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Shared e-scooter use has rapidly expanded in major cities worldwide, offering promising solutions 
for sustainable transport and new data sources to advance the science of cities. This study leverages 
a city-scale GPS dataset of 14,029 e-scooter trips recorded over a three-month period in 2021 within 
the Mannheim/Ludwigshafen metropolitan area in Germany. For the first time, our analysis integrates 
the discrete choice modelling framework with space syntax theory using such large-scale revealed 
preference data, uncovering new insights into the impact of spatial configuration on routing behaviour. 
The results highlight the significant role of spatial configuration in e-scooter routing, with space syntax 
metrics consistently improving model performance and suggesting that riders avoid both places that 
are not well-integrated on a regional and highly accessible on a local level. Results also reveal that 
dedicated bicycle infrastructure, including bike lanes and tracks, reduces perceived travel distance 
by over 51% for e-scooter riders. Additionally, riders exhibit context-dependent behaviour, favouring 
pedestrian spaces during busy weekdays while avoiding them at other times. These insights can guide 
policymakers in designing micro-mobility-friendly urban environments.

E-scooters have become an integral part of urban transport systems in cities worldwide. Their electric power, 
silent operation, speed without requiring muscle effort, compact size, and flexibility make them a viable option 
for safe1, efficient2,3, environmentally friendly4,5, and equitable6,7 mobility. However, they also pose significant 
challenges concerning safety8, cluttering9, liability10, and appropriate traffic rules11, leading to the recent banning 
of shared e-scooters in major cities like Madrid, Melbourne, and Paris12–14. This controversy underscores the 
urgent need for better understanding and management of this emerging mode of transport15,16.

Meanwhile, e-scooters are a rich source of passively generated big data17,18, offering new opportunities to 
advance the science of cities such as space syntax theory, which aims to understand the relationship between 
the urban environment and people’s behaviour19. Rooted in graph theory-based representation, space syntax 
provides analytical methods to assess spatial configuration20,21, which refers to the overall structure of urban 
spaces22. This sociospatial theory23 has been used to explain a plethora of social phenomena, ranging from 
cultural influences on architecture24 to social exclusion25, crime patterns26, and economic activity27.

The relationship between spatial configuration and human movements has been a key research focus. The 
theory of natural movement –an extension of space syntax theory—posits that the configuration of space is 
the primary factor in explaining movement patterns28. Studies based on the theory of natural movement have 
investigated the influence of spatial configuration on the flow of pedestrians23,28–34, cyclists30,35,36, and cars37. 
However, in addition to not having examined the flow of e-scooters, they rely heavily on manual counting, a 
labour-intensive and error-prone method unsuitable for large-scale analysis and unable to capture temporal 
variations. Furthermore, they mainly cover accumulated flows without considering individuals’ traces, thus 
falling short of being able to explain the travellers’ decision-making processes and resulting in a lack of intuitive 
policy recommendations.

As a result, space syntax has seen limited integration into planning practice38, despite the fact that 
understanding routing behaviour is fundamental to state-of-the-art transport modelling approaches, such as 
the four-step algorithm39 and agent-based modelling40, which are crucial to assess and quantify the impacts 
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of demographic41, land use42, and infrastructure changes43 on transport system performance. While route 
choice models have been extensively studied for traditional transport modes such as driving44–47, walking48–50, 
cycling51,52, and public transport53,54, route choice modelling for e-scooters remains in its infancy, so far limited 
to small-scale, controlled studies55 and with restricted geographical and demographic scope56–58. Filling this 
critical gap can help cities integrate e-scooters more effectively into their transport systems, maximising their 
benefits while addressing associated challenges.

This study addresses this research gap by developing the first e-scooter route choice model at a city scale, 
leveraging vehicle tracking data from 14,029 trips recorded from June to August 2021 in the Mannheim/
Ludwigshafen metropolitan area in Germany. By analysing these trips, we uncover how various factors influence 
the likelihood of individuals selecting specific paths, including for the first time understanding the impact of 
spatial configurations on routing behaviour. The methodology involves generating a choice set for each observed 
trip, comprising alternative routes, and applying a discrete choice modelling framework to compare these with 
the actual routes taken. Furthermore, by estimating models for different time periods, we are able to identify 
temporal variations in e-scooter users’ route choices for the first time. Attributes tested include route length51,57,59, 
the availability of dedicated cycling infrastructure to mitigate conflicts with motorists52,60–64, the frequency and 
angles of turns30,31,61–63,65, and spatial configuration (Table 1).

By leveraging passively generated big data17 on a city scale, this study offers new insights into e-scooter routing 
behaviour at a high spatio-temporal resolution. These insights are valuable for both research and practice, as 
they enhance our understanding of the applicability of space syntax theory while supporting urban planning 
with a scalable, data-driven approach to inform policy and infrastructure development38. Moreover, this study 
advances space syntax theory by integrating spatial configuration parameters into discrete route choice models, 
revealing how spatial configuration influence the routing behaviour.

Results
The nomenclature used in the results and the subsequent methods section is presented in Table 2.

Spatio-temporal data overview
There are, on average, 2.6 e-scooter trips per hour over the study period. As shown in Table 3, this number varies 
by hour of the day and day of the week, with the average peak of e-scooter trips reached on Saturdays between 
8 and 9 pm, and the average minimum is observed on Wednesdays between 4 and 5am. Across the days of the 
week, more e-scooter trips tend to take place in the afternoon than in the morning times, with Sunday through 
Wednesday having a below-average number of e-scooter trips while the number of e-scooter trips on Thursday 
to Saturdays is above average. Average Mondays, Tuesdays, and Thursdays have a morning peak, though on a 
limited scale with below-average trip numbers, between 8 and 9am, and all days of the week display two peak 
hours in the second half of the day, one in the afternoon, and the second after 7 pm.

To facilitate the analysis of route choices of e-scooter users and identify potential temporal variations, the 
analysed trips are classified based on whether they are made during a time of below-average or above-average 
e-scooter traffic and whether the trip started during a weekday or on the weekend. In summary, four time periods 
are considered: (a) weekday low traffic, (b) weekday high traffic, (c) weekend low traffic, and (d) weekend high 
traffic. The temporal distribution of these time periods over the hours of the week is displayed with varying font 
colours in Table 3. For the reader’s information, Table 3 also includes the deviation Zh of each hour h of the week’s 
mean trip number nave,h from the average number of trips per hour nave,total expressed in standard deviations s, 
so that Zh = (nave,h—nave,total)/s.

Figure 1 depicts the number of e-scooter departures and arrivals per time period, aggregated to a hexagonal 
grid with horizontal and vertical spacing of 500 m. It is visible that the hotspots of both departures and arrivals 
lie in the city centre of Mannheim, between the rivers Rhein and Neckar. In the case of Weekday High Traffic 
period, a second but smaller centre of demand lies in the city centre of Ludwigshafen. The locations of the trip 
arrivals are less concentrated than of the trip departures with the maximum number of e-scooter departures in 
a grid cell reaching up to 550 during Weekday High Traffic but arrivals per grid cell accumulating to only 372 in 
the same time period.

Model 1 Model 2 Model 3 Model 4

Attributes

 Infrastructure type ✓ ✓

 Route length ✓ ✓

 Turns ✓ ✓

 Spatial configuration ✓ ✓

Time periods

 Weekday low ✓ ✓ ✓ ✓

 Weekday high ✓ ✓ ✓ ✓

 Weekend low ✓ ✓ ✓ ✓

 Weekend high ✓ ✓ ✓ ✓

Table 1.  Methodology structure.
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Route choice modelling
To examine context-specific routing decisions, we analyse temporal variations in routing models across each of 
the four time periods. Per time period, four different model types are estimated (Table 1): Model 1 takes into 
account only attributes concerning the alternatives’ lengths and their bicycle infrastructure separation. Model 
2 includes angles and turns and Model 3 relies solely on spatial configuration parameters. Model 4 comprises 
a combination of the attributes of Models 1, 2, and 3. The parameter estimation results for these models are 
presented in Table 4 and discussed below.

Symbol Description

AI(u) Angular Integration of segment u

βCycle lane Cycle lane parameter of route choice model

βCycle track Cycle track parameter of route choice model

βjk k-th parameter of alternative j

βP S
j Path Size parameter of alternative j

βk k-th parameter of route choice model

βlength Length parameter of route choice model

C Choice set

CHangular(u) Angular Choice of segment u

γi,i+1 Angle between i-th and i + 1-th segment within a path

dangular(u,v) Angular distance between segments u and v

dwalking(u,v) Walking distance between segments u and v

δij Binary variable of segment i within route j

δt Binary variable of segment t

f Index of a segment

g Index of a segment

h Index of an hour of the week

i Index of a segment of a path P

j Index of an alternative route

k Index of a route attribute

Lj Path length of alternative j

li Segment length of segment i

N Number of segments within a network

NP Number of segments within path P

nave,h Average trips at hour h of the week

nave,total Average hourly trips over study period

NACH(u) Normalised Angular Choice of segment u

NAIN(u) Normalised Angular Integration of segment u

P Index of a path

Pj Choice probability of alternative j

Pu,v Set of paths between segments u and v

P∗f,g Set of shortest paths between segments f and g

PSj Path Size attribute of alternative j

s Standard deviation of average hourly trips

t Index of routes within P∗f,g

TD(u) Total Depth of segment u

Γj Set of segments in route j

u Index of a network segment

Vj Systematic utility of alternative j

v Index of a network segment

VoD Value-of-distance

w(γi,i+1) Weight of angle γi,i+1

Xjk k-th attribute of alternative j

Zh Deviation of average e-scooter traffic at hour h from weekly mean

Table 2.  Nomenclature.
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Infrastructure type and route length
Across Model 1 and 4, the consistently negative length parameters confirm behavioural validity, as longer 
distances reduce the likelihood of an alternative route being chosen. Most infrastructure attributes, particularly 
the separation between bicycle infrastructure and motorised traffic, increase the odds of an alternative being 
selected. In contrast, travelling in the contra-flow direction of a one-way road—whether legally permitted or 
not—is consistently associated with lower choice probabilities. Notably, only 36% of all observed trips did not 
use a one-way road illegally in a contraflow direction.

The influence of pedestrian space on the choice probability varies across the models, indicating time-
dependent preferences among e-scooter riders. During weekday low-traffic times, pedestrian spaces positively 
affect choice probability, whereas during weekday high-traffic hours, they have a negative impact. The weekend 
models do not indicate a clear preference for pedestrian spaces, with high covariances leading to the removal of 
the attribute from the low traffic models, and Model 1 and Model 4 showing opposite effects for the high traffic 
times.

Turns
Regarding the impact of turns, Model 2, across time periods, consistently indicates that a higher number of 
sharp right turns reduces the likelihood of a route being chosen. However, in Model 4, the direction of this 
effect reverses, except during weekday high-traffic hours, where sharp and right-angled turns, both right and 
left, negatively impact choice probability. This shows that the influence of sharp right turns on e-scooter routing 
behaviour is context-dependent and time-sensitive, highlighting the importance of incorporating temporal 
variations in route choice models.

Time Mon Tue Wed Thu Fri Sat Sun Average
00:00 -0.53 -0.77 -0.29 -0.26 -0.40 0.75 1.36 -0.03

01:00 -0.74 -0.92 -0.84 -0.74 -0.76 0.74 1.11 -0.31

02:00 -1.16 -1.29 -1.35 -1.17 -0.90 0.21 0.33 -0.77

03:00 -1.44 -1.49 -1.46 -1.36 -1.25 -0.51 -0.10 -1.09

04:00 -1.57 -1.44 -1.59 -1.42 -1.34 -1.05 -0.92 -1.33

05:00 -1.38 -1.27 -1.35 -1.29 -1.34 -1.05 -1.22 -1.27

06:00 -1.25 -1.15 -1.26 -1.17 -1.19 -1.24 -1.47 -1.25

07:00 -0.82 -0.68 -0.82 -0.81 -0.83 -1.05 -1.42 -0.92

08:00 -0.57 -0.34 -0.51 -0.55 -0.57 -0.87 -1.37 -0.68

09:00 -0.64 -0.45 -0.50 -0.76 -0.45 -0.69 -1.37 -0.69

10:00 -0.73 -0.73 -0.50 -0.59 -0.41 -0.56 -0.92 -0.64

11:00 -0.50 -0.42 -0.43 -0.37 0.09 -0.13 -0.52 -0.33

12:00 -0.33 -0.20 -0.09 -0.06 0.13 0.02 -0.16 -0.10

13:00 -0.48 -0.17 0.09 0.08 0.50 0.44 0.17 0.09

14:00 -0.18 0.38 -0.04 0.35 0.67 0.97 0.22 0.34

15:00 0.36 0.78 0.46 0.79 0.93 0.88 0.61 0.69

16:00 0.32 0.72 0.69 1.00 1.23 1.41 0.39 0.82

17:00 0.72 0.97 1.04 1.40 1.65 1.85 0.53 1.16

18:00 1.04 0.92 0.97 1.50 2.07 1.66 0.75 1.27

19:00 0.62 0.95 1.06 1.41 1.76 1.97 1.25 1.28

20:00 0.78 0.69 1.24 1.41 1.65 2.36 0.48 1.22

21:00 0.99 0.69 0.82 1.20 1.58 2.15 0.48 1.12

22:00 0.34 0.27 0.87 1.02 1.82 2.13 0.11 0.93

23:00 -0.49 0.03 0.31 0.69 1.75 1.45 -0.39 0.47

Average -0.32 -0.21 -0.14 0.01 0.27 0.49 -0.09 0.00

Table 3.  Variations of average trips per hour by day of the week, expressed in standard deviations Zh 
with nave,total = 2.63 and s = 3.02. Hourly classification as , , 

, .
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Spatial configuration
Model 3 focuses exclusively on spatial configuration parameters. “Normalised Angular Choice” (NACH), 
“Normalised Angular Integration” (NAIN), and “Total Depth” (TD) at varying radiuses, ranging from 500 m 
via 1  km, 5  km, 10  km, to the complete network, were tested for their potential impact on route choice as 
past research has found they impact aggregated traffic flows of different modes19,66–68. Due to covariances, a 
maximum of four significant variables were retained in the final models. Significant parameters are linked to 
the values of NACH 500 m, a measure for the through-movement potential of a network segment at a local 
level66, and TD, a metric describing the closeness of a given street segment to the other street segments. As these 
metrics constitute qualities of the network segments, they are assigned to the alternative routes by examining 
their minimum, mean, and maximum values along the alternative route.

The maximum value of TD is consistently associated with a lower choice probability, suggesting that e-scooter 
riders avoid areas that are not easily accessible for to-movement during weekends and weekday low-traffic 
periods. Similarly, the maximum value of NACH 500 m along the alternative route is consistently associated with 
a lower choice probability, apart from weekend high traffic times. In contrast, a higher minimum NACH 500 m 
value generally increases the choice probability, except during weekday low-traffic periods. Weekend models 
further reveal that a higher mean NACH 500 m value along the alternative route increases its choice probability. 
While the spatial configuration parameters can be interpreted as representing local through-movement or 
regional accessibility for to-movement potential69, they are abstract metrics and unlikely to be consciously 
considered by riders. Despite this, our model results highlight the clear influence of spatial configuration on 
routing behaviour. This does not only support existing research on the broader impact of urban structure on 
accumulated movement flows70–72 but also emphasises its influence on individuals’ routing decisions, a fact that 
should be taken into urban planning considerations.

Parameter combination
Model 4 integrates all parameters from Models 1, 2, and 3. As expected, the aggregate model fit improves, as 
indicated by higher final log-likelihood values, which measure how well the model predicts observed choices. 
Further, likelihood ratio tests are used to assess whether the more complex Model 4 significantly outperforms 
the simpler Models 1, 2, and 3, with the null hypothesis of ‘no improvement in goodness-of-fit’ being rejected 
at a significance level of 0.001. This demonstrates that combining infrastructure, turn, and spatial configuration 
attributes substantially enhances the predictive accuracy of the route choice model, highlighting the complexity 
of interactions between these parameters.

Value-of-distance indicators
To enhance the comparability of the effect sizes across different models with parameter estimates of varying 
magnitudes, marginal rates of substitution can be calculated. They provide insights into the trade-off between 
a baseline attribute and other attributes of the alternative within the utility function which, within a linear 
model, is achieved by dividing a parameter estimate with the baseline attribute’s parameter73. Table 5 provides 
an overview of the value-of-distance (VoD) indicators, marginal rates of substitution with the route’s alternative 

Fig. 1.  Spatial distribution of accumulated departures and arrivals by time period.
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as the baseline attribute, which is typically chosen due to its straightforward interpretability, for the estimated 
models. This means the VoD indicator of route attribute k is calculated as βk / βlength. A negative VoD indicator 
suggests a reduction of the perceived distance of the alternative by the calculated fraction, and a positive VoD 
indicator the opposite. As Model 2 and Model 3 do not contain a length parameter, no value-of-distance 
indicators are calculated for them.

Table 5 shows that dedicated cycling infrastructure—which can also be used by e-scooters—such as dedicated 
cycle lanes (i.e. βCycle lane / βlength) and cycle tracks (i.e. βCycle track / βlength) consistently reduce the perceived distance 
by at least 51% (in the case of Weekday High Traffic Model 1), and at most by 134% (for the Weekday Low 
Traffic Model 4). The latter value suggests an overcompensation of the negative impact of route length on the 
alternative’s utility by providing cycling infrastructure. Riding an e-scooter in the contraflow direction of a road 

Parameter

Weekday low traffic Weekday high traffic

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Length [m] − 0.0027*** − 0.0020*** − 0.0022*** − 0.0016***

ln (PSj) 2.33*** 2.2900*** 2.3100*** 2.2600***

Infrastructure

 Contra road [m] − 0.0016*** − 0.0014***

 Contra road allowed [m] − 0.00001 − 0.0002 − 0.0001 − 0.0001

 Shared lane [m] 0.0019** 0.0014 0.0010 0.0004

 Cycle lane [m] 0.0026*** 0.0027*** 0.0011*** 0.0011**

 Pedestrian space [m] 0.0001 0.0004** − 0.0006*** − 0.0004***

 Cycle track [m] 0.0022*** 0.0021*** 0.0015*** 0.0013***

 Contra cycle track [m] 0.0009*** 0.0008**

Turns and angles

 Turns right sharp [m−1] − 0.5750*** 0.0235*** − 182*** − 6.7300

 Turns right right [m−1] − 442*** − 146***

 Turns left sharp [m−1] − 179*** − 13.800

 Turns left right [m−1] − 438*** − 136***

Spatial configuration

 NACH 500 m min [–] 4.24*** 1.47***

 NACH 500 m mean [–]

 NACH 500 m max [–] − 8.700*** − 4.9900*** − 8.61*** − 3.97***

 TD maximum [–] − 0.000005*** − 0.000003***

 Final log likelihood − 4876.347 − 6682.339 − 7278.475 − 4485.643 − 11,201.83 − 18,844.25 − 16,388.04 − 9717.55

Parameter

Weekend low traffic Weekend high traffic

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Length [m] − 0.0028*** − 0.0017*** − 0.0024*** − 0.0016***

ln (PSj) 2.2600*** 2.2300*** 2.4100*** 2.4200***

Infrastructure

 Contra road [m]

 Contra road allowed [m] − 0.0003 − 0.0007

 Shared lane [m] 0.0040* 0.0022 0.0040*** 0.0033***

 Cycle lane [m] 0.0028*** 0.0023*** 0.0018*** 0.0017***

 Pedestrian space [m] − 0.0002 0.0003*

 Cycle track [m] 0.0022*** 0.0026*** 0.0018*** 0.0016***

 Contra cycle track [m]

Turns and angles

 Turns right sharp [m−1] − 296*** 84.6*** − 189*** 53.2***

 Turns right right [m−1]

 Turns left sharp [m−1]

 Turns left right [m−1]

Spatial configuration

 NACH 500 m min [–] 1.49*** 0.534 1.49*** 0.548**

 NACH 500 m mean [–] 2.53* 4.22** 1.61** 2.36***

 NACH 500 m max [–] − 10.7*** − 7.9*** 9.1*** − 6.54***

 TD maximum [–] − 0.000003*** − 0.000002*** − 0.000004*** − 0.000002***

 Final log likelihood − 982.6342 − 1861.813 − 1432.606 − 882.6045 − 4914.076 − 8348.334 − 7153.219 − 4440.326

Table 4.  Model parameter estimates (*p < 0.1, **p < 0.01, ***p < 0.001).
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consistently increases the perceived distance with the effect being smaller when this practice is permitted. The 
effect size of turns is remarkable, even when it is considered that the seemingly four-digit numbers are reduced 
if the attribute unit is changed to, for instance, km−1 instead of m−1.

The similarity in effect size of the NACH 500 m maximum parameters for the weekday and weekend models 
respectively is noticeable, with the VoD indicator being more than 1.5 times higher on weekends than on 
weekdays. This indicates that local attractors of through-movement, especially for pedestrians, have a stronger 
negative effect on a route’s utility on the weekend than on weekdays which could be linked to increased pedestrian 
activities in local high streets during weekends which are avoided by e-scooter users. Similarly, across all models, 
the effect of the TD maximum parameter is small and not displayable with two decimal places.

Sensitivity analysis
To evaluate the stability of the modelling results in light of variable parameter estimates of the spatial 
configuration attributes introduced through this study, a sensitivity analysis is conducted. Specifically, we test 
the change of the model fit in light of a change in the spatial configuration parameters which we vary in 5% 
steps between 20% below and 20% above the parameter estimate. Figure 2 depicts the results of this analysis 
with the x-axis comprising the relative change in the spatial configuration parameters and the y-axis comprising 
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Fig. 2.  Sensitivity analysis of spatial configuration parameters.

 

Parameter

Weekday Weekend

Low traffic High traffic Low traffic High traffic

Model 1 Model 4 Model 1 Model 4 Model 1 Model 4 Model 1 Model 4

Infrastructure

 Contra road [m] 0.71 0.91

 Contra road allowed [m] 0.01 0.09 0.03 0.08 0.12 0.42

 Shared lane [m] − 0.69 − 0.71 − 0.45 − 0.27 − 1.41 − 1.26 − 1.69 − 2.08

 Cycle lane [m] − 0.98 − 1.34 − 0.51 − 0.68 − 1.01 − 1.33 − 0.77 − 1.08

 Pedestrian space [m] − 0.02 − 0.22 0.27 0.28 0.09 − 0.20

 Cycle track [m] − 0.84 − 1.04 − 0.70 − 0.82 − 0.78 − 1.26 − 0.75 − 1.03

 Contra cycle track [m] − 0.33 − 0.38

Turns and angles

 Turns right sharp [m−1] − 11.87 4259.49 − 49,473.68 − 33,670.89

 Turns right right [m−1] 92,405.06

 Turns left sharp [m−1] 8734.18

 Turns left right [m−1] 86,075.95

Spatial configuration

 NACH 500 m minimum [–] − 930.38 − 312.28 − 346.84

 NACH 500 m mean [–] − 2467.84 − 1493.67

 NACH 500 m maximum [–] 2520.20 2512.66 4619.88 4139.24

 TD maximum [–] 0.00 0.00 0.00

Table 5.  Value-of-distance indicators.
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the corresponding change in the model fit assessed through its log likelihood relative to the model with the 
estimated parameter.

Since a maximum likelihood estimator was used, it is visible that all models have their maximal model fit 
with the estimated parameters. While all parameters associated with a model describing a High Traffic period, 
i.e. Weekday High Traffic or Weekend Low Traffic, result in a relative change in the log likelihood of − 0.096% 
when the parameter is varied by 20%, the TD maximum parameter shows a relative variability of up to − 0.206% 
for the High Traffic periods, and NACH 500 m maximum of up to -0.196% for the case of Weekend Low Traffic. 
These results indicate that the choice of the spatial configuration parameters has little bearing over the models’ 
fits and that potential mis-estimations do not undermine the model quality.

Discussion
This study reveals that e-scooter routing behaviour is shaped by a complex interplay of factors, including 
dedicated cycling infrastructure, route directness, spatial configuration, and temporal dynamics. Contrary to 
simplified assumptions in existing literature74, riders do not simply follow the shortest path. Instead, they show 
a clear preference for routes with a higher proportion of dedicated cycling infrastructure, such as segregated 
bicycle lanes and tracks, while avoiding routes with high maximum local NACH 500  m and maximum TD, 
reflecting a tendency to avoid places that are both highly accessible for through-movement on a local and 
comparatively secluded on a regional level.

The results contribute to the existing body of space syntax theory-driven knowledge by integrating spatial 
configuration parameters into discrete route choice models, whereas traditional space syntax studies focus on 
accumulated flows. Specifically, we demonstrate for the first time, based on large-scale tracking data on a city 
level from e-scooters, that the spatial configuration parameters NACH 500 m and TD maximum can substantially 
improve the models’ goodness-of-fit. Our study’s findings show that e-scooter routing behaviour occupies an 
intermediate position between pedestrian and vehicular flows as angular choice measures have been strongly 
correlated with vehicle flows21, whereas NACH measures typically have limited influence on pedestrian traffic68. 
This finding substantially broadens the application of space syntax to emerging transport modes, and call for 
integrating spatial configuration into route choice models for all modes of significance.

The perceived value of cycling infrastructure is particularly notable, with cycle lanes and tracks reducing 
travel distance by at least 51%. This aligns with previous research showing that both current and potential 
e-scooter users consider dedicated infrastructure as a means to avoid potentially dangerous interactions with 
motorised traffic64,75,76. Apart from weekday high traffic times, the positive impact of cycling infrastructure even 
outweighs the negative impact of increased route length, further underscoring its importance. These findings are 
also consistent with cycling-focused studies51,59,62 and emphasise the value of investment in such infrastructure 
for planning sustainable cities.

Temporal variations indicate that e-scooter riders utilise pedestrian spaces differently depending on traffic 
conditions. Pedestrian areas are preferred during weekday low-traffic periods, likely as a way to avoid congested 
roadways, but are avoided during weekday as well as weekend high-traffic times. This suggests that pedestrian 
spaces serve as a deviation when carriageways are perceived as too busy during car traffic peak hours but are not 
a preferred option otherwise. Also, a lower number of e-scooters in use could lead to a rider’s reduced perception 
of safety when using a carriageway as they anticipate a reverse “safety in numbers” effect77, leading to e-scooter 
riders avoiding potentially conflict-prone road spaces.

Interestingly, despite e-scooter use in pedestrian areas being illegal in the study region78, the data reveal an 
average of 209 m per trip in such spaces, with fewer than 30% of trips avoiding pedestrian areas entirely. It needs 
to be considered, however, that the dataset does not distinguish between ridden and pushed e-scooters, which 
may influence these findings, as users can jump off and on their vehicles11. Overall, these results suggest that 
riders often perceive roadways as unsafe or congested, reinforcing the need for policymakers to expand micro-
mobility infrastructure on high-demand roads and reduce reliance on pedestrian spaces. Integrated planning 
that incorporates both pedestrian and micro-mobility needs is essential to addressing conflicts and enhancing 
the overall functionality of urban spaces.

Future research should explore the generalisability of these findings by conducting comparative studies in 
different geographic and regulatory contexts. This is particularly relevant as the data used to estimate the models 
is likely to be affected by the events surrounding Covid-19. While most legal restrictions limiting the movement 
and social interactions were lifted during the study period, potentially temporal behavioural changes could 
have affected people’s trip purposes, times and frequencies, people’s mode choices and the composition of the 
e-scooter ridership, the business of streets, etc.

To improve the accuracy of the route choice models, future work should also incorporate additional route 
attributes and user characteristics which could not be incorporated into the presented models due to a shortage 
of available data. For example, factors influencing route attractiveness outside of dedicated cycling infrastructure 
and intuitiveness, such as the volume of vehicular traffic captured through vehicular counts or derived from 
traffic models, the proximity of green and blue infrastructure based on geospatial data, perceptions of safety and 
pleasantness identified through field surveys, as well as the state of the infrastructure based on datasets typically 
held by local governments could be tested for their relevance to e-scooter route choice. In addition, it can be 
hypothesised that, although the physical effort required to ride an e-scooter uphill is less than for a bicycle, slope 
could still impact battery charging levels and rider comfort and therefore, its relevance for e-scooters’ routing 
should be assessed. Furthermore, incorporating user characteristics, such as experience levels, demographics, 
or familiarity with the area, could further enhance the predictive accuracy of route choice models. Additionally, 
understanding the behaviour of riders of private e-scooters, who may have different preferences than shared 
e-scooter users, is crucial for developing inclusive transport policies and infrastructure strategies.
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The results of this study provide actionable insights for policymakers, planners, and businesses. Transport 
planners can use these findings to incorporate e-scooters into existing transport models, enabling the assessment 
of potential impacts from changes in land use, employment changes, and infrastructure development. In 
particular, this can help local authorities to justify investments in cycling infrastructure as part of a unified 
micro-mobility network, including converting one-way cycle tracks into bi-directional lanes to accommodate 
growing demand.

For shared e-scooter operators, these findings can inform fleet management strategies. Recognising user 
preferences for specific routes due to infrastructure, safety, or convenience can help anticipate demand hotspots 
and optimise fleet allocation and charging strategies. Frequently chosen routes that deviate from the shortest 
paths can guide the placement of charging stations or swapping hubs, reducing inefficiencies. Operators can 
also implement dynamic pricing strategies that reflect common trip patterns, incentivising users to take specific 
routes that balance system utilisation or avoid congestion. These improvements collectively enhance the 
sustainability and efficiency of e-scooter systems, benefiting urban mobility as a whole.

Methods
Data
Network
Factors typically considered in route choice models range from costs and time or distance measures to attributes 
of the built environment and quality of the available infrastructure to geometric aspects of the chosen route. 
As for cars, bicycle route choice models typically include attributes linked to the infrastructure of the choice 
set in question. This comprises the level of separation of bicycle infrastructure from other forms of transport, 
particularly cars52,60–63, one-way restrictions63, type of intersection control51,63, slope51,62, and traffic levels51,63.

Information about infrastructure useable by e-scooters has been extracted from OpenStreetMap (OSM)79, 
including information about separate bicycle infrastructure that can be used by e-scooters, and handled with 
QGIS to accommodate the route choice modelling process. Roads that are not useable by e-scooter users (e.g., 
motorways and dual carriageways) are omitted from the infrastructure dataset.

Building on previous research indicating that e-scooter users prefer bicycle infrastructure, the OSM network 
is classified into four categories: (i) roads with no separate bicycle infrastructure, (ii) roads with bicycle lanes, 
(iii) cycle tracks, and (iv) areas designated for pedestrian use. Furthermore, one-way restrictions, including 
exemptions for bicycle users, are identified from the OSM dataset. Figure 3 and Table 6 depict the distribution of 
bicycle infrastructure in Mannheim/Ludwigshafen, Germany.

Spatial configuration can be operationalised using the methods provided by space syntax theory that builds 
on graph theory to analyse the position of one spatial entity relative to all or parts of the totality of all spatial 
entities. In research, these spatial entities have been axial lines, describing longest lines of sight20,80, segment 
lines, capturing the connections between intersections of axial lines81, or road centre lines21. As this research is 
concerned with capturing the differences between different infrastructure qualities—something that cannot be 
integrated into the axial lines approach—and needs to consider the length of routes—that cannot be captured 
with either the axial lines or the segment lines approach—the latter approach is chosen.

Researchers in space syntax theory have developed multiple key parameters to analyse a place’s spatial 
configuration. This study follows the works of Ståhle et al.82 and van Nes and Yamu69 that have been integrated 
into the Place Syntax Tool plugin for QGIS, which has been used to calculate the space syntax parameters. They 
are based on the construction of a graph from street network data with, for the purpose of this study, a street 
segment being interpreted as a node of the graph and intersections creating links between them. In that context, 
the “Total Depth” of segment u, TD(u), is defined as the sum of shortest walking distances dwalking(u,v) from u to 
every other segment v in the network:

	
T D (u) =

N∑
u ̸=v

dwalking (u, v) ,� (1)

with N as the total number of segments in the network.
In addition to walking distance, path lengths can be measured as angular distance. For example, the space 

syntax research community has developed the attributes of “Angular Integration” AI, “Normalised Angular 
Integration” NAIN, and “Normalised Angular Change” NACH of a street segment u. For completeness, these 
values are defined in Eqs. (2–4) below82, although the former two attributes were not retained for any of the final 
models presented in this article:

	
AI (u) = N − 1

1 +
∑

u̸=v
dangular (u, v) � (2)

	
NAIN (u) = N1.2

1 +
∑

u̸=v
dangular (u, v) � (3)

	
NACH (u) = log(CHangular(u) + 1)

log(2 +
∑

u̸=v
dangular (u, v)) � (4)

The angular distance between nodes u and v, dangular(u,v), is measured as a function of angular change (Eq. 5):
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dangular (u, v) = min

P ∈Pu,v

∑NP −1

i=1
w(γi,i+1)� (5)

with Pu,v  as the set of paths between u and v, and γi,i+1 as the angle between two subsequent segments i and i + 1 
within a path P with NP segments, measured in radian.

The angular weight is defined in Eq. (6) and ensures that straight lines which are split into segments at 
intersections and therefore do not constitute a turn for the traveller, have a weight of 0 and right angles a weight 
of 1 as demanded by Hillier and Iida83:

	
w (γi,i+1) = 2 − 2

π
(γi,i+1modπ)� (6)

Infrastructure Length [km]

Road 3580.0

… with bicycle lane 36.5

… one-way 497.1

… with bicycles allowed contraflow 45.7

Bicycle track 404.3

… one-way 105.0

Pedestrian space 716.6

Total 4700.9

Table 6.  Network classes in the Mannheim/Ludwigshafen metropolitan area.

 

Fig. 3.  Network classification in the Mannheim/Ludwigshafen metropolitan area.
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“Angular Choice” CHangular of segment u, or, in other words, the betweenness centrality69 of node u in a graph 
with link weights depending on the angle between the segments is the number of shortest angular paths between 
nodes s and t in the network (Eq. 7):

	
CHangular (u) =

∑N−1

f

∑N−1

g

∑|P∗f,g|
t δt

|P∗f,g|
� (7)

with u ̸= f ̸= g denoting segments in the network, P∗f,g  the set of shortest angular paths between f and g, N 
the number of segments in the network, and δt = 1 if segment u is included in the t-th path and δt = 0 if not. 
Typically, P∗f,g  would contain only one element, meaning |P∗f,g| = 1, but in rare occasions, multiple shortest 
paths of similar lengths can be found whose weights are then evenly distributed across the network.

These measures, if applied to a network as a whole, are called global and are sensitive to the boundary of the 
network84. This is mitigated if the local measures are calculated, i.e. for a subset of the network which is defined 
by a radius r around segment u.

Tracking data
Tracking data from 31,154 trips made with shared e-scooters during the period 1st June to 31st August 2021 in 
the twin city of Mannheim/Ludwigshafen in the states of Baden-Württemberg and Rheinland-Pfalz in the South-
West of Germany have been provided by the micro-mobility company Lime. In addition to the trips’ start and 
end times, GPS coordinates have been recorded at intervals between 1 and 120 s. Obvious errors, represented by 
empty records and trips with a distance of 0, as well as unlikely trips, i.e., trips with an average velocity of 0.5 m/s 
or greater than 6 m/s—which represent walking speed85 and the legal speed limit78, respectively—are removed 
from the database.

The GPS tracks have been matched to the road network using a Hidden-Markov-Model (HMM)-based 
algorithm86. After additional filtering to remove map-matched trips with too high a discrepancy from the 
original track in terms of distance, speed, and detours, 14,029 trips’ records are used for the model estimation 
process.

To identify potential differences in routing between times of low and high e-scooter traffic, we classify every 
of the 168 h of a week as either being a low or a high traffic time. For this, the average number of trips over the 
course of the observation period is calculated for each of these 168 h. An hour is classified as “Low traffic” if 
its average number of trips is below the average of every hour and as “High traffic” if it is equal to or above that 
(Eq. 8):

	
h ∈

{
Low traffic, if nave,h < nave,total

High traffic, else � (8)

with h as an hour of the week, Low traffic and High traffic being sets of hours of the week, nave,h as the average 
number of trips during a week’s h’s hour and nave,total as the average number of trips over every hour in the 
dataset.

Route choice model
Route choice modelling is commonly based on random utility models, which assume that individuals aim to 
maximise the benefit derived from their choices. This benefit is typically expressed as the utility of each alternative, 
depending on the attributes of the alternatives and the characteristics of the decision-maker. However, due to 
the unavailability of data on the trip makers’ characteristics for this research, these characteristics cannot be 
considered when analysing the alternatives’ utility in this study.

Choice set generation
In theory, the number of potential routes between two points in space is unlimited. Therefore, identifying the 
set of choices available to and considered by the individual is a critical focus in revealed preference studies, 
especially in route choice modelling. For this study, the Metropolis–Hastings algorithm87 is applied to generate 
a set of alternatives. Starting from an initial route connecting an origin node a with a destination node b which 
typically is the shortest path between the two, the algorithm creates a representative sample of alternative routes 
available between a and b by adding nodes to and consequently deleting nodes from that path. The observed 
routes are by default added to the choice set.

On average, 25.7 alternatives are created per trip with a minimum of two and a maximum of 157 alternatives. 
For half of the observed trips, 22 or fewer alternatives have been created. The alternatives’ attributes are calculated 
based on the attributes of the utilised network segments. Table 7 provides an overview of the attributes of both 
the observed routes and their alternatives.

Observed routes, on average, are shorter than the alternatives. For both the observed and the alternative 
routes, the proportion spent on road space without dedicated bicycle or pedestrian infrastructure, including 
legally or illegally riding in the contra sense of a one-way road, accounts for the largest part of an average trip. 
At intersections, the angle of a turn is measured, whereby a continuation as a straight line is equivalent to 180˚ 
and a U-turn is equivalent to 0. As expected, the smallest angles in both observed and alternative roads is equal 
to 0 whereas the largest angles are 180˚ in both cases. On average, the total turning angle along a route is less 
than half as big as in the generated alternatives. Furthermore, the observed routes, on average, involve fewer 
turns (i.e. changes of direction) than the generated alternatives. This is also true for sharp and right-angled 
turns, regardless of whether they are directed towards the right or left. Regarding the spatial configuration 
parameters, “Normalised Angular Change” (NACH), “Angular Integration” (AI), and “Total Depth” (TD) have 
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been calculated for the network. These network parameters are translated into route attributes by calculating 
their minimum, maximum, and mean values. This approach is chosen as it allows to identify whether e-scooter 
riders avoid or prefer infrastructure of high or low centrality.

Modelling framework
The systematic utility of alternative j Vj is captured through a linear combination of the alternative’s attributes 
Xjk and parameters βjk (Eq. 9)

	
Vj =

∑
k
βjk · Xjk + βP S

j · ln(P Sj)� (9)

with k as an attribute’s index, whereby PSj describes the alternative’s Path Size which accounts for the overlap 
between alternative routes in within the choice set and is formulated as depicted in (Eq. 10) 88:

	

P Sj =
∑
i∈Γj

li

Lj
· 1∑

jϵC
δij

� (10)

with Γj  as the set of all segments in alternative route j, li as the length of segment i, Lj as the total length of route 
j, C as the route choice set, and δij as 1 if link i is included in route j and 0 if not.

The choice probability Pj of alternative j is given through Eq. (11):

	
Pj = exp(Vj)∑

i
exp(Vi)

� (11)

The python Biogeme package89 was used for model estimation.

Data availability
The data supporting the findings of this study are available from Lime Electric Ireland Limited but are not pub-
licly accessible due to licensing restrictions. Access to the data may be granted upon request to Dr Haitao He, 
subject to approval from Lime Electric Ireland Limited.
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