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Crack propagation in solder joints remains a major challenge impacting the thermo-mechanical 
reliability of electronic devices, underscoring the importance of optimizing package and solder pad 
designs. Traditional Finite Element Analysis (FEA) techniques for predicting solder joint lifespan often 
rely on manual post-processing to identify high-risk regions for plastic strain accumulation. However, 
this manual process can fail to detect complex and subtle failure mechanisms and purely based on 
averaging the creep strain and correlating it to lifetime values collected from experiments using 
Coffin Manson equation. To address these limitations, this study presents an Artificial Intelligence 
(AI) framework designed for automated 3D FEA post-processing of surface-mounted devices (SMDs) 
assembled to Printed Circuit Board (PCB). This framework integrates 3D Convolutional Neural 
Networks (CNNs) and PointNet architectures to automatically extract complex spatial features from 
3D FEA data. These learned features are then linked to experimentally measured solder joint lifetimes 
through fully connected neural network layers, allowing the model to capture complex and nonlinear 
failure behaviours. The research specifically targets crack development in solder joints of ceramic-
based high-power LED packages used in automotive lighting systems. This dataset included variations 
in two-pad and three-pad configurations, as well as thin and thick film metallized ceramic substrates. 
Results from the study demonstrate that the PointNet model outperforms the 3D CNN, achieving a 
high correlation with experimental data (R2 = 99.91%). This AI-driven, automated feature extraction 
approach significantly improves the accuracy and provide the more reliable models for solder joint 
lifetime predictions, offering a substantial improvement over traditional method.
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Efficient thermal management and durable packaging are essential for the longevity and performance of high-
power LEDs, particularly to prevent overheating and system failure. A significant challenge in maintaining 
reliability arises from the thermomechanical stresses caused by mismatches in the coefficients of thermal 
expansion (CTE) among various packaging materials. These stresses often result in cracks in solder joint, which 
compromises device integrity over time. Finite Element Analysis (FEA) has been a standard tool for simulating 
solder joint behavior, offering valuable insights into stress distribution and plastic strain accumulation, all of 
which are critical factors affecting interconnect failures.

In the context of Ball Grid Array (BGA) packages, well-established methodologies effectively correlate FEA-
derived data with predictions of operational lifetime. Researchers often concentrate on assessing plastic strain at 
the outer solder balls by examining localized regions at the solder-ball interface, typically averaging strain data 
over a 25-micrometer solder layer. This information is then linked to lifetime forecasts through statistical models 
like the Weibull distribution1–9. However, surface-mounted device (SMD) ceramic LED packages lack a standard 
FEA-based approach for post processing. Unlike BGAs, SMD LED packages exhibit larger, more complex 
contact areas and distinct stress distributions due to diverse design configurations. These variations, including 
differences in solder pad layouts, ceramic substrate thicknesses, and copper metallization, create challenges for 
post-processing and lifetime modeling. While Shaygi et al.10 extended reliability studies by implementing the 
10% crack length integral area method originally introduced by Wunderle11, their work focused on a single-LED 
package design, limiting its broader applicability.
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Efforts to establish standardized evaluation methods for SMD LED packages are ongoing, especially 
concerning creep strain-based lifetime predictions. Existing AI-integrated FEA models for solder joint reliability 
have largely focused on BGA packages, leaving a gap in their adaptation for SMDs. For example, Subbarayan 
and Mahajan developed a hybrid model that combined FEA with artificial neural networks (ANNs) to analyze 
the impact of solder joint geometry, including volume, height, and pad size, on reliability outcomes12. Similarly, 
Qasaimeh et al. utilized ANNs to study fatigue crack propagation in lead-free solder joints under isothermal 
fatigue conditions13, and Sung et al. emphasized the importance of high-quality, comprehensive datasets for 
achieving accurate ANN-based solder joint reliability assessments14. Zhao contributed to this field by leveraging 
creep strain data to predict the fatigue life of BGA solder joints, accounting for variables like chip thickness, 
solder configurations, and PCB structure15.

Improvements in reliability modeling have also emerged through approaches like the correlation-driven 
neural network (CDNN) introduced by Samavatian et al., which evaluated solder joint lifespan by variation in 
material properties, thermal cycling conditions, and solder geometry. Their study revealed that thinner solder 
joints (20 μm) exhibited higher strain energy accumulation, resulting in shorter lifespans, while thicker joints 
(60 μm) experienced less creep energy and demonstrated longer durability16,17. Similarly, Chen et al. combined 
ANN models with FEA simulations to assess how various structural design parameters affect solder joint fatigue 
resistance in wafer-level chip packaging18. Yuan and Fan expanded upon this by integrating experimental 
thermal cycling data with AI-based models, applying both ANN and recurrent neural network (RNN) 
architectures to correlate average plastic strain measurements to lifetime predictions in wafer-level chip-scale 
packages (WLCSPs)19. Additionally, Ruiz-Jacinto et al. developed a stacked machine learning approach (SMLA) 
combined with FEA to estimate the low-cycle fatigue life of SAC305 solder in structural components20, while 
Höhne et al. applied neural networks alongside FEA to predict elastic strain distribution in solder joints under 
harmonic vibrations, dynamically identifying critical stress regions21.

A more physics-informed, data-driven strategy was proposed by Qasaimeh et al. to enhance solder joint 
lifetime predictions, addressing the inefficiencies of conventional testing. Their study highlighted how aging 
conditions and solder material composition significantly influence joint reliability, with ANN models achieving 
high prediction accuracy (R2 = 92%)22,23. Albrecht et al. explored using synthetic and augmented data to train 
feed-forward neural networks for predicting solder joint stresses under vibrational loads, utilizing FEA data to 
extract equivalent elastic strain metrics in flip-chip solder joints24. Reza et al. also contributed by developing a 
neural network-based method for estimating the useful lifetime of BGA solder joints, focusing on vulnerability 
factors such as chip placement, PCB thickness, solder alloy composition, and solder ball volume, particularly for 
drop-test conditions25.

Despite these advances, most approaches rely on averaging plastic strain in predefined regions, potentially 
overlooking critical spatial strain variations across solder joints. This limitation is especially significant for 
SMD LEDs, where complex package designs lead to uneven distributions of stress, making manual based post-
processing techniques less effective26.

Previous work by the authors26 analyzed SMD ceramic LED designs using FEA. However, these studies 
relied on manually extracted features, such as average creep strain in selected regions, potentially overlooking 
important failure modes. A later study27 applied 2D CNN to predict LED lifetimes using 2D FEA creep strain 
data. While the method showed promising results but required extensive preprocessing to transform the FEA 
data into a 2D grid format potentially discarding valuable information.

While traditional FEA based lifetime prediction methods have laid a strong foundation, they suffer from key 
limitations that define a clear research gap. These conventional approaches typically extract strain parameters 
from selected FEA regions and apply them to empirical fatigue models such as the Coffin-Manson equation. 
However, this process requires manual selection of critical zones, often involves strain averaging that suppresses 
local stress peaks, and reduces complex 3D stress states into simplified 2D representations. As a result, significant 
spatial information is lost information that is crucial for accurately capturing failure mechanisms in solder 
joints. Moreover, empirical models like Coffin-Manson depend heavily on material-specific constants, which 
are not always available or consistent across varying solder types and geometries. These methods also demand 
considerable manual preprocessing and feature engineering, making them difficult to scale or generalize for 
diverse LED package configurations, solder alloys, and larger datasets with complex stress distributions.

To address these shortcomings, this study introduces a novel AI-driven framework that leverages advanced 
3D deep learning models specifically 3D Convolutional Neural Networks (3D CNNs) and PointNet. These 
models directly process raw 3D FEA data without averaging, or projection, enabling automatic extraction of 
high-resolution spatial features that are intrinsically linked to failure behavior. By preserving the complete 3D 
strain information and eliminating reliance on manual feature selection or empirical fatigue equations, the 
proposed method enhances prediction accuracy, improves scalability, and generalizes effectively across different 
package designs and materials. This marks a major shift from traditional strain reduction pipelines toward end 
to end, data-driven lifetime modeling offering a more robust, interpretable, and scalable approach for solder 
joint reliability prediction.

Theoretical background
FEA
Finite Element Analysis (FEA) is a widely utilized method for assessing reliability and predicting the lifespan of 
solder joints in high-power LED packages. One of the most common techniques for estimating the number of 
cycles to failure, denoted as Nm

f , is the Coffin-Manson approach. This method focuses on plastic strain as a key 
indicator of fatigue damage, offering a structured basis for lifetime prediction.

Traditional lifetime prediction models are often paired with constitutive models that accurately describe a 
material’s nonlinear behavior under stress. Notable models in this area include the Norton, Anand, and Garofalo 

Scientific Reports |        (2025) 15:24340 2| https://doi.org/10.1038/s41598-025-06902-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


models, each designed to capture specific aspects of plastic deformation and creep behavior. In this research, the 
Garofalo model is selected to simulate the steady-state creep behavior of SnAgCu (SAC) solder alloys, with a 
particular emphasis on secondary creep mechanisms. The Garofalo model is mathematically represented by the 
following Eq. (1)28:

	 ε̇ = A[sinh (ασ)]n · e(−Q/RT ).� (1)

ϵ̇  is the time dependent creep strain rate. The Garafalo model contains four parameters: A is a material constant, 
α is the stress multiplier in the hyperbolic sine law, n is the stress exponent, Q represents the activation energy. R 
is the universal gas constant; T denotes the absolute temperature and σ is a reference equivalent stress level. The 
activation energy (Q) is a significant feature of the Garofalo model. In the Garofalo model, activation energy (Q) 
and stress exponent (n) are the most critical factors in determining secondary creep behavior, with temperature 
and applied stress playing a crucial role in influencing the overall creep rate28. In this study, the integration of 
FEA with the Garofalo model is used to analyze the reliability of surface-mounted device (SMD) ceramic LED 
packages. By accurately modeling the creep response of SAC solder joints, the research aims to deliver more 
precise lifetime predictions for various SMD configurations.

Neural network
A neural network is a sequence of mathematical operations designed to learn patterns from data. At its 
fundamental level, it performs a series of matrix multiplications, where each layer takes an input, multiplies it by 
a set of weights (stored in a matrix), and adds a bias term. This transforms the input into a new representation, 
allowing the network to extract meaningful features. However, if the network relied only on these linear 
operations, it would struggle to model complex relationships in data. To address this, an activation function 
is applied, introducing non-linearity. This non-linearity enables the network to learn intricate patterns and 
capture dependencies that would otherwise be impossible with purely linear transformations. During training, 
the network continuously adjusts its weights and biases to minimize prediction errors, refining its ability to 
map inputs to outputs with increasing accuracy. The relationship between input and output is mathematically 
represented in Eq. (2)29–33.

	 Y = f (W · X + b) .� (2)

Here, Y is the output vector, X is input vector, W is a matrix which contains the weights, b is the bias and f is the 
activation function.

Convolutional neural network
Convolutional Neural Networks (CNNs) are highly effective for processing structured grid data and are extended 
to 3D datasets through 3D CNNs, which apply 3D filters across the spatial dimensions (X, Y, Z). This enables the 
automatic extraction of complex spatial features from volumetric data, making 3D CNN well-suited for analyzing 
3D Finite Element Analysis (FEA) data. The core process involves convolutional layers generating feature maps 
by sliding filters over the input, followed by the ReLU activation function introducing non-linearity to capture 
intricate patterns. Pooling layers, typically using max pooling, reduce feature map dimensions, retaining critical 
information while lowering computational costs. Flattened feature maps are then fed into fully connected layers 
for high-level decision-making. In regression tasks, the final layer outputs continuous predictions, enabling 
accurate lifetime estimation of solder joints30.

However, 3D CNNs have limitations when dealing with unstructured 3D data, as they require voxelization, 
which leads to resolution loss, increased memory consumption, and a dependency on predefined grid structures. 
This is where PointNet offers a significant advantage. Unlike 3D CNNs, PointNet is designed to directly process 
raw 3D point cloud data without voxelization, making it highly efficient for applications where preserving spatial 
structure is crucial, such as LiDAR-based 3D object detection, robotic perception, and FEA-based reliability 
modeling in microelectronics.

PointNet processes each point individually using shared Multi-Layer Perceptron (MLPs) to learn point-wise 
features. It then applies a symmetric max-pooling function to aggregate global geometric information, ensuring 
invariance to input order and maintaining the raw spatial characteristics of the data. This architecture makes 
PointNet superior for capturing fine-grained failure mechanisms in solder joints, as it retains high-resolution 
geometric details that are often lost in voxelized representations used by 3D CNNs. Additionally, PointNet is 
computationally more efficient and can handle irregularly structured data more effectively, making it a better 
choice for analyzing 3D FEA results where complex mechanical failure patterns must be accurately modelled31. 
By leveraging both 3D CNNs for structured data and PointNet for unstructured point clouds, this study achieves 
comprehensive feature extraction from 3D FEA data, leading to improved predictive accuracy in solder joint 
lifetime estimation. Further methodological details are discussed in the later sections.

Optimizers and loss functions
Optimizers and loss functions play a vital role in the effective training of neural networks. The Adam (Adaptive 
Moment Estimation) optimizer is widely used due to its ability to combine the advantages of both AdaGrad 
and RMSProp. AdaGrad adapts the learning rate for each parameter based on past gradients, reducing it for 
frequently updated parameters. RMSProp improves AdaGrad by using an exponentially decaying average 
of squared gradients to maintain a more stable learning rate32. In comparison, Adam dynamically adjusts 
the learning rate for each parameter by utilizing estimates of the first moment (mean) and second moment 
(uncentered variance) of the gradients. This adaptive adjustment enables Adam to maintain a stable learning 
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rate while scaling according to gradient magnitudes, making it particularly efficient for training deep neural 
networks32.

For regression tasks, the network’s predicted outputs are evaluated against the actual continuous target values 
using a suitable loss function, typically the Mean Squared Error (MSE). The MSE calculates the average squared 
difference between predicted and true values, quantifying the model’s prediction error. Through backpropagation, 
this error is used to compute gradients that guide the optimizer in updating the network’s weights. By iteratively 
minimizing the loss, the model improves its predictive accuracy over successive training cycles33.

Leave one out cross validation (LOOCV) and K fold cross validation
Due to the limited size of the dataset, it is impractical to divide the data set into separate training and testing sets 
for training the neural network. Instead, the Leave One Out Cross-Validation (LOOCV) is used to maximize the 
use of available data34. In LOOCV, each data point is used once as the test set (single point), while the remaining 
data serve as the training set. This process is repeated so that each data point is used exactly once as a test set. 
This method helps to avoid overfitting and is better generalized while ensuring that the model is tested across 
all available data points, providing a comprehensive evaluation of model performance and stability despite the 
small sample size34–36.

In addition to LOOCV, k-fold cross-validation is implemented to further validate the model37. In this method, 
the dataset is divided into k equally sized folds. The model is trained on k−1 folds and tested on the remaining 
fold, repeating this process k times so that each fold serves as the test set once. Selecting k = 7 instead of k = 5 
offers a better balance between bias and variance. A higher k value in k-fold cross-validation, such as k = 7, 
divides the dataset into seven folds, meaning that in each iteration, 6/7 (≈ 85.7%) of the data is used for training 
and 1/7 (≈ 14.3%) for validation. This setup allows more data to be used for training in each cycle compared to 
k = 5, where only 4/5 (80%) is used for training. Therefore k = 7 is used along with the LOOCV in this study. This 
balance improves model reliability without significantly increasing computational time37.

The model’s predictive performance is evaluated using the R2 score (coefficient of determination), which 
measures how well the predicted values align with the actual values. An R2 score of 1 indicates perfect predictions, 
whereas a score of 0 suggests that the model performs no better than predicting the mean of the data38.

Overview of experimental dataset
This study is supported by a comprehensive experimental dataset featuring a variety of solder pastes, including 
five lead-free formulations. These range from standard SAC (Sn, Ag, Cu) alloys to compositions enhanced with 
elements such as Sb, Bi, Ni, and In. Detailed material compositions are provided in39,40. For simulation purpose, 
only SAC305, SAC105 and SAC107 + BiIn alloys were selected due to the availability of creep data. Efforts to 
collect experimental creep data for the remaining solder materials are ongoing and will be integrated into future 
simulations as the data becomes available.

Figure 1 illustrates various ceramic LED package types, each with distinct design characteristics. The LEDs 
were mounted onto aluminum insulated metal substrate (Al-IMS) printed circuit boards (PCBs). The dataset 
includes seven ceramic package designs, categorized by structural differences such as Flip Chip with solder 
pads (FC-SP), Flip Chip with gold bumps (FC-GB), and Vertical Thin Film (VTF) configurations. Additionally, 
the submount technology varies, with most LEDs using thick-film Aluminum Nitride (AlN) submount 
featuring a 50 μm copper (Cu) layer, while others utilize a thinner 5 μm copper layer. However, due to the lack 
of manufacturer-provided material data, we have assumed that the AlN material properties remain identical 
across all LED packages in our Finite Element Analysis (FEA) study. Each LED package may use AlN submount 
with different material properties depending on the manufacturing process, purity, and fabrication techniques. 
These variations can influence thermal conductivity, mechanical strength, and overall reliability. However, since 
manufacturers do not disclose detailed AlN material data, we sourced the material properties from a supplier 
and assumed uniform characteristics across all packages. While we acknowledge that our assumption may not 
fully capture real-world variations, it provides a reasonable baseline given the data constraints.

Footprint designs also differ, ranging from symmetrical two-pad configurations to “in-line” and “distributed” 
three-pad layouts. The ratio between electrical and thermal pad sizes varies across LED package types, 
contributing to differences in mechanical and thermal performance.

To evaluate reliability, the LED packages underwent accelerated aging through thermal shock cycling between 
− 40  °C and 125  °C, with a 30-min dwell time across 1,500 cycles. The degradation process was monitored 
using Transient Thermal Analysis (TTA) and Scanning Acoustic Microscopy (SAM), enabling detailed tracking 
of thermal degradation and crack development within the solder joints. Distinct failure mechanisms were 
identified, including thermal degradation and complete electrical failure, with strong alignment observed 
between TTA and SAM data. The lifetime assessment was based on a failure criterion defined by a 20% increase 
in thermal resistance, measured through TTA.

Notably, LED packages with thinner copper metallization failed at earlier cycles due to inadequate 
compensation for thermomechanical mismatch, a problem better mitigated by thicker copper layers in ceramic 
substrates.

The experimental dataset used in this study has been made publicly accessible on Kaggle for broader use in 
reliability modeling (​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​a​n​d​​r​e​a​s​z​i​​p​p​e​l​i​u​​s​/​h​e​l​l​a​s​t​u​d​y​-​o​f​-​l​e​d​s)

FEA model setup and model simplification
This paper employs a constitutive model-based approach to analyze solder joint lifetime under thermal shock, 
with a specific focus on creep behavior induced by thermal stresses arising from the mismatch in the coefficients 
of thermal expansion (CTE) between the ceramic substrate (AlN) and PCB boards in high-power LED packages. 
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To accurately estimate solder joint lifetime through finite element (FE) simulations, it is essential to post-process 
parameters that correlate with the failure mode, such as crack growth in the solder joints (Table 1).

Thermomechanical simulations are performed using Ansys with simplified 3D CAD models of ceramic-
based LED packages. Initial model includes a PCB with an aluminum core, dielectric insulation, and a copper 
layer where LED packages details are mentioned in Fig. 2 are mounted using the SAC solder. In this study three 
solders use SAC305, SAC105 and Senju M40 (SAC107 + BiIn). Material properties for aluminum, copper, die and 
SAC305 and SAC105 solders are sourced from existing literature41–44 while for Senju M40 (SAC107 + BiIn) in-
house creep measurement are done and material data and creep parameter are mentioned in Table 245. Property 
for Aluminum Nitride (AlN) and the dielectric are taken from the supplier. The study assumes that all materials, 
except for the solder, are considered purely elastic in their behavior, with details provided in Tables 1 and 2. For 
solder nonlinear material properties Garofalo Creep model is used.

The study uses a full model, as shown in Fig. 2. This setup incorporates a weak spring to avoid rigid body 
motion. Simulations start at the solder’s melting point of 217 °C, assuming a stress-free state, and cool down to 
room temperature (22 °C), where they stabilize for 3 h to dissipate stress. The model undergoes three thermal 
cycles from − 40  to 125 °C, each with a 30-min dwell time. Mesh size optimization determined an ideal element 

Material Youngs modulus (GPA) Poisson ratio CTE (ppm/°C)

Al 70 0.35 23.5

Cu 110 0.35 17.5

AlN 320 0.24 3.0

Dielectric 8 0.26 25.0

Die (GaN) 181 0.35 32.0

AuSn 68 0.35 16.0

SAC305 51 0.40 20.0

SAC105 37 0.35 20.0

SAC107 + BiIn 40 0.35 21.3

Table 1.  Material properties41–44.

 

Fig. 1.  Summary of relevant parameter of the LEDs39,40.
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size of 15 micrometers for solder and copper pads and 100 micrometers for other layers, confirmed through 
mesh convergence studies26.

To simplify the modeling process, the analysis begins with the model shown in Fig. 2, which includes the die, 
die attach, and first-level interconnect. The first-level interconnect is modelled using AuSn solder having stress 
free temperature at 280 °C, consistent with the experimental setup across all seven ceramic-based packages. To 
further validate the assumption that creep strain is lower in the first-level interconnects compared to the second 
level where failure typically initiates SAC305 solder is also evaluated for the first-level interconnect alongside 
the second level. Simulations performed on the FCSP4 package, as well as other ceramic-based packages, 
consistently confirm this behavior. Despite this widely held assumption, prior studies have lacked simulation-
based evidence to substantiate that creep strain is significantly higher at the second-level interconnect in 
ceramic-based packages. This study fills that gap with comprehensive simulation results.

The simulation results, presented in Fig. 3, show that the first-level interconnects exhibit negligible creep 
strain, regardless of whether AuSn or SAC305 solder is used. In contrast, the second-level interconnects 
consistently experience significantly higher creep strain due to greater CTE mismatch. This trend holds true 
even when alternative solders like SAC105 or SAC107 + BiIn are used at the second level. Furthermore, the 
simulations results findings are in strong agreement with experimental observations, where crack propagation 
and lifetime measurements are primarily associated with second-level interconnect failures.

These results help to simplify the model by not considering the die and die attach (first level solder), but 
copper metallization is considered at the top of ceramic, and the simulations are performed for all seven different 
ceramic packages using this simplified model compared to previous setup mentioned in26.

As shown in Fig. 4, FCGB1, a three-pad LED package with an unsymmetrical stress distribution at the top 
thermal and bottom two pads (electrical), has a 75 μm solder layer that is divided into five different layers of 
15 μm each, as discussed in a previous paper26. To refine the assessment of creep strains in the solder joints, only 
the top 15 μm layer is considered due to the higher CTE mismatch on ceramic side. Creep Strain is evaluated at 
every node for this 15 μm layer and this 3D data is exported as the Comma Separated Values (CSV) file which 
includes Node number, X, Y, Z, and creep strain value at each location. Further investigation is also carried out 
where more information like the complete 75 μm solder layer is also considered as input into AI model discussed 
further in methodology section.

Parameters SAC305 SAC105 Senju M40 (SAC107 + BiIn) AuSn

A (1/s) 2.78 *105 2.31 * 106 6.46 * 107 4.62 * 1015

α (1/MPA) 0.02447 0.02667 0.1529 2 * 10− 11

n (unitless) 6.41 6.5 3.46 2.07

Q/R 6500 6900 14,814 12,267

Table 2.  Garofalo model parameter41–44.

 

Fig. 2.  Detailed CAD model27.
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Related work
Foundational research for this study has been detailed in three prior papers26,27,45, which advanced reliability 
prediction models for solder joints in high-power LED packages using Finite Element Analysis (FEA). Earlier 
work explored traditional methods like the Coffin-Manson approach and newer FCNN-based models, focusing 
on techniques such as layer averaging and critical path averaging for post-processing FEA data. While these 
approaches showed reasonable accuracy, challenges persisted for certain LED package designs.

The recent paper27 introduced a novel AI-driven framework for predicting solder joint lifetime in high-
power LED packages by leveraging FEA data and 2D CNN. This approach automated the post-processing of 
creep strain data by transforming 3D FEA creep strain data into 2D grid maps. These grid maps were analysed 
using CNNs, with accuracy (R2 = 0.99) and significantly outperforming traditional techniques. By incorporating 
advanced neural network architectures and techniques like Grad-CAM for interpretability, this study identified 
critical regions affecting solder reliability.

In the earlier publication solely SAC105 and SAC305 data could be considered. In the present study the data set 
is increased based on the Garofalo creep model parameters for SAC107 + BiIn solder which were experimentally 
measured45. Additionally, the study evaluates the use of a 2D CNN model as a baseline for predicting solder joint 
lifetime. However, the preprocessing steps required in this approach exporting data, averaging, and defining a 
regular grid introduce significant information loss. This issue becomes increasingly problematic as the dataset 
grows to include more creep data and diverse design variations.

Fig. 4.  Full View of 3 Pad LED package showing unsymmetrical stress distribution for FCGB1 package along 
with the 5 elements across the solder thickness each with 15 μm (thermal pad side view as shown by arrow).

 

Fig. 3.  Creep strain in solder interconnects (a) First level (AuSn) (b) First level (SAC305) (c) Second level 
(SAC305).
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This paper introduces a framework for directly leveraging 3D FEA data for lifetime prediction a methodology 
not yet explored in existing research. To achieve this, two distinct 3D deep learning algorithms are tested and 
evaluated for their potential to improve prediction accuracy and generalization. A detailed examination of these 
approaches is provided in the method section, showcasing their capability to address the challenges of predictive 
modeling for high-power LED packages.

Method
This section discusses the different methods to utilize the FEA data to predict the lifetime of the LED packages. 
So, after the data collection from the FEA simulation for all seven ceramic LED packages for all three solders as 
explained in the above section. Different methods are utilized to process data to predict the lifetime.

2D CNN with FEA data as 2D grid map
As detailed in previous work27, a 2D CNN is employed as initial baseline model to integrate FEA data by 
transforming 3D strain distributions into 2D grid maps. To simplify computational requirements, the 3D 
FEA data for seven ceramic LED packages and three solders is reduced to a 2D representation through Z-axis 
averaging across the solder pad thickness. This approach effectively captures critical strain behavior at the top 
solder layer, where the mismatch between the ceramic substrate and solder is highest, while averaging along the 
X and Y axes (as mentioned the coordinate system in Fig. 4 above) was avoided to preserve essential features and 
maintain data density.

The processed FEA data is interpolated into a uniform grid size based on the largest number of nodes (from 
FC-SP3), ensuring consistent resolution across all solder pads. While effective, this method requires extensive 
preprocessing steps, such as Z-axis averaging and interpolation, which becomes increasingly complex as the 
dataset size grows. To address these challenges, alternative approaches that directly process 3D FEA data have 
been explored to reduce preprocessing requirements while efficiently handling larger and more complex datasets.

As discussed previously27, the final CNN architecture uses 300 × 300 grayscale FEA grid maps as input. The 
model consists of two convolutional layers with 32 and 64 filters, respectively, each followed by max-pooling 
layers to reduce spatial dimensions. The output is flattened into a one-dimensional vector and passed through a 
dense layer with 128 neurons and ReLU activation. A final dense layer with a single output and linear activation is 
used for regression. This model used for 2D FEA automatic feature extraction and extended further by including 
an additional solder material, SAC107 + BiIn, in addition to SAC105 and SAC305 which are already covered in 
the first paper, demonstrating the scalability of this architecture for predicting solder joint lifetimes.

3D CNN with FEA data as 3D voxelized representation
The 3D CNN approach directly utilizes the 3D data, avoiding extensive preprocessing steps like Z-axis averaging 
and interpolation. Unlike 2D methods that reduce 3D data to 2D grid maps potentially losing critical spatial 
information this approach preserves the intricate strain distributions across all dimensions, enabling a more 
comprehensive analysis of solder joint behavior. In this method, the 3D FEA data for seven ceramic LED 
packages and three solder types is transformed into a structured voxel grid, such as 8 × 8 × 8, 16 × 16 × 16, or 
32 × 32 × 32, which were tested during the study as shown in Fig. 5.

The voxelization process divides the entire 3D space into uniform cubic regions (voxels), and each voxel 
represents a fixed spatial volume. FEA points with similar coordinates are grouped into the same voxel based 
on their spatial proximity. For instance, points like (1.01, 2.02, 3.03) and (1.03, 2.01, 3.05) will map to the same 
voxel if the grid resolution is coarse (e.g., 16 × 16 × 16). Smaller grids have larger size voxels, causing more points 
to fall into the same cube, while larger grids (e.g., 64 × 64 × 64) create smaller voxels that capture finer spatial 
details but require more memory.

Within each voxel, creep strain values from all mapped points are aggregated, typically by averaging, to 
produce a single representative value for that region. This aggregation simplifies the data while preserving its 3D 
spatial structure. Empty voxels, which occur in areas without data points, remain unfilled. Finally, the voxel grids 
are normalized to ensure stability during training and compatibility across samples.

Different 3D CNN architecture is tried out for different grid sizes, but the grid size except 8 doesn’t affect the 
results that’s why 16 × 16 × 16 grid size is considered based on computational requirement also.

Table 3 outlines six different 3D CNN architectures with increasing complexity. The convolutional layers in 
these models range from 1 filter in the simplest model to 16 filters in the more advanced ones. Dense layers start 
with 4 neurons in Model 1 and increase progressively to 32 neurons in Model 6.

The trainable parameters in these architectures include the weights and biases of the convolutional layers, 
which are responsible for learning spatial features from the 3D voxelized input data, and the dense layers, which 
map the extracted features to the regression output. Each convolutional filter has weights that adapt during 
training to detect specific patterns, such as strain distribution or geometric features in the data. Similarly, the 
dense layers have trainable weights and biases that transform the flattened feature maps into the final lifetime 
prediction.

The Max Pooling layers and Flatten layers are non-trainable and perform fixed transformations. Max pooling 
reduces the spatial dimensions of the feature maps after each convolutional layer, retaining the most appropriate 
features while reducing computational complexity. The Flatten layer reshapes the reduced 3D feature maps into 
a 1D vector suitable for dense layers, ensuring compatibility for regression tasks.

The results will be discussed in the next section. However, Model 6 in general show the most promising 
results compared to the other models, therefore the model 6 is discussed in more details. The architecture begins 
with an input layer that accepts voxelized 3D grids of dimensions 16 × 16 × 16 × 1, representing creep strain from 
FEA data. The channel size is 1, as the input processes a single feature (e.g., creep strain) per voxel. The first 
convolutional layer takes this input and applies 4 filters of size 3 × 3 × 3 with a stride of 1 and padding of 1. This 
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results in 112 trainable parameters (4 × (27 + 1)), where each filter has 27 weights and 1 bias. The output of this 
layer has dimensions 16 × 16 × 16 × 4, maintaining the spatial resolution while increasing the depth.

The first max pooling layer reduces the spatial dimensions by half, applying 2 × 2 × 2 pooling. The output 
size becomes 8 × 8 × 8 × 4. This is followed by the second convolutional layer, which takes 4 input channels and 
applies 8 filters of size 3 × 3 × 3, with the same stride and padding. This layer includes 872 trainable parameters 
(8 × (108 + 1)), with each filter containing 108 weights and 1 bias. The output size is 8 × 8 × 8 × 8. Another max 
pooling layer further reduces the spatial dimensions by half, resulting in an output size of 4 × 4 × 4 × 8.

The third convolutional layer processes this input with 8 channels and applies 16 filters of size 3 × 3 × 3, also 
using stride 1 and padding 1. This layer introduces 3,472 trainable parameters (16 × (216 + 1)), where each filter 
has 216 weights and 1 bias. The output size remains 4 × 4 × 4 with 16 feature maps. The third max pooling layer 
further reduces the spatial dimensions to 2 × 2 × 2 × 16, providing the final feature map.

The feature map is then flattened into a 1D vector with 128 elements (2 × 2 × 2 × 16). This flattened vector 
is passed through a fully connected dense layer with 32 neurons. The dense layer includes 4,128 trainable 
parameters (128 × 32 + 32), where 128 × 32 are the weights and 32 are the biases. Finally, the output layer maps 
the 32 outputs from the dense layer to a single regression value, with 33 trainable parameters (32 × 1 + 1). This 
design effectively processes 3D data, enabling lifetime prediction of solder joints.

PointNet with FEA data as point cloud representation
The Point Net architecture builds on the direct utilization of point cloud data from FEA simulations, bypassing 
the need for voxelization or interpolation into a structured grid and can handle irregular grid data which is quite 

Model Convolutional layers Pooling layers Dense layers

1 1,2,4 filters Max Pooling (2 × 2 × 2) after each layer 4 neurons

2 2,4,8 filters Max Pooling (2 × 2 × 2) after each layer 8 neurons

3 4,8,16 filters Max Pooling (2 × 2 × 2) after each layer 4 neurons

4 4, 8, 16 filters Max Pooling (2 × 2 × 2) after each layer 8 neurons

5 4, 8, 16 filters Max Pooling (2 × 2 × 2) after each layer 16 neurons

6 4, 8, 16 filters Max Pooling (2 × 2 × 2) after each layer 32 neurons

Table 3.  Different 3D CNN architecture.

 

Fig. 5.  Voxelized Grid based on different sizes.
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often the case when you have different geometries of solder pads and LED packages and the number of nodes 
are different for each design which is also valid in this case as the 15 micrometer 3D data is having the different 
number of nodes for each LED package footprint (solder pad). Unlike 3D CNNs, which process structured 3D 
grids, Point Net directly leverages the raw 3D point cloud data consisting of X, Y, Z coordinates and creep strain 
as input features.

Table 4 outlines five different Point Net architectures tested out in this study simpler than these architectures 
are discarded as they are not giving sufficient accuracy, each designed with increasing complexity to process 
raw 3D point cloud data from FEA simulations for solder joint lifetime prediction. All architectures use ReLU 
activation, global max pooling, and the Adam optimizer. The MLP layers in these models progressively increase 
in feature extraction capacity, starting from 4→8→16 in the simplest model to 4→128→256 in the final and most 
advanced configuration. Similarly, the dense layers scale up from 16 neurons in Model 1 to 256 neurons in the 
model 5. Each model was tested to evaluate its ability to capture the spatial relationships within the point cloud 
data, with the final model 5 providing the better performance.

The final PointNet architecture accepts raw point cloud data with dimensions (batch size, Num points, 4) 
where 4 represents the X, Y, Z coordinates and creep strain of each point. The architecture begins with two 
MLP layers for point-wise feature extraction. The first MLP layer maps the 4 input features to 128-dimensional 
features, introducing 640 trainable parameters (128 × (4 + 1)). The additional “+1” accounts for the bias term in 
the linear transformation. The second MLP layer expands these features to 256 dimensions, with 33,024 trainable 
parameters (256 × (128 + 1)). Each MLP layer applies ReLU activation to introduce non-linearity, enabling the 
network to learn complex spatial and strain relationships.

After feature extraction, the model uses an Adaptive Max Pooling 1D layer to aggregate the most important 
point-wise features. This pooling operation compresses the 256-dimensional features of all points into a single 
global feature vector of size (batch size, 256). This step ensures permutation invariance, meaning the order of 
the input points does not affect the model’s output, which is crucial for handling unordered point cloud data.

The global feature vector is then passed through dense regression head. This head consists of a fully connected 
layer that maps the 256 global features to a single output value, representing the predicted lifetime. This layer 
introduces 257 trainable parameters, calculated as 1 × (256 + 1) again accounting for the bias term. Since this is a 
regression task, the final output layer uses a linear activation function to produce continuous lifetime predictions. 
Total trainable parameters are:

	640(MLP1) + 33,024(MLP2) + 0 (Pooling) + 257 (Dense layer) = 33,921 trainable parameters

The training process for this architecture employs the Adam optimizer with a learning rate of 1 × 10 − 4, 
minimizing the Mean Squared Error (MSE) loss function. Kaiming initialization is applied to all weights, 
ensuring stable gradient flow and faster convergence during training (for details see46).

This design leverages deep MLP layers for local feature extraction, global max pooling for feature 
aggregation, and dense layers for regression, enabling accurate lifetime prediction of solder joints. The final 
model demonstrates the ability to effectively capture the complex spatial relationships within the FEA data while 
maintaining computational efficiency. Further performance analysis will be detailed in the subsequent section.

Also, the same model 5 PointNet architecture is tested out using the full solder layer details for all seven 
packages means 75 μm information is used as input and details are discussed in results section.

For validation, Leave-One-Out Cross-Validation (LOOCV) was employed due to its suitability for small 
datasets, ensuring every sample was used for training and validation. The model was trained for 50 epochs in 
each fold, and the validation losses were averaged to assess overall performance. Other methods, such as K-Fold 
Cross-Validation also tested out and the details discussed later in result section. To enhance training stability and 
convergence, target values were normalized using min-max scaling. LOOCV and Kfold, combined with rigorous 
preprocessing and optimization, demonstrated the model’s robustness and generalization capability, providing 
reliable and reproducible results.

Results
This section presents the results from different models developed to predict the lifetime of solder joints in LED 
packages using FEA simulation data. In this study, the input data comprises three types of solders (SAC305, 
SAC105, SAC107 + BiIn) and seven different LED packages, resulting in a total of 21 distinct inputs fed into 
the CNN to predict lifetime values. Various architectures, including 2D CNN, 3D CNN, and 3D PointNet, 
were employed to process the data and evaluate their performance in predicting lifetime values. The models 
were validated using Leave-One-Out Cross-Validation (LOOCV) and K-Fold Cross-Validation (K = 7) to 
assess generalization performance. In Fig. 6, comparison of R2 scores across models demonstrates the superior 

Model MLP layers Global pooling Dense layers

1 4-8-16 Adaptive Max Pooling 16

2 4-16-32 Adaptive Max Pooling 32

3 4-32-64 Adaptive Max Pooling 64

4 4-64-128 Adaptive Max Pooling 128

5 4-128-256 Adaptive Max Pooling 256

Table 4.  Different PointNet CNN architecture.
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performance of the PointNet model over both 2D and 3D CNN models. While the 2D CNN showed high accuracy, 
it required extensive preprocessing, and the 3D CNN improved spatial feature learning but still depended on 
voxelization. In contrast, PointNet effectively learned spatial and strain-based relationships directly from the raw 
data, offering a robust and better solution for solder joint lifetime prediction.

The 2D CNN model transforms the 3D FEA data into 2D grid maps through Z-axis averaging, preserving the 
strain behavior at the top solder layer where the mismatch between the ceramic substrate and solder is highest. 
This method simplifies computation by reducing the dataset size but requires extensive preprocessing steps 
like interpolation and averaging. 2D CNN model achieved an R2 score of 0.9913 (LOOCV) and 0.87 (K-Fold), 
demonstrating high prediction accuracy but with a heavy reliance on preprocessing.

The 3D CNN model processes the full 15 micrometer 3D Data without reducing dimensionality. The FEA 
data was voxelized into structured grids of sizes 8 × 8 × 8, 16 × 16 × 16, and 32 × 32 × 32, with 16 × 16 × 16 chosen 
for its balance between accuracy and computational efficiency.

Model 6 achieved an R2 score of 0.9599 (LOOCV) and 0.7889 (K-Fold), showing better performance than 
simpler 3D CNN models but still requiring voxelization preprocessing.

The 3D PointNet architecture bypasses voxelization and directly processes the raw 3D point cloud data (X, 
Y, Z coordinates + creep strain). This allows the model to naturally handle irregular grids and different LED 
package geometries without any need for interpolation or feature engineering.

Model 5 performed the best and achieved an R2 score of 0.9991 (LOOCV) and 0.8730 (K-Fold), outperforming 
both the 2D and 3D CNN models.

From Fig. 6, it is evident that the PointNet architecture performs nearly as well with the complete 75 μm solder 
3D FEA data as Model 5 (with only 15 μm data). PointNet is faster and more efficient compared to traditional 
CNN architecture because it directly processes raw 3D point cloud data without requiring memory-intensive 
preprocessing like voxelization or Z-axis averaging. Voxelization, used in 3D CNN, converts continuous data 
into structured grids, which significantly increases memory usage as grid resolution increases (e.g., 32 × 32 × 32 
grids). This results in higher computational costs and longer training times due to the dense representation of 
data.

In contrast, PointNet operates on sparse point cloud data, which drastically reduces memory consumption 
by representing only the essential information X, Y, Z coordinates and strain without additional grid storage. 
Furthermore, its architecture relies on lightweight MLP layers for local feature extraction and a global max 
pooling layer for aggregation, eliminating the need for computationally expensive 3D convolutional operations. 
This streamlined process allows PointNet to handle larger datasets with lower computational overhead, making 
it faster, more scalable, and better suited for analyzing complex solder joint designs.

To further enhance the interpretability of the PointNet model for the complete 3D Point cloud which consist 
of 75 μm, a method was implemented to analyze the global feature activations extracted after the global max 
pooling layer46,47. This approach provides insights into how the model aggregates information from the entire 
75 μm 3D point cloud to make its predictions about solder joint lifetime in automotive LED packages.

The global max pooling layer in the SimplePointNet architecture compresses point-wise features extracted 
from the previous MLP layers (mlp1 and mlp2) into a single, compact global feature vector. This vector captures 
the most significant and discriminative features across the entire point cloud.

Fig. 6.  R2 Score Comparison for different trained models.
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To visualize these global features, we uniformly distributed the averaged global activation values across 
all points in the input point cloud. This projection maps abstract global features back to the spatial domain, 
enabling the creation of a 3D scatter plot where color intensity represents the influence of each region on the 
model’s predictions46,47. Areas with higher intensity highlight regions with strong predictive significance, while 
even low-intensity regions contribute to the overall output (scaling is shown in Fig. 7).

Since LED packages are symmetrical, the activations also exhibit symmetric patterns, indicating that the 
neural network primarily relies on one half of the structure for predictions while treating the other half as 
redundant. This suggests that the model effectively learns patterns from one side and generalizes them across 
the entire structure. Additionally, differences in activation patterns across solder materials demonstrate the 
network’s ability to recognize the impact of different solder types on LED package reliability and lifetime.

To further validate this behavior, we tested the network using only half of the solder data for 75 μm and 
observed no change in predictive accuracy. This confirms that the model is primarily learning from one half of 
the structure, reinforcing its reliance on symmetry rather than requiring the full dataset for accurate predictions. 
It also suggests that as the dataset grows, even partial input data may be sufficient to maintain performance, 
highlighting an opportunity to optimize data utilization and computational efficiency.

By visualizing global features in this way, we gain deeper insights into the model’s learned representations, 
enhancing transparency and interpretability. This is crucial in engineering applications, where understanding 
model behavior ensures that predictions align with real-world mechanical failure mechanisms. Unlike traditional 
“black-box” models, this approach helps engineers verify that the network is focusing on physically relevant 
features, an essential factor in high-stakes fields like automotive safety and microelectronics reliability.

Conclusion and future scope
The reliability and lifetime of electronic components are critical in the automotive industry, particularly for high-
power LED packasges used in headlights and safety-critical systems. Solder joint failures can cause costly recalls, 
safety risks, and reduced performance, making accurate lifetime prediction essential. This study introduces an 
AI-driven framework that uses 3D FEA data and deep learning models to provide insights into the thermo-
mechanical behavior of solder joints.

Traditional methods like manual post-processing and statistical models (e.g., Coffin-Manson) work for 
simple designs like BGAs but fail to capture the complexities of SMD ceramic LED packages. These methods 
rely on strain averaging, which results in oversimplification and data loss. This study evaluates the performance 
of 2D CNN, 3D CNN, and PointNet for predicting solder joint lifetimes. The results highlight that advanced 
neural networks can overcome these limitations.

The 2D CNN simplifies 3D FEA data into 2D grid maps but loses critical spatial information. The 3D 
CNN retains spatial detail using voxelized data but is computationally expensive due to memory-intensive 
preprocessing. PointNet outperforms both by directly processing raw 3D point cloud data without averaging or 
voxelization, preserving strain variations and spatial relationships. This makes PointNet more accurate, efficient, 
and scalable for analyzing diverse LED package geometries and solder footprints. While 2D CNN showed strong 
performance in this case, it is evident that as design complexity increases, preserving complete 3D information 
becomes essential to avoid the data loss inherent in 2D-based approaches.

Fig. 7.  Model Interpretation - using averaging learnable weights from global feature vector (Mapping Learned 
Feature Importance from Global Feature Vector to 3D Point Cloud).

 

Scientific Reports |        (2025) 15:24340 12| https://doi.org/10.1038/s41598-025-06902-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To build on the promising results of this study, future work will focus on significantly scaling the dataset 
to include over 5000 LED package simulations across a wider range of solder materials, pad configurations, 
and PCB designs. Also plan to incorporate additional design variables such as solder layer thickness, copper 
metallization patterns, and geometric asymmetries to improve model generalization. Beyond thermal cycling, 
the framework will be extended to evaluate reliability under different loading and environmental conditions 
such as vibration, power cycling, and humidity. Furthermore, we aim to explore more advanced architectures, 
including PointNet++, DGCNN, and Graph Neural Networks (GNNs), to better capture local spatial interactions 
and improve prediction accuracy.

Data availability
The datasets generated and analyzed during the current study are available in the Reliability of High-Power LEDs 
and Solder Pastes repository, https://www.​kaggle.com/d​atasets/andr​easzippeliu​s/hellastudy-of-leds2.
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