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Genomic selection (GS) has become a widely used tool in breeding programs, enhancing selection 
accuracy and leading to faster genetic progress. However, in small populations, GS faces challenges 
due to limited data and a large number of markers potentially leading to biased predictions. 
Implementing feature selection strategies is essential to improve prediction accuracy and avoid 
overfitting. Hence, we compared the predictive ability of genomic best linear unbiased prediction 
(GBLUP), Bayesian B (BayesB), and elastic net (ENet) models, using all markers and feature selection 
via GWAS and fixation index (FST) to reduce marker numbers, for growth and ultrasound carcass 
traits in three Nellore cattle populations differentially selected for yearling body weight (YBW). The 
populations evaluated included: Nellore Control (NeC), selected for YBW; Nellore Selection (NeS), 
selected for maximum YBW; and Nellore Traditional (NeT), selected for maximum YBW and lower 
residual feed intake (RFI) since 2013. Comparing the statistical approaches using GBLUP as the 
reference, ENet improved prediction accuracy by 10% for growth traits and 12% for carcass traits, 
while BayesB showed no improvement for growth traits but achieved a 3% gain for carcass traits. 
When comparing models using all markers to those with variable selection, both GWAS and FST 
improved prediction accuracy across models, with FST outperforming GWAS in stratified populations. 
A stricter GWAS threshold (> 1.0% explained variance), compared to a less conservative criterion 
(> 0.5%), reduced BayesB prediction accuracy (6.8%), while slightly increasing accuracy for GBLUP 
(1.3%) and ENet (2.4%). Similarly, a more restrictive FST threshold (> 0.2) against a less conservative 
(> 0.1) resulted in smaller gains for GBLUP (4%) and ENet (5%), but reduced BayesB accuracy (− 4%). 
Overall, selecting markers through GWAS and FST improves prediction accuracy for both growth and 
carcass traits, particularly in stratified populations. However, stricter thresholds can negatively impact 
accuracy, highlighting the need for optimized marker selection strategies.
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Using genomic information in animal breeding has become a standard approach for evaluating and selecting 
animals. Including this information in genetic evaluations has improved selection accuracy, especially for 
young animals, compared to traditional pedigree-based evaluation1,2. Single-nucleotide polymorphism (SNP) 
information has provided a new opportunity to predict complex phenotypes accurately by offering a better 
match of genetic architecture and Mendelian sampling (MS) than traditional pedigree-based methods3. SNP 
markers allow the estimation of genomic-based breeding values (GEBVs), achieving greater genetic gains and 
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reducing costs in progeny testing4. This cost reduction occurs because genomic information enables early and 
accurate identification of superior animals, eliminating the need to wait for phenotypic data from offspring. 
Consequently, fewer animals must be required for expensive and time-consuming progeny performance 
recording, thereby minimizing the resources necessary for data collection and analysis.

Genomic prediction (GP) relies on a large number of widely distributed markers across chromosomes 
to ensure that quantitative trait loci (QTLs), which have both small and large effects, can be captured5,6. A 
high density of markers provides a more comprehensive representation of the genetic background of traits, 
enabling markers to capture a significant proportion of the trait variation and accurately predict breeding value 
(EBV)7. For GS, the genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) are 
traditionally used, based on the assumption that trait variability results from the influence of multiple loci with 
additive contributions distributed across the genome8. However, ssGBLUP has become more widely adopted in 
recent years because it combines pedigree, phenotypic, and genomic data into a single model, whereas standard 
GBLUP includes only genotyped animals9. This integration raises predictive ability, especially when many 
animals lack genotypes. Additionally, penalized regressions such as Elastic Net (ENet) and Bayesian B (BayesB) 
that assign differential weights to genetic markers aim for a better alignment of the SNP contributions to the 
genetic architecture of the trait10,11. However, only a minor fraction of markers explain the additive genetic 
variance of the trait, and a large number of markers (p) increases computational costs and can create problems 
due to collinearity among markers12. Maintaining a balanced set of predictors on GP is crucial to avoid a negative 
impact on the models’ statistical power12.

Dealing with high dimensionality is particularly challenging in small populations, such as those of many 
local breeds, where the number of molecular markers often exceeds the number of individuals. In this context, 
implementing robust strategies to reduce the number of predictors is essential for improving model stability and 
predictive performance13. Such strategies play a key role in preventing model overfitting, which is commonly 
associated with high-dimensional predictor information, reducing the number of predictors while ensuring 
that the model remains reliable and effective14. Using a preselected subset of SNPs in GBLUP has shown 
enhanced prediction accuracy compared to using all genomic information12,15. This highlights the importance 
of the strategy for accurately identifying and selecting relevant markers that match the target trait’s genetic 
architecture, reducing the noise in model16. Usually, this process is carried out based on GWAS results17, where 
SNPs are ranked according to their association with the phenotype of interest. A common application of GWAS 
results in GP involves ranking SNPs based on their statistical significance or the proportion of additive genetic 
variance they explain, and top-ranked markers are then selected and incorporated into prediction models as 
a reduced SNP panel. However, there are limitations in selecting top markers from GWAS approaches, such 
as the difficulty in determining the appropriate number of markers required to achieve high GP accuracy for 
each trait18, especially under varying genetic architectures19,20. Additionally, this approach can lead to biased 
predictions due to false-positive rates21.

In populations submitted to different selection criteria, genetic differences arise from increased diversity 
in the genomic regions directly related to the traits involved in the selection process. These differences can be 
mapped through the fixation index (FST), which measures the changes in the allele frequencies of divergent 
markers between populations22. The FST is a helpful tool for screening markers under selection by evaluating 
population differentiation and can provide an efficient criterion for identifying relevant markers for GS23. The 
FST is able to capture the direction of the Mendelian sampling of the QTL in populations under different selection 
criteria16,24. Using prioritized genetic markers from FST for genomic prediction, the prediction accuracy would 
improve the genomic evaluation power. Hence, we aimed to compare the predictive ability of GS using all the 
genomic information and preselecting strategies to reduce the number of markers through GWAS and the FST 
index, three statistical approaches: GBLUP, the penalized regression method Elastic Net (ENet) and Bayesian B 
(BayesB) for growth and ultrasound carcass traits in Nellore cattle.

Materials and methods
Ethical approval
The animal handling procedure followed ARRIVE (Animal Research: Reporting of In Vivo Experiments) and 
was approved by the ethical committee procedures Animal Care and Ethical Committee recommendations of São 
Paulo State University (UNESP), School of Agricultural and Veterinary Sciences (protocol number 18.340/16). 
All methods were carried out in accordance with relevant guidelines and regulations.

Phenotypic and genotypic information
Animals are from an experimental breeding program at the Beef Cattle Research Center at the Institute of Animal 
Science (IZ) in Sertãozinho, São Paulo, Brazil. Since the 1980s, three selection herds have been maintained in 
the IZ: Nellore control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). In the NeC herd, animals 
are selected for yearling body weight (YBW), which is close to the average of the contemporary group, while 
in the NeS and NeT herds, animals are selected for the maximum yearling body weight (YBW). Since 2013, 
the NeT herd has also been selected for lower residual feed intake (RFI)13,25. In the NeT herd, sires from NeT 
and NeS herds can be used during the breeding season. In the NeC and NeS, only sires from the same herd are 
used during the breeding season, with a controlled inbreeding rate. The current inbreeding coefficients are 7.0% 
in NeC, 4.0% in NeS, and 3.5% in NeT. In the three herds, animal selection is based on body weight (BWsel) 
measured at 378 days in young bulls after feedlot performance testing (168 days) and at 550 days in heifers 
raised on pasture. The average daily gain (ADG) was obtained during the feed efficiency performance testing 
and estimated as the linear regression slope of body weight (BW) on days in the trial. During the trials, animals 
were weighed without fasting at the beginning and the end of the feeding trial, as well as every 14 days during 
the experimental period.
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The growth and carcass-related traits were evaluated on 1621 animals born between 2004 and 2020, with 
262 animals from the NeC herd (221 young bulls and 41 heifers), 458 from the NeS herd (359 young bulls and 
99 heifers), and 901 from the NeT herd (697 young bulls and 204 heifers). The carcass traits were measured by 
ultrasound at yearling in young bulls (n. 1277; 381.5 ± 31.05 days) and heifers (n. 344, 389.7 ± 34.69 days) using 
the PIE MEDICAL Aquila equipment with a probe of 7 inches and 3.5 MHz. The image analysis was performed 
through Echo Image Viewer 1.0 (Pie Medical Equipment B.V., Maastricht, The Netherlands), following the 
criteria of the Ultrasound Guidelines Council. The ribeye area (REA, cm2) was measured by positioning the 
ultrasound probe between the 12th and 13th ribs (longissimus thoracis muscle) on the left side. The back fat 
thickness (BF, mm) was also measured on the longissimus thoracis muscle at a point three-quarters of the ventral 
length of the REA. The rump fat thickness (RF, mm) was measured by placing the transducer at the intersection 
of the gluteus Medius and biceps femoris muscles between the hook and pin bone.

The contemporary groups (CG) for all evaluated traits were defined by birth year, sex, and selection herd. 
Quality control for growth and carcass traits was performed by removing values outside the interval of ± 3.5 
standard deviations below and above the CG mean. Additionally, only CGs with at least five animals were 
retained in the dataset, and the number of animals per CG ranged from 5 to 78.

The genotyped population encompass animals from three experimental herds (NeC, NeS, and NeT) with 
both males and females represented. A total of 780 animals were genotyped using the Illumina Bovine HD 
BeadChip (770 k, Illumina Inc., San Diego, CA, USA), including 48 males and 25 females from NeC, 109 males 
and 65 females from NeS, and 255 males and 186 females from NeT. Additionally, 881 animals were genotyped 
using the GeneSeek Genomic Profiler Indicus (GGP Indicus 50 K), encompassing 163 males and 14 females 
from NeC, 234 males and 28 females from NeS, and 434 males and 8 females from NeT. Markers situated in 
non-autosomal regions or having the same genomic coordinates were removed, followed by the application of 
a quality control (QC) filter to exclude autosomal SNPs with a GenCall score of less than 0.6, thereby removing 
genotyping problems.

The medium-density genotyped animals were imputed to the HD panel (777k markers) using FImpute v326, 
considering a reference population of 780 animals and an imputation accuracy of 0.9813. The genomic QC for 
imputed animals was performed using the qcf90 programs27 to remove genetic markers: (a) located on sex and 
mitochondrial chromosomes, (b) with a call rate < 0.90, (c) with a minor allele frequency (MAF) < 0.05, (d) with 
deviation from HWE (P ≤ 10− 5) and (e) monomorphic markers. In addition, samples with a call rate < 0.90 and 
Mendelian conflict were also removed. After quality control of genomic and phenotypic information, a total of 
1569 genotyped animals with growth and carcass information genotyped with 384,519 SNP markers remained 
for GS analyses. Descriptive statistics for growth and carcass-related traits are shown in Table  1. Population 
structure was evaluated through principal component analysis (PCA) based on the genomic relationship matrix, 
using the ade4 R package28 (Additional File 1: Fig. S1).

Genetic parameters and adjusted phenotype
The variance components and phenotypes adjusted for the fixed effects for growth and carcass traits were 
estimated considering a genomic BLUP (GBLUP) method as follows:

	 y = Xb + Za + e,

 where y is the vector of phenotypic information for BWSel, ADG, REA, BF or RF; b is the vector of fixed 
effects of CG and as covariate: (1) cow age (linear and quadratic effect) and (2) age at measurement (linear 
effect) except for ADG; a represents the additive genetic effect of animals, and e is the residual effect. X and 
Z are the incidence matrices associating fixed (b) and random effects (a) with the phenotypic information (y), 

respectively.
The GBLUP was fitted considering the following assumptions for random effects: a ∼ (0, Gσ 2

a) and 
e ∼ (0, Iσ 2

e), where σ 2
a is the additive genetic variance, σ 2

e is the residual variance, G represents the 

genomic relationship matrix (GRM) obtained according to VanRaden3: G = MM′

2
∑

m
j=1pj(1−pj)

, where M is 

the SNP marker matrix coded as 0, 1, and 2 for genotypes AA, AB, and BB adjusted for allele frequency (2 pj), 
pj is the second allele frequency of the jth SNP marker, and I is an identity matrix.

Trait1 Mean min max σ 2
a σ 2

e
σ 2

p h2

BWSel, kg 353.69 ± 50.6 199.27 493.95 555.6 ± 52.91 711.88 ± 41.89 1,267.48 ± 45.02 0.44 ± 0.025

ADG, g/d 0.88 ± 0.18 0.38 1.310 0.025 ± 0.002 0.041 ± 0.003 0.066 ± 0.003 0.38 ± 0.038

REA, cm2 53.68 ± 8.52 29.00 79.80 15.47 ± 1.84 22.77 ± 1.36 38.24 ± 1.52 0.40 ± 0.031

BF, mm 2.23 ± 1.01 0.40 7.60 0.23 ± 0.029 0.47 ± 0.025 0.70 ± 0.026 0.33 ± 0.033

RF, mm 5.01 ± 1.7 1.60 12.00 0.72 ± 0.083 1.28 ± 0.069 2 ± 0.071 0.36 ± 0.032

Table 1.   Descriptive statistics (n. 1569), variance components, and heritability ( h2) estimates for growth 
and carcass-related traits in Nellore cattle using single-trait genomic-based analyses. 1BWSel, Body weight at 
selection (378 days for young bulls and 550 days for heifers); ADG, average daily gain during the feed trial; 
REA, rib eye area obtained by ultrasound; BF, subcutaneous backfat thickness obtained by ultrasound; and RF, 
rump fat thickness obtained by ultrasound.
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The model was implemented via Bayesian inference using gibbsf90 + software from the blupf90 family29. The 
Gibbs sample covered a chain of 500,000 cycles, considering a burn-in the first 100,000 iterations and samples 
stored every five iterations. The posterior means of the genetic parameters were obtained from 80,000 samples. 
Convergence was evaluated through visual inspection of the trace plot using the BOA package in R30and all traits 
were found to converge (P > 0.12) according to the Geweke test31.

The phenotypic data adjusted for fixed effects ( y* = y − Xb) was determined using the predictf90 software29 
and was used as the response variable in the genomic prediction. This step was essential to remove systematic 
environmental effects and ensure comparability across methods. The adjusted phenotypes were used directly as 
the response variable in GBLUP, BayesB, and ENet. Moreover, in the GBLUP model, variance components were 
re-estimated to ensure alignment with the variance structure inherent to the adjusted phenotypes.

Validation scenarios
A forward validation scheme was applied to assess the prediction accuracy, splitting the dataset based on birth 
year, with animals born between 2004 and 2018 assigned as the training population (n = 1263) and those born 
in 2019 and 2020 (n = 306) as the validation set. In this study, GP analyses were performed using three different 
methods: GBLUP, BayesB, and ENet. Adjusted phenotypic records were used as the response variable in the 
GP for all statistical approaches. Additionally, the same validation design was consistently applied across all 
approaches to ensure comparability of predictive performance under identical training and testing conditions 
(Fig. 1).

Genomic prediction (GP) analyses
GBLUP
Genomic prediction for growth and carcass traits considering the GBLUP can be described as follows:

	 y* = µ + Zg + e,

 where y∗ is the vector of adjusted phenotypic information, µ  is the overall mean, Z is the incidence matrix 
relating observations to GEBV, and g is a vector of additive genetic effects assumed to follow a normal distribution 
N(0, Gσ 2

g), where σ 2
g is the genetic variance, and G is the GRM. The residual effect ( e) followed a normal 

distribution ( N(0, Iσ 2
e)), with σ 2

e  representing the residual variance and I the identity matrix. The genetic 
parameters were recalculated in the GBLUP model, considering adjusted phenotypes to align with the variance 
structure of those adjusted phenotypes. The GBLUP analyses were conducted using the blupf90 + program29.

BayesB
BayesB considers a linear regression, assuming that a known proportion of SNP markers does not contribute to 
the genetic variation (i.e., a point of mass at zero) with probability π and a probability of 1-π markers affecting 
the trait following an univariate t-distribution8,11. The adjusted phenotype ( y∗

i ) of the ith individual is expressed 
as y*

i = µ +
∑ p

w=1xiwuw + ei, where µ  is the unknown average; xiw is the SNP marker w (coded as 0, 1, 
and 2) in animal i; uw is the SNP marker effect (additive) of the wth SNP (p = 384,519); and ei is a residual effect 
assumed to be normally distributed as e ∼ N(0, Iσ 2

e). A priori, the distribution of uw is:

	 p (uw|df,π , SB) = π * (uw = 0) + (1 − π ) *t (uw|df, SB) ,

 where π  is the known prior probability of the SNP having a null effect, 1 − π  is the probability of the SNP 
marker having a nonnull effect, and t (uw|df, SB) is a scaled t distribution with df = 5 degrees of freedom and 
scale parameter SB

32. BayesB was implemented using the R package BGLR version 1.0932, considering a Gibbs 
chain of 200,000 iterations, with a burn-in of the first 50,000 iterations and a sampling interval of 10 cycles.

Elastic-net (ENet)
The elastic net is a robust penalized regression that effectively controls the strong collinearity between predictor 
variables through the combination of two regularization terms: l1 =

∑ ∣∣β j

∣∣( least absolute shrinkage and 
selection operator – LASSO) and l2 =

∑
β 2

j ( ridge regression – RR)10. The l1 and l2 penalty terms are 
controlled by the alpha parameter (α), providing a balance between selection (LASSO) and shrinkage (RR) of 
predictor variables (SNP markers). The optimum weight values for λ and α in the ENet are considered in the loss 
function as follows:

	
L (λ , α ,β ) = min

[ 1
2N

∑
N
i=1{yi −

(∑
p
w=1xiwβ w

)
}2 + λ ((1 − α )β 2

w + α |β w |)
]

,

where N is the number of animals, α  is the value between 0 (RR penalty) and 1 (LASSO penalty), and λ  is a 
regularization parameter that controls the variable shrinkage. The adjusted phenotype ( y∗

i ) was directly used as 
response variable as y*

i = µ +
∑ p

w=1xiwuw + ei, where µ  is the unknown average; xiw is the SNP marker 
w (coded as 0, 1, and 2) in animal i; uw is the additive SNP marker effect (p = 384,519); and eiis a residual effect. 

 The ENet model was performed using the h2o R package (https://github.com/h2oai/h2o-3). We performed 
a random grid search using the h2o.grid function with cross-validation that splits the training subset into five 
folds for training and testing to find optimal values for α and λ ranging from 0.0 to 1.0 with an interval of 0.1 for 
each parameter. Finally, the trained model with the highest accuracy and lowest mean square error (MSE) was 
applied to a disjointed validation set.
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Fig. 1.  Schematic representation of the analytical workflow used in this study, from raw data to genomic 
prediction. Three selection herds were defined: NeC (selection for average yearling body weight, YBW), NeS 
(selection for maximum YBW), and NeT (selection for maximum YBW and, since 2013, for lower residual 
feed intake, RFI). A forward validation scheme was applied, splitting the dataset into training (2004–2018) 
and validation (2019–2020) populations. Genomic prediction models (GBLUP, BayesB, and Elastic Net) were 
trained using the training set, and SNP selection strategies were applied within it. Predictive performance was 
then evaluated on the independent validation set.
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SNP Selection strategies.
SNP selection based on weighted GWAS
To evaluate the effectiveness of reducing dimensionality and improving prediction accuracy, we preselected 
SNP markers from weighted GWAS (wGWAS) performed in the training population (t). We considered two 
thresholds based on genetic variance ( σ 2

a) explained by markers for the target trait (0.5% and 1% of σ 2
a). These 

thresholds were selected because they captured a considerable proportion of the trait’s total genetic variance, 
allowing the identification of the most informative markers while maintaining biological relevance. The wGWAS 
was performed considering an animal model applied to the training population (t), ( yt = Xbt + Zat + et). 
The SNP markers’ effects and weights for wGWAS were estimated using the steps proposed by Wang33, running 
two iterations to estimate the genetic variance explained by the markers25,34.

The percentage of genetic variance explained by SNP markers ( σ2
ût

) in the training population was calculated 

as follows: σ2
ût

=
V ar

(∑ 100
j=1

Zj ûj

)
σ 2

at
× 100 , where σ 2

at is the genetic variance for each trait in the training 

population, Zj  is the vector of the jth SNP marker and ûj  represents the SNP effect of the jth SNP within 
the window with 100 markers. The wGWAS analyses were performed using the postGSf90 program from the 
BLUPF90 family29.

SNP selection based on FST
The FST quantifies allele differentiation among herds by identifying genomic segments under selection pressure, 
and it was used as a strategy for the prioritization of SNP markers in genomic prediction methods. The genetic 
differentiation among the NeC, NeT, and NeS herds was assessed using the FST methodology as described by 
Weir and Cockerham35using the hierfstat R package36. The global FST was calculated using the varcomp.glob 
function, which estimates variance components between and within populations, with the FST value obtained 
by the ratio35:

	
F ST = σ 2

between

σ 2
T otal

,

 where σ 2
between represents the genetic variance between populations and σ 2

T otal the total genetic variance.
Pairwise genetic differences between populations were estimated using the pairwise.WCfst function. The 

significance of the FST values was assessed by bootstrapping with 1,000 resamplings (boot.ppfst). The FST values 
were interpreted according to Wright37where values greater than 0.15 suggest significant differentiation between 
populations. We considered two thresholds based on FST (0.1 and 0.2).

Model performance
The predictive ability of the different methods was assessed by Pearson’s correlation ( r = cor(ŷ*

i , y∗
i ) between 

the between phenotypes adjusted for fixed effects ( y∗
i ) and predicted adjusted phenotype in the validation 

set ( ŷ*
i ). The predictive root mean squared error (RMSE) was RMSE =

√∑
n
i=1(ŷ∗

i − y∗
i )2/n, where n 

represents the number of animals in the validation set. The slope of the linear regression of ŷ∗
i  on y∗

i  was also 
used to assess prediction bias.

Results and discussion
Genetic parameters
Variance components and heritability estimates for growth and carcass-related traits are shown in Table  1. 
Heritability estimates for carcass-related traits ranged from 0.33 for BF to 0.40 for REA and agreed with those 
reported by other studies in Nellore cattle, with values varying from 0.18 to 0.5038–42. Genomic selection has 
been widely applied to improve quantitative traits, particularly those that are difficult or costly to measure, and it 
may be especially helpful for enhancing animal selection for ultrasound carcass traits. The heritabilities observed 
for BWSel (0.44) and ADG (0.33) were similar to those reported by Benfica et al.43 (0.43 for BWsel and 0.31 for 
ADG) and Mota et al.25 of 0.44 for BW at 455 days.

Model performance
Predictive ability was compared with GBLUP as the benchmark against BayesB and ENet for growth and carcass 
traits, considering a forward validation using all genetic markers (Table 2). The highest predictive ability was 
obtained with ENet (0.74 to 0.83) followed by BayesB (0.66 to 0.77) and GBLUP (0.65 to 0.74) (Table 2). The 
values obtained in the present study were greater than those observed by Mehrban et al.44 for REA (0.45) and BF 
(0.47) obtained by ultrasound in Hanwoo cattle and were comparable to those reported by Silva et al.45 in Nellore 
cattle for REA (0.55 to 0.62), BF (0.57 to 0.60) and RF (0.54 to 0.61). However, the predictive ability obtained 
with GBLUP and BayesB were lower than those reported by Lopes et al.46who evaluated Bayesian regression 
methods for REA (0.75), BF (0.95) and RF (0.85) in Nellore cattle.

Despite the polygenic nature of the traits evaluated (Additional File : Fig. S2 and S3), BayesB slightly increased 
predictive ability compared to GBLUP, with improvements of 3% for REA, 1% for BF, and 5% for RF. Similar 
differences in predictive ability between BayesB and GBLUP have been reported in other studies, where GBLUP 
or single-step GBLUP were used as benchmarks for ultrasound carcass traits45,46. The improvement observed 
with the BayesB method may be due to its ability to better capture the genetic architecture of ultrasound carcass 
traits in small populations by applying different weights to markers, thereby identifying the most significant 
markers associated with each trait8. Additionally, as reported by Gao et al.47BayesB enhanced predictive ability 
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due to its superior capacity to estimate marker effects in smaller datasets. Therefore, possibly the improvements in 
predictive ability for ultrasound carcass traits (REA, BF, and RF) using BayesB could be attributed to its accurate 
estimation of marker effects in small datasets, as well as for handling SNPs in high linkage disequilibrium (LD)48.

The ENet method outperformed GBLUP, improving predictive ability from 8.7% for BWSel to 14.4% for BF 
(Table 2). Probably, ENet was able to improve predictive ability because it combines two different types of penalty 
terms, l1 (Lasso) and l2 (ridge), on the predictor variables. The l1 term reduces non-informative SNP effects exactly 
to zero, removing noise and performing variable selection49, while the l2 term shrinks the remaining, often 
highly correlated effects toward zero without fully removing them, reducing multicollinearity and stabilizing 
estimates50. Combining these terms in Enet helps to reduce overfitting in the training population by regulating 
the degree of shrinkage and applying flexible penalties on the predictors, allowing them to reduce to zero or 
close to zero, reducing the problem of dimensionality51,52. This factor enhances the prediction accuracy and 
simplifies the model, increasing interpretability. In Chinese Simmental beef cattle, Wang et al.53 reported that 
the ENet approach slightly increased prediction accuracy for ADG and carcass weight compared to GBLUP and 
BayesB but decreased accuracy for REA (2.0%) and marbling score (2.17%). The authors concluded that GBLUP 
is more effective for traits controlled by many genetic markers with minor effects, while ENet can be adaptable 
and perform well in various circumstances by adjusting penalty values (l1 and l2) to the genetic structure of the 
target trait20.

Trait1

GBLUP BayesB ENet

0.50% 1.00% 0.50% 1.00% 0.50% 1.00%

Acc Slope Acc Slope Acc Slope Acc Slope Acc Slope Acc Slope

BWSel 0.72 0.97 0.70 0.90 0.70 0.95 0.68 1.12 0.80 0.97 0.78 1.04

ADG 0.70 0.97 0.67 0.89 0.69 0.94 0.65 1.11 0.79 1.01 0.76 1.09

REA 0.74 0.97 0.72 0.92 0.72 1.04 0.67 1.14 0.83 1.02 0.81 1.09

Trait1

GBLUP BayesB ENet

0.50% 1.00% 0.50% 1.00% 0.50% 1.00%

Acc Slope Acc Slope Acc Slope Acc Slope Acc Slope Acc Slope

BF 0.66 0.98 0.65 0.94 0.64 1.06 0.62 1.13 0.79 0.99 0.75 1.03

RF 0.75 0.97 0.75 0.92 0.72 0.95 0.69 1.13 0.83 0.99 0.82 1.06

Table 3.  Predictive ability considering SNP markers selected from GWAS, explaining more than 0.5% and 
more than 1.0% of the genetic variance for growth (BWSel and ADG) and carcass-related (REA, BF, and 
RF) traits using GBLUP, bayesb, and ENet approaches. Predictive ability, cor (ŷ*

i , y∗
i )) Pearsons’ correlation 

between phenotypes adjusted for fixed effects ( y∗
i ) and predicted adjusted phenotype ( ŷ*

i ). BWSel, Body 
weight at selection; ADG, average daily gain during the feed trial; REA, rib eye area obtained by ultrasound; 
BF, subcutaneous backfat thickness obtained by ultrasound; and RF, rump fat thickness obtained by 
ultrasound.

 

Trait1

Predictive ability 2 Root mean square error Prediction bias3

GBLUP BayesB Enet RD (%) BayesB RD (%) Enet GBLUP BayesB Enet GBLUP BayesB Enet

BWSel 0.69 0.69 0.75 0.0% 8.7% 12.90 18.94 10.1 1.08 0.95 1.01

ADG 0.679 0.679 0.761 0.0% 12.1% 0.03 0.05 0.02 0.97 1.07 1.01

REA 0.728 0.753 0.828 3.4% 13.7% 2.51 3.16 1.97 0.98 1.06 0.99

BF 0.651 0.66 0.745 1.4% 14.4% 0.37 0.5 0.29 0.97 0.95 0.99

RF 0.742 0.777 0.8 4.7% 7.8% 0.22 0.37 0.17 1.06 0.94 1.01

Table 2.   Predictive ability, root mean square error (RMSE), and prediction bias for growth (BWSel and 
ADG) and carcass-related (REA, BF, and RF) traits in Nellore cattle. 1 BWSel, Body weight at selection; ADG, 
average daily gain; REA, rib eye area obtained by ultrasound; BF, subcutaneous backfat thickness obtained by 
ultrasound; and RF, rump fat thickness obtained by ultrasound. 2Predictive ability was assessed by Pearson’s 
correlation (r) between phenotypes adjusted for fixed effects ( y∗

i ) and predicted adjusted phenotype ( ŷ*
i ). RD 

- relative difference (RD) in prediction accuracy assessed as RD (%) = (rm1− rGBLUP )
rGBLUP

× 100, where rm1 

is the predictive ability using BayesB or ENet and rGBLUP  is the predictive ability using the GBLUP approach. 
3Slope of linear regression of phenotypes adjusted for fixed effects ( y∗

i ) on predicted adjusted phenotype ( ŷ*
i ).
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Impact of variable selection from GWAS and FST on prediction accuracy
Selecting informative SNP subsets markedly improved prediction (Tables  3 and 4). The prediction accuracy 
ranged from moderate to high, with values between 0.62 and 0.83 when markers were selected based on GWAS 
(Table 3) and between 0.62 and 0.87 when selecting markers based on FST (Table 4) for growth and carcass-
related traits. Among the evaluated traits, the highest prediction accuracies were consistently obtained, varying 
from 0.75 to 0.83 (GWAS) and 0.76 to 0.87 (FST) for RF, and 0.72 to 0.83 (GWAS) and 0.74 to 0.87 (FST) for REA. 
Overall, the prediction accuracies obtained using selected markers were higher for GBLUP and ENet compared 
to those using the full set of markers. ENet consistently outperformed the other methods when using marker 
selection strategy, showing relative improvements of approximately 12.9% and 13% over GBLUP, and 18% and 
19% over BayesB, using markers selected based on GWAS and FST, respectively. However, both BayesB and ENet 
methods assign different weights to markers attempting to match their contributions to the variation in a target 
trait. The superior performance of the ENet method in both variable selection strategies may be attributed to 
its greater flexibility in capturing complex relationships between genomic data and target phenotypes. On the 
other hand, BayesB employs more restricted differential shrinkage, allowing only a few genomic regions to have 
a large effect on the trait. This can result in reduced accuracy when considering selected markers compared to 
using all markers20.

Figure 2a and 3a show the relative gains in prediction accuracy achieved by GBLUP, BayesB, and ENet when 
using variables selected from GWAS (Additional File 1: Figs. S2 and S3) and FST (Additional File 1: Figs. S4), 
respectively, compared to applying these statistical methods to the full set of SNP markers. The patterns of 
relative gains varied depending on the target trait and the model employed. For growth traits, selecting markers 
that explained more than 0.5% of the genetic variance in GWAS led to increases in prediction accuracy of 3.7% 
with GBLUP, 1.5% with BayesB, and 5.2% with ENet (Fig. 2a). In the case of ultrasound carcass traits, prediction 
accuracy improved by 1.4% with GBLUP and 3.3% with ENet (Fig.  2a). In comparison, BayesB exhibited a 
reduction of approximately 4.9% in prediction accuracy (Fig. 2a).

 The observed decreased prediction accuracy with BayesB when employing selected markers can be attributed 
to its assumption that only a small number of markers significantly affect the evaluated traits. In contrast, most 
markers have minor or null effects8. When selected markers are used, the dataset becomes smaller, potentially 
excluding markers that may individually have small effects but jointly contribute significantly to the trait’s 
genetic variation. Removing these markers can limit BayesB’s ability to capture the entire genetic architecture of 
the trait accurately and may introduce bias into the model54,55.

Considering FST-selected markers (> 0.1; Additional File 1: Fig. S4), the prediction accuracy increased by 
7% with GBLUP and 8% with ENet for all traits, whereas BayesB showed improvements only for growth traits 
(Fig. 3a). These improvements in prediction accuracy with SNPs selected from GWAS and FST agree with the 
findings of other studies with different species15,23,24,56,57. Akbarzadeh et al.57 reported that using subsets of 
SNPs from a standard GWAS analysis in humans (1%, 5%, 10%, and 50% of significant SNPs) slightly improved 
accuracy with the top 10% and 50% of SNPs but showed reduced accuracy with the top 1% and 5%. In Rendena 
cattle, applying different SNP weighting strategies improved prediction accuracy for ADG, in vivo carcass 
fleshiness and dressing percentage than traditional single-step GBLUP, although extreme shrinkage decreased 
prediction accuracy and led to biased predictions58. In addition, Meuwissen et al.59 reported up to a 10% 
improvement in prediction accuracy over GBLUP for milk traits and somatic cell count by adjusting weights in 
the genomic matrix based on GWAS results.

 There was a greater improvement in prediction accuracy for growth traits (BWSel and ADG) and carcass 
traits (REA, BF and RF), using selected markers by the FST, compared to GWAS, with improvements of 4% with 
GBLUP, 3% with BayesB, and 4% with ENet (Additional File 1: Fig. S5a,b). This superiority can be attributed to 
FST’s effectiveness in capturing genetic variation (Additional File 1: Fig. S1) and considering allele frequency 
differentiation across the population under different selection criteria22. Combining Yorkshire pig populations, 
Ye et al.56 observed greater prediction accuracy for GBLUP when markers were selected by the FST index than 
when using all the markers, demonstrating their usefulness for multi-population GS. Chang et al.23 observed 
improvements in prediction accuracy when the G matrix was weighted based on the FST index, achieving a 

Trait

GBLUP BayesB Enet

0.1 0.2 0.1 0.2 0.1 0.2

Acc Slope Acc Slope Acc Slope Acc Slope Acc Slope Acc Slope

BWSel 0.75 0.98 0.73 0.97 0.73 0.91 0.7 0.94 0.82 0.99 0.8 1.01

ADG 0.73 0.98 0.71 0.97 0.69 0.92 0.66 0.93 0.82 0.98 0.79 1.01

REA 0.76 0.97 0.74 0.97 0.74 0.93 0.7 0.93 0.87 0.98 0.85 1.00

BF 0.7 0.99 0.68 0.98 0.66 0.93 0.62 0.91 0.81 1.02 0.8 0.99

RF 0.78 0.97 0.76 0.96 0.75 0.93 0.73 0.90 0.86 1.01 0.84 0.98

Table 4.  Prediction accuracy considering the SNP markers with a fixation index (FST) higher than 0.1 or 0.2 
for growth (BWSel and ADG) and carcass-related (REA, BF, and RF) traits using GBLUP, bayesb, and enet. 
Predictive ability, cor (ŷ*

i , y∗
i )) Pearsons’ correlation between phenotypes adjusted for fixed effects ( y∗

i ) and 
predicted adjusted phenotype ( ŷ*

i ). BWSel, Body weight at selection; ADG, average daily gain during the feed 
trial; REA, rib eye area obtained by ultrasound; BF, subcutaneous backfat thickness obtained by ultrasound; 
and RF, rump fat thickness obtained by ultrasound.
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5% improvement for GBLUP. This variable selection strategy has the power to address heterogeneous and large 
datasets, providing improvements in prediction accuracy by using the subset of genomic regions that impact the 
relationships between genotype and phenotype12,15.

Efficient variable selection from GWAS allows for the identification of SNP markers that are biologically 
relevant to the target trait (Additional File 1: Fig. S2, S3). On the other hand, selecting variables based on FST 
helps to identify the major QTLs that differentiate the herds in the study, reflecting the distinct selection strategies 
applied in each herd (Additional File 1: Fig. S4). Using a GWAS threshold of > 1% of genetic variance (Fig. 2b), 
only minor improvements in prediction accuracy were observed with GBLUP (1.4% for BWsel and 1.1% for RF) 
and ENet (4.0% for BWsel, 0.7% for BF, and 0.5% for RF). BayesB exhibited reductions in prediction accuracy 
ranging from − 1.4% for BWsel to − 11% for REA and RF, while GBLUP showed reductions from − 0.2% for RF 
to − 1.3% for ADG (Fig. 2b).

Considering a more conservative FST threshold (> 0.2) resulted in slight improvements in prediction accuracy 
considering the methods GBLUP (1–6%) and ENet (2–7%), whereas BayesB exhibited reductions (3–6%), 
except for BWsel (Fig. 3b). Moreover, when comparing the thresholds of 0.5% vs. 1.0% for GWAS (Additional 
File 1: Fig. S6a) and 0.1 vs. 0.2 for FST (Additional File 1: Fig. S6b), the less restrictive threshold provided 
superior prediction accuracy: approximately 2.3% higher for GWAS and 2.8% higher for FST with GBLUP, 4.8% 
higher for both GWAS and FST with BayesB, and 3.1% higher for GWAS and 2.5% higher for FST with ENet. 
These findings suggest that selecting significant markers is more likely to be successful when a less conservative 
threshold is applied (Figs. 2 and 3). Lopes et al.46, using a Markov blanket al.gorithm to select markers associated 
with carcass traits, reported a reduction in prediction accuracy in Bayesian regression approaches, which could 
be attributed to the reduced degrees of freedom caused by the limited number of markers included in the 
model. Mota et al.19 observed that preselecting genetic markers with a less restrictive threshold from GWAS 
resulted in better performance than considering all markers, and more restrictive thresholds led to a negligible 
improvement in prediction accuracy.

Decreasing the SNP density for genomic predictions, particularly by applying more conservative thresholds 
in GWAS (> 1%) and FST (> 0.2), results in decreased predictive ability and increased bias (Tables 2 and 3). 
This increased bias was particularly notable with BayesB, where the bias ranged from 1.11 to 1.14 for GWAS 
using markers that explained > 1% of the genetic variance and from 0.90 to 0.94 for FST (> 0.2). In summary, 
selecting markers using less restrictive thresholds (GWAS > 0.5% and FST > 0.1) can enhance the predictive 

Fig. 2.  Relative difference (RD) of the prediction accuracy, considering the SNP markers explaining more 
than 0.5% (a) and 1% (b) of genetic variance against all SNPs for growth (BWSel and ADG) and carcass-related 
(REA, BF, and RF) traits using GBLUP, BayesB, and Enet.
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ability for growth and carcass traits for GBLUP and ENet. Removing non-informative SNPs improves the 
resolution of potential causative variants affecting the target trait by removing noise information and, thus, 
increasing prediction accuracy. Mainly, populations under selection are dynamic, and changes in breeding cycles 
lead to changes in allele frequency, LD level, and introgression of new alleles caused by selection, genetic drift, 
and unequal parental contributions to progenies that differentiate populations60. Such changes significantly 
challenge GP across populations, which explains the superiority of selecting markers based on FST against 
GWAS (Additional File: Fig. S5). Selecting markers based on the FST may be more effective in identifying 
markers that segregate across the population.

 Given the dynamic nature of populations subject to selection, marked by changes in allele frequencies, LD 
patterns and the introduction of new alleles due to selective pressures and unequal parental contributions, it’s 
essential to assess and consider population structure when using FST-based marker selection. To avoid bias from 
population structure and accurately capture meaningful genetic differentiation, the presence of subpopulations 
within the dataset must be evaluated through PCA (Fig. S1a). This analysis aims to uncover genetic differences 
linked to various selection strategies (NeC, NeS, and NeT), validating genetic stratification across herds. The 
observed structure supports the application of FST as a method to identify loci that contributes to divergence 
between groups under different selection criteria. Therefore, an effective workflow for incorporating FST into 
genomic prediction should include (1) identifying potential subpopulations via PCA or Bayesian clustering (e.g., 
Admixture), (2) calculating FST between these groups, (3) selecting SNPs that exceed a specific differentiation 
threshold (e.g., FST > 0.1) or weighing the G matrix, and (4) using these markers in genomic prediction models. 
This systematic approach aids in prioritizing genomic regions that are both highly differentiated and likely subject 
to divergent selection, ultimately enhancing predictive ability in structured populations. The improvements 
observed with FST-selected SNPs across various traits in our study highlight the advantages of this strategy 
for capturing population-specific genetic signals, especially in breeding programs involving multiple herds or 
regional subdivisions.

Impact of selected SNP markers on Mendelian sampling
Selecting markers based on different GWAS and FST thresholds impacted the genetic relationship between the 
training and validation sets (Figs. 4 and 5). The conservative threshold led to the exclusion of markers that, 
although individually contributing small effects, collectively have a significant impact on the trait’s genetic 
architecture. As a result, the genomic relationship matrix (GRM) built from this limited marker set may not 

Fig. 3.  Relative difference (RD) of the prediction accuracy, considering the SNP markers with a fixation index 
(FST) higher than 0.1 (a) and 0.2 (b) against all SNPs for growth (BW and ADG) and carcass-related (REA, BF, 
and RF) traits using GBLUP, BayesB, and Enet.
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adequately capture the genetic relationships between individuals (Figs.  4 and 5), which results in increased 
prediction bias and decreased accuracy. Selecting markers from FST resulted in a smaller reduction in genetic 
relationships due to the selection and utilization of a greater number of markers to build the GRM compared to 
GWAS.

Differences in the prediction accuracy using a selected subset of markers depend on how well it matches the 
genetics architecture of the trait (Fig. 6) and captures the mendelian sampling (MS), between the training and 
validation sets (Figs. 4 and 5). Including genomic information into genetic evaluations, compared to pedigree-
only approaches, enhances both MS between animals and the accuracy of QTL mapping24. While the standard 
procedure for using genomic markers for GS of complex traits involves considering all SNP markers from 
chip assay as predictors, focusing on markers directly associated with the target trait could improve predictive 
performance, as growth and carcass traits are influenced by diverse biological processes25,61. Marker selection 
strategies should aim to preserve the genetic relationship between training and validation sets, as captured by 
MS, to avoid reductions in prediction accuracy24.

Multiple factors, such as marker densities, heritability, models, and interaction, seem to impact the prediction 
accuracy in GS. The heritability estimates for the evaluated traits were influenced by the number of markers 
selected at each FST and GWAS threshold (Fig. 6). Using selected markers from GWAS, the heritability estimates 
for carcass traits were lower compared to using all genetic markers, as GWAS tends to capture only the most 
significant variants associated with the trait, potentially excluding smaller-effect loci that contributes to the 
overall traits’ genetic variation. On the other hand, selecting markers based on FST, which measure population 
divergence, had heritability estimates closer to those obtained using the full set of markers. This is because FST 

Fig. 4.  Genomic relationship between training and validation set considering all genomic information (a), 
selecting markers by fixation index (FST) of 0.1 (b) and 0.2 (c) and GWAS considering a threshold of 0.5% of 
genetic variance for BWSel (d) and ADG (f), and considering a threshold of 1.0% of genetic variance for BWSel 
(e) and ADG (g). BWSel, Body weight at selection (378 days for young bulls and 550 days for heifers) and ADG, 
average daily gain.
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captures a broader spectrum of genetic variation, including population-specific differences, which help retain 
polygenic contributions to the trait.

 Applying less conservative thresholds in GWAS (> 0.5% of genetic variance) and FST (> 0.1) improved 
predictive ability by 7% with GBLUP and 8% with ENet. These gains can occur due to the selection of informative 
SNPs that capture similar levels of genetic variability and heritability as using all markers. Although medium- to 
high-density SNP panels are commonly used in GP for beef cattle, our findings suggest that a strategic reduction 
in marker density through the selection of highly informative SNPs can maintain or even enhance predictive 
ability. Selected SNPs were also effective at capturing within-family variation and MS effects19,62. The results 
indicated that when properly designed, low-density SNP panels can enhance the predictive ability for growth and 
carcass traits while substantially reducing genotyping costs. Consequently, selecting informative SNPs to reduce 
marker density emerges as a viable strategy for cost-effective genomic evaluations in beef cattle. However, the 
effectiveness of this approach may vary depending on population structure, genetic architecture of the trait, and 
specific thresholds used for SNP selection. These findings highlight the need for context-dependent strategies 
when implementing marker reduction protocols in genomic prediction pipelines.

Conclusions
 The ENet approach exhibited better performance for genomic prediction of complex traits in Nellore cattle 
herds, outperforming GBLUP and BayesB approaches across different selection criteria. Preselecting SNPs based 
on GWAS and FST proved advantageous in filtering out non-informative genetic markers, thereby enhancing 
prediction accuracy with GBLUP and ENet. However, no benefits were observed with the BayesB method. The 
FST has been shown to be an effective criterion for selecting markers for genomic prediction, as it better captured 
QTL similarities between individuals in the training and validation sets, resulting in higher and more stable 
prediction accuracies compared to GWAS. We showed that preselecting genetic markers with more restrictive 
thresholds for GWAS (> 1% of genetic variance) and FST (> 0.2) led to a small improvement in the prediction 
accuracy of growth and carcass traits. These results suggest that careful marker selection, particularly through 
FST, can optimize genomic predictions, especially in the context of complex trait analyses.

Fig. 5.  Genomic relationship between training and validation set selecting markers GWAS considering a 
threshold of 0.5% of genetic variance for REA (a), BF (c), and RF (e), and considering a threshold of 1.0% 
of genetic variance REA (b), BF (d), and RF (f). REA, rib eye area obtained by ultrasound; BF, subcutaneous 
backfat thickness obtained by ultrasound; and RF, rump fat thickness obtained by ultrasound.
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Data availability
The phenotypic and genotypic information related to this study is available for academic purposes upon reason-
able request to the authors. The data used in this study belong to experimental breeding programs, and therefore, 
restrictions apply to their availability. However, the data can be made available by contacting the corresponding 
authors and obtaining permission from the experimental breeding program. To contact the researchers, please 
use the email address provided: mezmercadante@gmail.com.
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