 
or embedded devices, such as ARM-based SoCs or edge accelerators. Future work will extend this study by 
evaluating inference performance and energy efficiency on such platforms to assess real-world portability.

The proposed research work that uses a fixed-point optimization approach to quantize the fully convolutional 
network with 2 or 3-bit precision and then fine-tune the quantized weights with retraining. Although this 
approach is similar to the work of Anwar et al.17 and Shin et al.18, there are a few notable differences in terms 
of approach with these studies. Anwar et al.17 and Shin et al.18 only addressed the quantization of convolution 
and pooling layers, while we have addressed the quantization of all layers, implemented using a GPU processor. 
Other notable differences between these techniques are the initialization of the quantization step size with the 
averaging method, deployment of sensitivity analysis to find the optimal value of quantization level for each 
layer in the network, and retraining of the network by embedding quantization during the retraining process. In 
addition, we compared the L2 quantization approach with other quantization methods, such as the embedded 
fixed-point algorithm and Lloyd’s method. Note that experiments done in this study and those done by Shelhamer 
et al.30 used the same dataset (PASCAL VOC 2011 dataset) for validation so that the results obtained by both 
techniques are comparable.

Furthermore, the front and end layers have fewer parameters than the middle layers; e.g., the C14 layer 
contains the highest number of parameters (more than 100 million) and the highest percentage of weights 
(approximately 76%). The overall sparsity induced by the L2 error minimization technique is 45% as most of the 
network weights are associated with layers C14 and C15, accounting for approximately 89% of the total weights 
in the network, and these layers show a sparsity percentage of approximately 46%. The L2 error minimization 
technique has already been applied on convolutional layers constituting approximately 95% of network weights 
in FCN-8, and hence the contribution of this study (quantization of other layers in the decoder, constituting 5% 
of network weights) is not observable for FCN-8. Yet, other network architectures with most network weights 
in the decoder (e.g., 3D FCNs with 2,037,080 weights in skip connection layers and 93,789 weights in transpose 
convolution layers versus 269,770 weights in the convolutional layers35, exist and will be the prime beneficiaries 
of quantization in terms of induced sparsity in the decoder.

In terms of accuracy, LQ is the most accurate method, slightly better than or equal to L2 error minimization 
technique in all encoder and decoder layers for all three accuracy evaluation metrics, as depicted in Fig.  7. 
However, the difference in performance between these two methods and with the fixed-point method is 
significant, as there is a noticeable decrease in network performance for all bits and accuracy metrics after 
performing fixed-point quantization on a network. So, while significant sparsity is observed for FP in Fig. 8, it 
comes at the cost of accuracy, which means that FP is not a useful quantization technique. Instead, while there 
is little difference between L2 and LQ in terms of network performance, L2 induces significantly higher sparsity 
than LQ. For example, in the case of 3-bit quantization, L2 reduces the number of weights in the network by 
27.2%while LQ induces only 0.01% sparsity in the network. Hence, L2 is a quantization technique that retains 
the best mix between network performance and sparsity induced by the quantization technique.

In terms of sensitivity analysis (Fig. 7), FP is seen to be the most sensitive to bit size as the increase in bit 
size leads to higher accuracy, and a decrease in bit size quickly degrades the network performance in all three 
accuracy measures. On the other hand, LQ appears to be insensitive to changes in bit size, while L2 shows little 
sensitivity to changes in bit size as well. In addition, L2 shows no effect on accuracy w.r.t. change in bit size in 
the decoder layers, while a relatively more observable change is seen for the encoder layers, especially for PA 
and MA.

While visual comparisons of L2 and LQ quantized outputs are not included in this work, our quantitative 
findings indicate that L2 maintains accuracy slightly better than LQ, particularly in low-bit scenarios. This 
behaviour is likely linked to L2’s objective of minimizing total reconstruction error, making it less susceptible to 
performance degradation under quantization. In contrast, LQ relies on uniform scaling, which may introduce 
greater variance in performance depending on layer-wise weight distributions. Although both methods are 
effective, L2 appears to offer enhanced robustness under tighter resource constraints. Further analysis on 
generalization across datasets and robustness to noise is planned as future work.

The best result of quantization with retraining achieves a sparsity of 40% at the cost of approximately 10% 
reduction in accuracy as measured by the mean intersection-over-union (62 pre-quantization vs. 56 post-
quantization), which is the standard score for the task of semantic segmentation. Although at first, it may not 
be a worthwhile sacrifice in accuracy, as the current work proposes a reduction in the total size of memory for 
VGG-16 by 6.35x and other studies with more extreme compression, which combine quantization with pruning 
and other techniques, reduce the total size in memory of the backbone architecture by 49x36. However, both 
works have a significant difference, and their results are not directly comparable with the current study. The 
current study mainly consists of applying quantization and fixed-point representation of convolutional network 
parameters to the particular case of FCN-8s and focuses on applying both post-training quantization (PTQ on a 
trained network) and quantization-aware training (QAT during the training process). However, the work done 
by Han et al.36 performs post-training quantization (PTQ) only and applies its results only on the first fifteen 
layers of FCN-8 based on VGG19 architecture. Alternatively, the ZeroQ method proposed by Cai et al.37 adopts 
existing quantization methods (both QAT and PTQ) with minor modifications and also performs layer-wise 
sensitivity analysis, albeit on the Microsoft COCO dataset and ImageNet. However, the performance of ZeroQ is 
not evaluated for semantic segmentation and is thus not comparable to the current study.

Note that the experiments designed for this study measure the quantities of interest for accuracy, parameter 
sparsity, and memory usage and are in line with the standards of most work on quantization as established 
by17,18. The study compared multiple types of quantizers, such as fixed-point, Lloyd’s, and L2 error minimization 
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techniques. In the literature, most studies have focused on parameter quantization, but a few recent studies have 
proposed quantization of both the parameters and activation functions simultaneously, as otherwise conversions 
between floating and fixed-points are necessary38. Hence, one of the avenues to explore in the future is to see the 
effect of quantization techniques on both the network parameters and the activation functions.

Another point to ponder is the choice of the pilot network (FCN-8) studied in this pilot study. Since the 
backbone architecture of these networks, VGG-16, has more than 100 million parameters, the effect of 
quantization and fixed-point representation is most visible with such a large number of weights. However, note 
that this is a pilot study for measuring the effect of quantization on VGG-16, and the results from the current 
study encourage the application of these techniques on more recent deep-learning-based architectures such as 
FaceNet, ResNet, and GoogleNet. Also, while VGG-16 has more than 100 million parameters, contemporary 
networks like ResNet-50 have only approximately 20 million parameters, and an argument can be made that 
switching the backbone alone without quantization will save more memory.

Although this study focuses on the FCN-8 architecture, which is derived from VGG, the proposed 
quantization and sparsity methods are not restricted to this architectural family. The fixed-point quantization 
strategy, along with L2-based retraining, is designed to operate independently of specific network topologies. As 
such, these techniques can be extended to deeper or more modern architectures, such as ResNet or lightweight 
models like MobileNet, with appropriate adjustments during calibration and retraining. Future work will aim 
to evaluate the effectiveness of this approach across a broader range of network designs to validate its scalability 
and generalizability.

Hence, one of the proposed future works on continuing this line of research is to complement the techniques 
applied in this study with ResNet and see if it further reduces the memory needed. In addition, it will be 
interesting to investigate if the results of L2 error minimization and other quantization techniques also hold on 
the residual connections layer introduced in these recent architectures.

One limitation of the current study is the retraining overhead associated with restoring accuracy after 
aggressive quantization. In our setup, full retraining of the FCN-8 model required several days of GPU time, 
largely due to the dense output space and high-resolution inputs typical of semantic segmentation tasks. To 
address this challenge, future work will explore more efficient strategies such as selectively fine-tuning high-
impact layers, progressive precision lowering, and knowledge distillation techniques. These approaches hold 
promise for reducing retraining time and making the quantization pipeline more practical for frequent model 
updates and real-time deployments.

Conclusion
This study explored ways to shrink and speed up FCNs, specifically for FCN-8 architecture based on VGG-
16, for real-time applications on resource-limited devices. Three quantization techniques were tested in 
this study. Embedded fixed-point quantization induced a high sparsity but compromised accuracy. Lloyd’s 
quantizer method maintained high accuracy but induced little or no sparsity. On the other hand, our proposed 
L2 error minimization approach showed the best balance between accuracy and induced sparsity, leading to 
faster inference with little degradation in inference accuracy on resource-limited devices. Hence, our study 
shows that L2 has the best trade-off between accuracy and speed. In the future, our work can be extended by 
applying the L2 error minimization technique on recent architectures like FaceNet, ResNet, GoogleNet, etc. 
Furthermore, exploring methods other than L2 error minimization technique, e.g., combining the pruning with 
the quantization technique or quantizing both weights and activation may further compress the network.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding authors on 
reasonable request.
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